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Abstract: Optimal identification and numerical models are powerful tools that have been widely used 
in geoscience research for many years. In this study, we proposed a novel optimal method to simulate 
a key parameter (cutoff draft) of the ridge keels due to dynamic deformation of sea ice at bottom. The 
sea ice ridges were measured in the Northwestern Weddell Sea of Antarctic, by a helicopter-borne 
electromagnetic-induction (EM) system. An optimal model with nonlinear-statistical constraints was 
developed, by taking deviations between the theoretical and measured keel draft (spacing) distributions 
as the performance criterion, and cutoff draft as the identified parameter. The properties of the optimal 
model and the existence of the optimal parameter were demonstrated. We identified that the optimal 
cutoff draft was 3.78 m via an optimal numerical algorithm, this value was then employed to separate 
the ridge keels from the ice bottom. Finally, the relationship between the mean keel draft and frequency 
(number of keels per km) was analyzed, and the result showed that this relationship was modeled well 
by a logarithmic function with a correlation coefficient of 0.7. The present optimal modeling method 
will provide a new theoretical reference for separating accurately the ridge keels from undeformed sea 
ice bottom, and analyzing the relationship between the morphologies of sea ice surface and bottom and 
the inversions of sea ice bottom draft and ice thickness by the surface height. 
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ridge keel 
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1. Introduction  

As a major component of the polar environment, sea ice cover affects the exchange of heat, energy, 
mass, and momentum between the atmosphere and the ocean in the polar regions [1–4]. Morphology 
of polar sea ice changes continuously under the influences of external driving forces, e.g., wind, ocean 
current and waves. The surface and bottom topographies of ridged sea ice differ greatly from that of 
other sea-ice types, and the most important morphological features of ridged sea ice are the ridge sails 
on surface and keels on bottom formed by the dynamic deformation, except for other roughness 
features [5,6]. The ridge sails/keels have major effects on the optimization of the ice thickness remote 
sensing algorithm based on sea ice roughness parameters and sea ice thermodynamics numerical 
simulation parameterization scheme, and the analysis of the relationship between polar sea ice and 
climate variations [7,8]. 

 

Figure 1. Sketch of sea ice surface and bottom morphology. (Curves denote the measured 
data, and isoceles triangles with dashed lines are the approximate ridge sail/keel cross-
sections). 

In general, the ridge sails/keels can be separated from sea ice surface/bottom undulations by a key 
parameter, namely, a cutoff height/draft: where any peaks lower than the cutoff height/draft are 
classified as non-ridged ice surface/bottom fluctuations, whereas other peaks exceeding the cutoff 
height/draft are defined as ridge sails/keels [9]. The sea ice morphology is shown in Figure 1 by 
approximating the ridge sail/keel cross-sections as the isoceles triangle, and a field photograph of sea 
ice ridge sails in Antarctic is shown in Figure 2. This height/draft affects estimations of the sea ice 
mass and thickness, and plays an important role in the establishment of large-scale sea ice dynamic 
models [10–14]. Therefore, the determination of the cutoff height/draft is an essential and significant 
stage for the analysis of the ridge morphologies and the improvement of sea ice thermodynamics 
numerical models. The Rayleigh criterion and in-situ measurement experience were always combined 
as a staple method to determine this cutoff height/draft [15,16]. However, the cutoff height/draft used 
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in many previous studies were always arbitrary and empirical, resulting in confusions when comparing 
results from different observations, owing to no-upper limitation defined by the Rayleigh criterion. 
The cutoff height and morphology of the ice ridge sails were analyzed in our previous study [17]. So, 
a novel optimal modeling and method for the determination of the ridge keel cutoff draft are the main 
contribution of this research. 

 

Figure 2. A field photograph of sea ice ridges survey in Antarctic during the 36th Antarctic 
scientific expedition of china. 

To seek an effective method for determining the keel cutoff draft and analyzing the pressure ridge 
morphology, data measured by a helicopter-borne electromagnetic-induction (EM) bird in 
northwestern Weddell Sea of Antarctic during the ANT-XXIII/7 cruise carried out by Alfred Wegener 
Institute for Polar and Marine Research were collected [10]. The length, diameter, and weight of the 
EM instrument were 3.5 m, 0.35 m, and 105 kg, and the sampling frequency was 10 Hz. During the 
cruise, total accumulated distance of measurement was nearly 3000 km, and EM survey flights were 
segmented into 94 profiles for the avoidance of open water in the survey areas. Different ice types and 
ice regimes in northwestern Weddell Sea were perfectly covered.   

EM induction determines sea ice thickness remotely and has high precision and reliability based on 
the difference between the electrical properties of sea ice and sea water [11]. The observations provide 
ground validations to satellite remote sensing and numerical simulations [20], thus have been extensively 
employed in sea ice investigations [11, 18–24]. Generally, sea ice thickness derived by EM induction are 
consistently reliable over undeformed ice, and usually within 10% of that by drilling [21]. While over rough 
and deformed ice, the estimations are possibly affected by the water within the porous keels and 3D 
structure of keels, which may lead to underestimation of the maximum keel draft [20]. However, the EM 
fields can penetrate through the water and are also sensitive to ice bottom further below. Thus, EM 
measurements can distinguish between thinner and deeper keels, and the rationality and validity of the EM 
data had been discussed by numerous researchers [11,18,20,22]. The detailed description of EM ice 
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thickness measurement and data processing can refer to Haas et al. [10,11]. 
The accuracy of EM measurements was better than 0.1m over level ice, becoming lower for 

rough and deformed ice. For a helicopter flight speed varying between 80 and 90 knots, the spatial 
sampling distances of EM ranged from 3 to 4 m, respectively. The bottom draft is relative to the 
local level ice surface. 

A novel optimal model with nonlinear-statistical constraints is proposed to find out a reasonable 
and effective value for the cutoff draft. The performance function consists of the relative deviation 
between the numerical results and the measured data of the keel draft, and that between the numerical 
results and the measured data of the keel spacing, and the cutoff draft is taken as the identified 
parameter. Then, the properties of the model and the existence of the optimal parameter are discussed. 
The optimal value of the cutoff draft is identified by a numerical algorithm and employed to separate 
the ridge keels from undeformed sea ice bottom. Finally, the correlation between the keel draft and 
frequency (number of ridge keels per km) is analyzed and discussed.  

This paper is organized as follows. In Section 2, a novel optimal model with nonlinear-statistical 
constraints for the determination of the cutoff draft is established, based on the traditional models of 
the keel draft and spacing, the properties of the proposed model and the existence of the optimal 
parameter are proved. Moreover, the optimal cutoff draft is identified using a numerical algorithm and 
applied to separate the ridge keels from undeformed sea ice bottom in Section 3. Section 4 discusses 
the correlation between the keel draft and frequency in detail. Conclusions and some discussions are 
given in the final section. 

2. Optimal modeling of the ridge keel cutoff draft 

To find out the optimal value of the cutoff draft and separate effectively ridge keels from other 
sea ice bottom morphology, a novel optimal model with nonlinear-statistical constrains is formulated, 
the properties and the existence of the optimal parameter are proved in this section.  

The probability functions of the traditional keel spatial distributions are introduced firstly in 
the following. 

2.1. Traditional spatial distributions of ridge keel 

2.1.1. Draft distribution of ridge keel 

Let the function
-

( ; , )=
k ckd kd kf f d d   denote the theoretical density for the ridge keel draft, which 

is Lipchitz continuous, where  kd D  is the keel draft with the set max: [ , ] k k c kD d d , k cd  is the 

cutoff draft, max


 kd R  is the maximum keel draft and it is a limited constant ( maxk c kd d  ), k  

is a parameter set related to the cutoff draft k cd .  
There are two traditional theoretical functions of the ice ridge keel draft distribution. One was 

presented by Hibler et al. [26] as follows. 
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where  
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and 1  is the distribution shape parameter in set k , and related to the mean keel draft 
_

d  by the 

following equation. 
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The other was advanced by Wadhams [27], who showed that the keel draft distribution can be 
fitted well by the following exponential function.  

- 2 2 2 - -
( ; , ) exp[ ( )], , ,    

k c k c k ckd kf d d d d d d d D                   (4) 

where 
2
  is the distribution shape parameter in set k determined by 

2 -

_
1 .  

k c
dd                                   (5) 

2.1.2. Spacing distribution of ridge keel 

Set the function
-

( ; , )= 
k cks ks kf f s d  as the theoretical density for the ridge keel spacing, which is 

also Lipchitz continuous, where  ks S  is the keel spacing, and the set kS  is defined as 

min max: [ , ] k k kS s s , min max, 
  k ks s R  are the minimum and maximum keel spacings 

( min max k ks s ), respectively, and they are both limited constants, k  is a parameter set related to 

the cutoff draft k cd .  

One traditional function of the keel spacing distribution was presented by Hibler et al. [26] as the 

following exponential form.  

     
- 3 3 3 -

( ; , ) exp( ), , , ,
k c k cks k kf s d s d d d D s S                       (6) 

where 3 k   related to the mean keel spacing 
_

s by the following equation. 

           
3

_
1. s                                                     (7) 

Following, a lognormal distribution density function was proposed and showed fitted better the keel 
spacing by the by Wadhams and Davy [28]. 
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where k  is the shift parameter, k  and k  are the mean and standard error of ln( - )ks  , 
respectively, and determined by the following equation. 

2_

= exp( ).
2

  k
k ks


                                (9) 

2.2. Novel optimization for the cutoff draft 

To find out the optimal value of the cutoff draft and separate accurately the ridge keels from the 
local roughness of sea ice bottom, a novel optimal model with nonlinear-statistical constrains is 
formulated, in which, the deviation between the numerical results and the measured data of the keel 
draft and that between the numerical results and the measured data of the spacing are combined as the 
performance criterion, and the cutoff draft k cd  is the identified parameter. Then, the properties of 
the proposed model and the existence of the optimal parameter are discussed in this section. 

2.2.1. Novel optimal modeling 

Let ( )
k ckd dE  and ( )

k cks dE  be the relative deviation between the theoretical function and the 

measured keel draft distribution and that between the theoretical function and the measured keel 

spacing distribution, respectively, and described by the following equations. 
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where id  and js  are the measured keel draft and spacing corresponding to the cutoff draft k cd , 

respectively, ,kd if  and ,ks jf  are the probability densities of the measured ridge keel draft id   and 

spacing js , and 1, 2, , i n  and 1, 2, , j m .  

Let ( ) k c ad k cd U d  be the identified parameter, where ( )ad k cU d  is the admissible parameter 

set limited by the Rayleigh criterion and cover a sufficient range of the measured ridge keel drafts.  

( ) : { | 3.58 4.18}    ad k c k c k cU d d d                     (12) 

Obviously, the admissible parameter set ( )adU  is a nonempty, bounded, closed, and convex.  

For simplicity, Eq (1) is referred to as Hibler’72 function and Eq (4) as Wadhams’80 function in 

the following study. The initial cutoff draft of ,0 = 3.58k cd  m and step increment of = 0.1 k cd  m 

are employed to search for the best fits to the measured ridge keel draft and spacing distributions. The 

results in Figure 3 indicate that for any cutoff draft in the parameter set ( )adU , the Wadhams’80 and 

lognormal functions yield the best fits to the measured keel draft and spacing distributions, respectively. 



1714 

Electronic Research Archive  Volume 30, Issue 5, 1708–1722. 

   

Figure 3. Relative deviations between theoretical and measured keel draft and spacing 
distributions for different cutoff drafts. 

Effects of the ridge sail and spacing on the sail intensity (the ratio of the sail height to spacing) were 
very different, and the contribution of sail spacing is much larger than that of sail height in general [17]. To 
comprehensively evaluate the effects of the cutoff draft on both the measured keel draft and spacing 
distributions, the following performance criterion ( )J  is defined by considering the different effects 
of the keel draft and spacing on the keel intensity (the ratio of the keel draft to spacing). 
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where ( )
k c

dJ   is the performance function, ( )
 k ckd w dE   is the relative deviation between the 

Wadhams’80 function and the measured keel draft distribution, ( )
 k cks l dE  is the relative deviation 

between the lognormal function and the measured keel spacing distribution, 2( , ; ) kd w i k cf d d   is the 

probability density function of the Wadhams’80 distribution for the keel draft [refer to Eq (4)], and 

-( , ; , , )ks l j k c k k kf s d     is the probability density function of the lognormal distribution for the keel 

spacing [refer to Eq (8)], 1, 2, , i n  and 1, 2, , j m  . A novel optimal model with nonlinear-

statistical constraints (NOPM-NS) is then established as follows. 
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


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


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


           (16) 

2.2.2. Properties of the model (NOPM-NS) and existence of the optimal parameter 

For the strictness of the above model (NOPM-NS), namely, the existence of the optimal cutoff 
draft, we set    

2: ={ }( ) ( , ; ) ( ( )) | , , ( )
        

k ci ikd w kd w i k c k ad k c k k c ad k cdd dM f f d d C D U d D d U d ，      (17) 

and 

_ _ _
1

2 2 2: ={ },( ) | , , , ( )
k c k c k k c ad k cdN d d d d D d U d  



             (18) 

Then, 

2( ( )) ( ) ( ).ad kd wUK M f N                          (19) 

Set 

: ={ }( ) ( , ; , , ) ( ( )) | , ( )        ks l ks l j k c k k k k ad k c j k k c ad k cP f f s d C S U d s S d U d   ,    (20) 

and 

2_ _

: ={( = }exp( ),( , , ) , , ) | , ( )
2     k

k k k k k k k k k k c ad k cQ s s S d U d


       ,      (21) 

Then,  
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' ( ( )) ( ) ( , , ).
ad ks l k k kUK P f Q                             (22) 

Define the feasible region set of the model (NOPM-NS) as  

'( ) : ( ( )( ( )) ( ).
adadk c k c k c ad k cUUX d K d K d U d                    (23) 

Theorem 1. The feasible region set ( )X   defined by Eq (23) of the model (NOPM-NS) is compact.  

Proof: Let 1+R    be the set of positive real numbers. Obviously, the admissible parameter set
1+( ) adU R , and ( )adU   is nonempty, bounded and closed, namely, it is compact. The probability 

density function 2( , ; ) kd w i k cf d d   is continuous on the parameter ( )
 


k c k cadd dU , so, the set ( )kd wM f  

is compact.  

Additionally, 1
2
  is continuous on the parameter ( )

 


k c k cadd dU  based on the definition of 

Eq (5), it is clear that the set 2( )N   is also compact. Therefore, the set ( ( ))adK U   is obviously 

compact based on Eq (19).    

Similarly, we can also prove that the set ' ( ( ))adUK   defined by Eq (22) is compact. Therefore, 

the feasible region set ( )X  in Eq (23) is compact, namely, the feasible region set of the novel optimal 

model (NOPM-NS) is compact. 

Theorem 2. The performance function ( )J   of the model (NOPM-NS) is continuous in the 

feasible region set ( )X  .  

Proof: The admissible parameter set 1+( ) adU R  is nonempty, bounded, closed and convex, and 

the function 2( , ; ) kd w i k cf d d   is continuous on the parameter ( )
 


k c k cadd dU , so, the relative deviation 

function ( )
 k ckd w dE  is continuous on the parameter ( )

 


k c k cadd dU  according to its definition [refer 

to Eq (14)].  

Similarly, the relative deviation function ( )
 k cks l dE   is continuous on the parameter 

( )
 


k c k cadd dU  according to its definition [refer to Eq (15)].  

Therefore, combining with the definition [refer to Eq (13)], the performance function ( )J  of 

the novel model (NOPM-NS) is continuous in the feasible region set ( )X  .   

From the above two theorems, we can obtain the following theorem easily.  

Theorem 3. * ( )


  
k c add U  , such that ( )


  

k c add U  , *( ) ( )
 


k c k c

d dJ J   holds. Namely, the 

optimal solution of the model (NOPM-NS) exists. 

3. Numerical algorithm and result for the novel model (NOPM-NS) 

It is known that the optimal solution of the optimal model (NOPM-NS) exists from Theorem 3. 
A numerical algorithm is developed for the determination of the optimal cutoff draft and result is 
analyzed in this section. 

3.1. Numerical algorithm for the model (NOPM-NS) 

The linear search method is applied to make the performance function ( )J  of the novel optimal 
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model (NPM-NS) attain its minimum, and the numerical algorithm is described as follows. 

Step 1. Initialize: 
,0k c

d
   (cutoff draft), 

k c
d


   (step increment), and 

,maxk c
d

  ( maximum of the 

cutoff draft). Set =1p .  

Step 2. Import: measured keel draft 
i

d ( 1, 2, ,i n  ) and spacing 
j

s ( 1, 2, ,j m  ), mean keel 

draft 
_

d  and spacing 
_

s .  

Step 3. Identify: the parameters 2 , k , k  and k  by Eqs (5) and (9), respectively.  

Step 4. Calculate: 2( , ; )kd w i k cf d d   , -( , ; , , )ks l j k c k k kf s d     and ( )J  by Eqs (4), (8) and (16) 

(model NOPM-NS), respectively. 

Step 5. Set 
, ,0

=
  

 
k c p k c k c

d d dp , if 
, ,max 


k c p k c
d d , go to Step 2. Else, Set  

, ,0
= ( 1)

  
  

k c p k c k c
d d dp . 

Step 6. If 
, , -1

( ) ( )
 


k c p k c p

d dJ J , set 
, ,

*
 


k c p k c p

d d , stop. Else, set 1 p p , go to Step 5. 

3.2. Result of the numerical algorithm 

 

Figure 4. Variations of the relative deviations between Wadhams’80 function and the 

measured keel draft distribution ( ( )
 k ckd w dE ), between the lognormal function and the 

measured keel spacing distribution ( ( )
 k cks l dE ), and of the performance index ( ( )

k c
dJ ) for 

different cutoff drafts. 

Set the initial cutoff draft 
,0
= 3.58 m

k c
d

 , step increment =0.1m
k c

d


 , and maximum of the cutoff 

draft 
,max

=4.18 m
k c

d
 . The result of the above numerical algorithm shows that the optimal cutoff draft 

of the ridge keels is 
,

* 3.78



k c p

d   m. The variations in the relative deviations ( )
 k ckd w dE  and 
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( )
 k cks l dE , and the performance function ( )

k c
dJ  of the novel optimal model (NOPM-NS) as the 

cutoff draft increase are all shown in Figure 4. It is obvious that ( )
 k ckd w dE  and ( )

 k cks l dE , and 

( )
k c

dJ  all reach their minima at the cutoff draft of 3.78 m. According to novel optimal model (NOPM-

NS), * 3.78



k c
d  m should be taken as the optimal cutoff draft. 

Granberg and Leppäranta [29] proposed that the cutoff height should be much larger than the 

standard deviation of the ice surface elevation or larger than twice this value. In the present study, the 

same method is applied to assess the keel cutoff draft. The standard deviation of the ice bottom draft 

is 0.52



k s
e  m and it is obvious that the optimal cutoff draft * 3.78




k c
d  m is much larger than twice 

of the standard deviation k s
e . So, this optimal cutoff draft is taken on as the lower limit of the keel peak 

and the deepest point of a ridge keel is defined as its peak (Figure 5). Davis and Wadhams [30] set the 

cutoff draft as 5 m to analyze the Arctic ridge keel morphology. Ekeberg et al. [15] also obtained a 

cutoff draft of 5 m by the Rayleigh criterion based the upward looking sonar data in the Fram Strait. 

Obert and Brown [31] analyzed the morphologies of 3199 ridge keels in Northumberland Strait of 

Arctic with a cutoff draft of 2 m. The different cutoff draft results of the present and previous studies 

are likely caused by a combination of the following reasons: 1) the physical properties of the ice/ridge 

are directly related to the seasonal and interannual variations. 2) Different dynamical processes might 

lead to differences in the dominant formation mechanisms of the ridges in different regions. 3) 

Differences in the methods of determining the cutoff draft. 

 

Figure 5. Example of the ridge keels identified with the optimal cutoff draft of * 3.78



k c
d

m ( k s
e , the standard deviation of the ice bottom draft.). 

4. Discussion on the relationship between the keel draft and frequency 

The draft and frequency (numbers of keels per km) denote the vertical and level features of ridge 
keels, respectively. To accurately describe the keel morphology and spatial distribution, it is necessary 
to analyze the relationship between the mean keel draft and frequency, as shown in Figure 6. There 
was scatter but the obvious logarithmic relationship yielded a correlation coefficient of 0.7 between 
the mean keel draft and frequency with reasonable confidence. This logarithmic function showed that 
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the mean keel draft increased logarithmically, while the ratio of the increments in the keel draft and 
frequency decreased as the corresponding frequency increased. Moreover, according to the measured 
data shown in Figure 6, for a given increase in ridge frequency, the increases in the keel spacing and 
draft were both greater in the lower ridging intensity regime than the larger regime. In addition, the 
logarithmic function showed that the mean ridge keel varied much less than the mean spacing, reflect 
well the real observation. Therefore, the proposed logarithmic function is a suitable relationship for 
describing the ridge keel morphology.  

 

Figure 6. Correlation between mean keel drafts and frequencies (r denotes the correlation 
coefficient, d is the frequency of ridge keel, the solid line is the regression fit line, and dot 
lines are the bounds of the 95% confidence level). 

5. Conclusions and discussion 

Based on helicopter-borne EM data collected in northwestern Weddell Sea, we determine the best 
fit to measured ridge keel draft distribution which is represented by the Wadhams’80 function (refer to 
Eq (4)), and the spacing is achieved by a lognormal function(refer to Eq (8)). 

We propose a novel optimal model with nonlinear-statistical constraints (NOPM-NS) to 
determine the optimal cutoff draft for ridge keel, by minimizing the deviations of the theoretical and 
measured ridge keel draft and spacing distributions, and the cutoff draft is taken as the identified 
variable. The properties of the novel model (NOPM-NS) and the existence of the optimal parameter 
are proved, and the optimal value of cutoff draft is identified by a developed numerical algorithm as 

* 3.78



k c
d m, which is employed to separate the ridge keels from undeformed sea ice bottom. 

We obtain a logarithmic relationship yielded a correlation coefficient of 0.70 between the mean 
keel draft and frequency in the present study, with a 95% confidence degree. This relationship indicates 
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that there is a general increase in the mean keel draft as the mean keel frequency increases, whereas 
the ratios of the increments in the keel draft and frequency decrease as the ridge frequency increases. 

Due to climate change, sea ice in the polar region subject to significant deformation because of 
thinner ice thickness and smaller ice concentration. Ice ridge parameterization is getting more attention 
and become more important in sea ice dynamic modeling. Therefore, the present novel optimal model 
(NOPM-NS) for determining the cutoff draft has the potential to be applied for the separation of ridge 
keels from other ice bottom undulations in any sea-ice region, and we believe that it is a promising 
approach worthy of further studies under different environmental conditions in the polar regions. We 
expect this study can provide more accurate standard as analyzing data of sea ice thickness, benefiting 
to a comprehensive understand on ice mass balance.  

It must be noted that the present optimal model (NOPM-NS) and method of analyses are proposed 
for helicopter-borne EM data. We focus on the mathematical theoretic method in data analyses, and 
the possible inaccuracies of EM for deformed ice is somewhat beyond the scope of this study. However, 
more validations to the universality and effectivity of EM data especially on deformed ice, are still 
necessary by using other instruments, e.g., upword looking sonar or radar, and will be conducted in 
our future work.  
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