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Abstract: The aim of this paper is to prove the existence of periodic solutions to symmetric Newto-
nian systems in any neighborhood of an isolated orbit of equilibria. Applying equivariant bifurcation
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1. Introduction

Studying non-stationary periodic solutions to Hamiltonian and Newtonian systems in a neighbor-
hood of an isolated equilibrium is one of the most important classical problems of differential equa-
tions. This problem has a long history and has been studied by many mathematicians for centuries,
see the following classical articles due to Lyapunov [1], Weinstein [2], Moser [3], Fadell and Rabi-
nowitz [4], Montaldi, Roberts and Stewart [5], Bartsch [6] and references therein. We are aware that
this list is far from being complete. Note that the stationary solutions considered in these papers have
been assumed to be non-degenerate. It is worth to point out that non-degenerate as well as isolated
degenerate stationary solutions have been considered by Dancer and the third author in [7] and Szulkin
in [8].

In this article we focus our attention on symmetric Newtonian systems. More precisely, we consider
RN as an orthogonal representation of a compact Lie group Γ and a Γ-invariant potential U : RN → R

of class C2, i.e., the potential U satisfying U(γu) = U(u) for all γ ∈ Γ and u ∈ RN . If u0 is a critical
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point of U, i.e., ∇U(u0) = 0, then the orbit Γ(u0) = {γu0 : γ ∈ Γ} consists of critical points of U, i.e.,
Γ(u0) ⊂ (∇U)−1(0). It is known that the orbit Γ(u0) is Γ-homeomorphic to Γ/Γu0 , where Γu0 = {γ ∈

Γ : γu0 = u0} is the stabilizer of u0. Hence if dimΓ ≥ 1, then it can happen that dimΓ(u0) ≥ 1, i.e., the
critical point u0 is not isolated in (∇U)−1(0).

We study the existence of non-stationary periodic solutions of the following Γ-symmetric system

ü(t) = −∇U(u(t)) (1.1)

in any neighborhood of the isolated orbit Γ(u0) ⊂ (∇U)−1(0). In other words, we are going to prove a
symmetric version of the classical Lyapunov center theorem, where, due to additional Γ-symmetries,
an isolated stationary solution is replaced by an isolated orbit of stationary solutions. The theorems,
which are the main results of our paper, are formulated below.

Define σ+(∇2U(u0)) = σ(∇2U(u0)) ∩ (0,+∞) and put B = {β1, β2, . . . , βq}, where β1 > β2 > . . . >

βq > 0 are such that σ+(∇2U(u0)) = {β2
1, . . . , β

2
q}.

Theorem 1.1. [Symmetric Lyapunov center theorem for a non-degenerate orbit] Let Ω ⊂ RN be an
open and Γ-invariant subset of an orthogonal representation RN of a compact Lie group Γ. Assume
that U : Ω→ R is a Γ-invariant potential of class C2, u0 ∈ Ω ∩ (∇U)−1(0) and

1. Γu0 = S 1 or Γu0 = Zm for some m ∈ N,
2. dim ker∇2U(u0) = dimΓ(u0),
3. σ+(∇2U(u0)) , ∅.

If there exists β j0 ∈ B satisfying the conditions:

(A1) β j/β j0 < N for β j ∈ B \ {β j0},
(A2) if Γu0 = S 1, then the associated eigenspace V∇2U(u0)(β2

j0) is a nontrivial S 1-representation,

then there exists a sequence (uk) of periodic solutions of the system (1.1) with a sequence (Tk) of
minimal periods such that Tk → 2π/β j0 and for any ε > 0 there exists k0 ∈ N such that uk([0,Tk]) ⊂
Γ(u0)ε =

⋃
u∈Γ(u0) Bϵ(RN , u) for all k ≥ k0.

Theorem 1.2. [Symmetric Lyapunov center theorem for a minimal orbit] Let Ω ⊂ RN be an open
and Γ-invariant subset of an orthogonal representation RN of a compact Lie group Γ. Assume that
U : Ω→ R is a Γ-invariant potential of class C2, u0 ∈ Ω ∩ (∇U)−1(0) and

1. Γu0 = S 1 or Γu0 = Zm for some m ∈ N,
2. Γ(u0) consists of minima of the potential U,
3. Γ(u0) is isolated in (∇U)−1(0),
4. σ+(∇2U(u0)) , ∅.

If there exists β j0 ∈ B satisfying the conditions:

(A1) β j/β j0 < N for β j ∈ B \ {β j0},
(A2) if Γu0 = S 1, then the associated eigenspace V∇2U(u0)(β2

j0) is a nontrivial S 1-representation,

then there exists a sequence (uk) of periodic solutions of the system (1.1) with a sequence (Tk) of
minimal periods such that Tk → 2π/β j0 and for any ε > 0 there exists k0 ∈ N such that uk([0,Tk]) ⊂
Γ(u0)ε for all k ≥ k0.
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Note that the condition (A2) can be replaced by a different one. We discuss it in more details in
Remark 3.7.

Note that if σ+(∇2U(u0)) , ∅, then obviously β1 satisfies the assumption (A1). If additionally
β1 satisfies the assumption (A2) and the remaining assumptions of the theorems are fullfilled, then
there exists at least one sequence (uk) of periodic solutions of the system (1.1) with a sequence (Tk) of
minimal periods converging to 2π/β1. Moreover, selecting various β j0 satisfying all the assumptions we
obtain different sequences of periodic solutions which can be distinguished by their minimal periods.

We emphasize that in Theorem 1.1 we consider a non-degenerate orbit Γ(u0), i.e., an orbit satisfying
the condition dim ker∇2U(u0) = dimΓ(u0), whereas in Theorem 1.2 we allow the orbit Γ(u0) to be
degenerate, i.e., such that dim ker∇2U(u0) > dimΓ(u0).

Results of this type have been proved in [9, 10] for symmetric Newtonian systems and in [11] for
symmetric Hamiltonian systems under the assumption that the stabilizer Γu0 is trivial, i.e., the orbit
Γ(u0) is Γ-homeomorphic to the group Γ. On the other hand, in [12] we have considered symmetric
Newtonian systems under the assumption that the stabilizer Γu0 is isomorphic to a finite-dimensional
torus T ⊂ Γ, i.e., the orbit Γ(u0) is Γ-homeomorphic to Γ/T.

In our paper we consider orbits Γ(u0) such that the stabilizer Γu0 equals S 1 or Zm, i.e., the orbit
Γ(u0) is Γ-homeomorphic to Γ/S 1 or Γ/Zm. It is worth pointing out that the case Γu0 = Zm has not been
considered in our previous articles.

In [9–12] the solutions of the system (1.1) have been considered as orbits of critical points of a
family of (Γ × S 1)-invariant functionals defined on an appropriately chosen Hilbert space, which is
an orthogonal representation of the group Γ × S 1. To prove the main results of these articles we have
applied the techniques of equivariant bifurcation theory. As a topological tool we have used the infinite-
dimensional generalization of the (Γ × S 1)-equivariant Conley index defined by Izydorek, see [13]. To
show the existence of non-stationary periodic solutions of the system (1.1) in an arbitrary neighborhood
of the orbit Γ(u0) we have proved the change of this index. To distinguish between two Conley indices
we have used the equivariant Euler characteristic, which is an element of the Euler ring U(Γ × S 1),
see [14]. These calculations were rather tedious and complicated.

In this paper we apply a different approach. Namely, we consider orbit spaces of the equivariant
Conley indices, which are the homotopy types of the weighted projective spaces or the lens complexes.
Since the cohomology groups of the weighted projective spaces and the lens complexes are known,
see [15], we compute the cohomological dimensions of these spaces. This technique of distinguishing
between equivariant Conley indices seems to be much simpler.

To be more precise, instead of making calculations in the Euler ring U(Γ × S 1) we employ the
concept of a quotient space and use the notion of the cohomological dimension to prove a change of
the equivariant Conley index.

The topological results described above are given in Section 2, whereas Section 3 contains the
proofs of Theorems 1.1 and 1.2. Additionally, in the appendix we recall some relevant material needed
in the previous sections.

2. Preliminary results

In this section we study the Γ-homotopy equivalence of some finite pointed Γ-CW-complexes
(see [14] for the definition), where Γ is a compact Lie group. In particular, we are interested in com-
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plexes being of the form of smash products over some groups H ∈ sub(Γ), where sub(Γ) denotes the
set of closed subgroups of Γ. Below we recall the definition of such a space, see [14] for details.

Fix H ∈ sub(Γ) and let X be a pointed H-space with a base point ∗. Denote by Γ+ the group Γ with
a disjoint Γ-fixed base point added. Recall that the smash product of Γ+ and X is Γ+ ∧ X = Γ+ × X/
Γ+ ∨X = Γ ×X/Γ × {∗}. The group H acts on the pointed space Γ+ ∧X by (h, [γ, x]) 7→ [γh−1, hx]. We
denote the orbit space of this action by Γ+∧HX and call it the smash over H. The formula (γ′, [γ, x]) 7→
[γ′γ, x] induces a Γ-action so that Γ+ ∧H X becomes a pointed Γ-space.

Remark 2.1. If X is a finite pointed H-CW-complex, then Γ+ ∧H X is a Γ-CW complex, see [9], and
the orbit space X/H is a finite pointed CW-complex, see [14].

For brevity we will write X ≈H Y if H-CW-complexes X, Y are H-homotopically equivalent. In the
non-equivariant case, X ≈ Y denotes homotopical equivalence of CW-complexes X, Y.

Lemma 2.2. Let X,Y be finite pointed H-CW-complexes. If Γ+ ∧H X ≈Γ Γ
+ ∧H Y, then X/H ≈ Y/H.

Proof. Consider the orbit spaces (Γ+ ∧H X)/Γ, (Γ+ ∧H Y)/Γ and note that from the assumption and the
formula (1.12) of [14, Chapter 1] we get

(Γ+ ∧H X)/Γ ≈ (Γ+ ∧H Y)/Γ. (2.1)

For an H-spaceW denote by Γ×HW the twisted product over H. The inclusionW→ Γ×HW induces a
homeomorphism ofW/H and (Γ×HW)/Γ, see for instance [14]. Moreover, ifW is a pointed H-space,
Γ+ ∧H W = (Γ ×H W)/(Γ ×H {∗}). Therefore,

(Γ+ ∧H X)/Γ ≈ X/H and (Γ+ ∧H Y)/Γ ≈ Y/H. (2.2)

Combining (2.1) and (2.2) we obtain the assertion. □

From this lemma it follows that in some cases we can reduce comparing the Γ-equivariant homotopy
types of Γ-CW-complexes of the form Γ+ ∧H X to comparing the homotopy types of CW-complexes of
the form X/H.

To consider the homotopy equivalence of CW-complexes we will use the notion of the cohomo-
logical dimension of a CW-complex. For a CW-complex Z denote by H̃k(Z;Z) the k-th reduced
cohomology group of Z. If there exists a number k ≥ 0 such that H̃k(Z;Z) , 0, then we define the
cohomological dimension of a CW-complexZ by

CD(Z) := max{k ∈ N ∪ {0} : H̃k(Z;Z) , 0}.

Obviously, ifZ1,Z2 are homotopically equivalent CW-complexes, then CD(Z1) = CD(Z2).

Lemma 2.3. Let Z1,Z2 be finite CW-complexes such that CD(Z1) and CD(Z2) are well-defined.
Then we have CD(Z1 ∧Z2) = CD(Z1) + CD(Z2).

Proof. SinceZ1,Z2 are finite CW-complexes, the groups H̃q1(Z1;Z), H̃q1(Z2;Z) are finitely generated
free groups for every q1, q2 ∈ N ∪ {0}. Therefore, by the Künneth formula, see [16], we obtain the
reduced cross product isomorphism

× : H̃q1(Z1;Z) ⊗ H̃q2(Z2;Z)→ H̃q1+q2(Z1 ∧Z2;Z).
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That is why the reduced cross product

× : H̃CD(Z1)(Z1;Z) ⊗ H̃CD(Z2)(Z2;Z)→ H̃CD(Z1)+CD(Z2)(Z1 ∧Z2;Z)

is an isomorphism of non-trivial groups.
What is left is to show that H̃q(Z1 ∧ Z2;Z) = 0 for any q > CD(Z1) + CD(Z2). Note that if

q > CD(Z1) + CD(Z2) and q = q1 + q2 then q1 > CD(Z1) or q2 > CD(Z2). Therefore the reduced
cross product

× : H̃q1(Z1;Z) ⊗ H̃q2(Z2;Z)→ H̃q1+q2(Z1 ∧Z2;Z)

is an isomorphism of trivial groups, which completes the proof. □

From now on, we assume that H is a closed subgroup of S 1, i.e., H ∈ sub(S 1) = {S 1,Z1,Z2, . . .}.
Let V be an orthogonal representation of the group H with the isotypical decomposition

V = R[k0, 0] ⊕ R[k1,m1] ⊕ . . . ⊕ R[kp,mp],

where k0 ∈ N∪{0}, k1, . . . , kp ∈ N and m1, . . . ,mp ∈ N (in the case H = Zm we assume that m1, . . . ,mp ∈

{1, . . . ,m − 1}), see Appendix for more details. If V is a non-trivial H-representation, we denote
V̂ = R[k1,m1] ⊕ . . . ⊕ R[kp,mp], otherwise we put V̂ = {0}. Note that V = R[k0, 0] ⊕ V̂ and V̂ is
even-dimensional.

Denote by S V the one-point compactification of V. The space S V has the H-homotopy type of a
finite pointed H-CW-complex, see for instance [17].

Lemma 2.4. Let V be an orthogonal H-representation. Then

(1) if V is a trivial H-representation, then CD(S V/H) = dimV,
(2) if V is a non-trivial S 1-representation such that dim V̂ > 2 or V is an arbitrary non-trivial Zm-

representation, then

CD(S V/H) =
{

dimV if H = Zm,

dimV − 1 if H = S 1,

(3) if V is a non-trivial S 1-representation such that dim V̂ = 2, then all the reduced cohomology
groups H̃k(S V/S 1) are trivial.

Proof. Let H ∈ sub(S 1). If V is a trivial representation of H, i.e., V = R[k0, 0], then S V/H ≈ S k0 and
therefore CD(S V/H) = k0, which proves (1).

To prove (2) assume that V is a non-trivial H-representation. Consider the unit sphere in V̂, denoted
by S (V̂), and its unreduced suspension ΣS (V̂). Note that S V̂ ≈ ΣS (V̂) and Σ(S (V̂))/H = Σ(S (V̂)/H).
By the suspension isomorphism of cohomology theory we obtain

H̃k+1(S V̂/H;Z) = H̃k+1(Σ(S (V̂))/H;Z) = H̃k+1(Σ(S (V̂)/H);Z) = H̃k(S (V̂)/H;Z) (2.3)

for k ≥ 0.
From Theorems 1 and 2 of [15] it follows that if V is any non-trivial Zm-representation or an S 1-

representation such that dim V̂ > 2, then at least one of the cohomology groups Hk(S (V̂)/H;Z) is
non-trivial and therefore CD(S (V̂)/H) is well-defined. Moreover,

CD(S (V̂)/H) =
{

dim V̂ − 1 if H = Zm,

dim V̂ − 2 if H = S 1.
(2.4)
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By (2.3), CD(S V̂/H) is also well-defined and

CD(S V̂/H) = CD(S (V̂)/H) + 1. (2.5)

Moreover,
S V/H = (S V̂⊕R[k0,0])/H = (S V̂ ∧ S k0)/H = (S V̂/H) ∧ S k0

and CD(S k0) is well-defined. Therefore the assumptions of Lemma 2.3 forZ1 = S V̂/H, Z2 = S k0 are
satisfied. Hence

CD(S V/H) = CD((S V̂/H) ∧ S k0) = CD(S V̂/H) + CD(S k0) = CD(S V̂/H) + k0.

This, combined with (2.4)-(2.5), completes the proof of (2).
Finally, to prove (3) notice that if V is an S 1-representation such that dim V̂ = 2, i.e., V = R[k0, 0]⊕

R[1,m1] for k0 ≥ 0, m1 ≥ 1, then S V̂/S 1 is contractible and therefore so is S V/S 1 = (S V̂/S 1) ∧ S k0 for
k0 ≥ 0. Consequently all the reduced cohomology groups H̃k(S V/S 1) are trivial. □

We are now in a position to prove the main theorem of this section.

Theorem 2.5. Suppose that H ∈ sub(S 1) and V1, V2 are orthogonal H-representations. If one of the
following conditions is satisfied:

(1) H = Zm and dimV1 , dimV2,
(2) H = S 1, dimV1 , dimV2 and additionally:

(2.1) either dim V̂1, dim V̂2 > 2
(2.2) or dim V̂1 = dim V̂2 = 0,

(3) H = S 1, dim V̂1 > 2, dim V̂2 = 0 and dimV1 − dimV2 , 1,
(4) H = S 1, dim V̂1 = 0, dim V̂2 > 2 and dimV2 − dimV1 , 1,
(5) H = S 1 and exactly one of the numbers dim V̂1, dim V̂2 is equal to 2,

then Γ+ ∧H S V1 0Γ Γ
+ ∧H S V2 , i.e., Γ+ ∧H S V1 and Γ+ ∧H S V2 are not Γ-homotopically equivalent.

Proof. Suppose that (1) is satisfied. From Lemma 2.4 it follows that CD(S V1/Zm) , CD(S V2/Zm) and
hence S V1/Zm 0 S V2/Zm. Therefore, by Lemma 2.2, Γ+ ∧Zm S V1 0Γ Γ

+ ∧Zm S V2 . The proof for (2) is
analogous.

If (3) is fullfiled, then, by Lemma 2.4, CD(S V1/S 1) = dimV1 − 1 and CD(S V2/S 1) = dimV2.
Hence, by the assumption, CD(S V1/S 1) , CD(S V2/S 1). Reasoning similarly as in the previous case
we prove the assertion. The proof in the case (4) is the same.

If (5) is satisfied, we can assume without loss of generality that dim V̂1 = 2 and dim V̂2 , 2. By
Lemma 2.4, all the reduced cohomology groups H̃k(S V1/S 1;Z) are trivial and at least one of the groups
H̃k(S V2/S 1;Z) is non-trivial. Hence S V1/S 1 0 S V2/S 1 and, by Lemma 2.2, Γ+ ∧S 1 S V1 0Γ Γ

+ ∧S 1 S V2 .
This completes the proof. □

Remark 2.6. From the proof of Lemma 2.4 it follows that if V1 and V2 are orthogonal S 1-
representations such that dim V̂1 = dim V̂2 = 2, then S V1/S 1 and S V2/S 1 are contractible and conse-
quently they are homotopically equivalent. Therefore in the case of such representations our method
does not allow us to distinguish between the Γ-homotopy types of Γ+ ∧S 1 S V1 and Γ+ ∧S 1 S V2 .
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3. Proofs of Theorems 1.1 and 1.2

In this section we prove the symmetric Lyapunov center theorems formulated in Introduction,
namely Theorems 1.1 and 1.2. We start with reviewing some classical facts on the variational set-
ting for our problem. The material is standard and well known.

Assume that Ω ⊂ RN is an open and Γ-invariant subset of an orthogonal representation RN of a
compact Lie group Γ and U : Ω → R is a Γ-invariant potential of class C2. Using the techniques of
equivariant bifurcation theory we will study periodic solutions of the system (1.1).

It is well-known that instead of studying solutions of an arbitrary period, one can consider only
2π-periodic solutions of the parameterized system

ü(t) = −λ2∇U(u(t)). (3.1)

More precisely, by a standard change of variables, it can be shown that 2πλ-periodic solutions of (1.1)
correspond to 2π-periodic solutions of (3.1). Moreover, in this case it is obvious that we can restrict
the consideration of (3.1) to λ ∈ (0,+∞).

To reformulate the problem we consider a separable Hilbert space (H1
2π, ⟨·, ·⟩H1

2π
), where

H1
2π = {u : [0, 2π]→ RN : u is abs. continuous, u(0) = u(2π), u̇ ∈ L2([0, 2π],RN)}

and

⟨u, v⟩H1
2π
=

∫ 2π

0
(u̇(t), v̇(t)) + (u(t), v(t)) dt.

With our assumptions, this space is an orthogonal representation of Γ, where the action is given by

Γ × H1
2π ∋ (γ, u) 7→ γu. (3.2)

Additionally,

H1
2π = H0 ⊕

∞⊕
k=1

Hk,

where H0 = R
N and Hk = {a cos kt+ b sin kt : a, b ∈ RN}, for k > 0, are orthogonal representations of Γ.

For simplicity of notation from now on A stands for ∇2U(u0). Denote by α1, . . . , αq the distinct
eigenvalues of A and by VA(α1), . . . ,VA(αq) the corresponding eigenspaces. Using the decomposition

RN = VA(α1) ⊕ . . . ⊕ VA(αq)

we identify Hk with
(VA(α1) ⊕ VA(α1)) ⊕ . . . ⊕ (VA(αq) ⊕ VA(αq)). (3.3)

Set H = Γu0 and remind that H ∈ sub(S 1). It is known that since U is Γ-invariant, A is H-equivariant
and therefore all the eigenspaces in (3.3) are H-representations. Taking into consideration (3.2) and
formulas (4.1), (4.2), we conclude that there exist p ≥ 0 and k0, . . . , kp ∈ N ∪ {0},m1, . . . ,mp ∈ N such
that Hk is H-equivalent to

R[2k0, 0] ⊕ R[2k1,m1] ⊕ R[2kp,mp]. (3.4)
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Now define a Γ-invariant functional Φ : H1
2π × (0,+∞)→ R of class C2 by the formula

Φ(u, λ) =
∫ 2π

0

(
1
2
∥u̇(t)∥2 − λ2U(u(t))

)
dt.

Notice that 2π-periodic solutions of the system (3.1) can be considered as critical points of Φ and so
we will study solutions of the following equation:

∇uΦ(u, λ) = 0. (3.5)

Fix u0 ∈ (∇U)−1(0) and define the constant function ũ0 ≡ u0. Then ũ0 is a stationary solution
of the system (3.1) for every λ > 0. Since Γ(u0) ⊂ (∇U)−1(0), Γ(ũ0) consists of solutions of (3.1)
for all λ > 0. In the rest of this section we use this notation, considering Γ(u0) as a set in RN and
Γ(ũ0) in H1

2π. Consequently, we define the neighborhoods of these orbits in appropriate spaces, i.e.,
Γ(u0)ϵ =

⋃
u∈Γ(u0) Bϵ(RN , u) ⊂ RN and Γ(ũ0)ϵ =

⋃
u∈Γ(ũ0) Bϵ(H1

2π, u) ⊂ H1
2π, where Bϵ(V, u) denotes the

open ball in the space V, of radius ϵ, centered at u.
Now define T = Γ(ũ0) × (0,+∞) ⊂ H1

2π × (0,+∞). The elements of this family are called the trivial
solutions of (3.5), whereas the elements of the set

N = {(u, λ) ∈ H1
2π × (0,+∞) \ T : ∇uΦ(u, λ) = 0}

are called the non-trivial solutions. We will study the existence of local bifurcations of non-trivial
solutions of Eq (3.5) from T , and so let us first introduce the notion of a local bifurcation.

Definition 3.1. Fix λ0 > 0. The orbit Γ(ũ0)×{λ0} ⊂ T is called an orbit of local bifurcation of solutions
of (3.5) if Γ(ũ0) × {λ0} ⊂ cl(N).

Remark 3.2. From the above definition it follows that if the orbit Γ(ũ0) × {λ0} is an orbit of local
bifurcation, then there exists a sequence (uk, λk) in N such that λk → λ0 and uk is a 2π-periodic
solution of (3.1), corresponding to λ = λk, where for all ϵ > 0 there is k0 ∈ N such that uk ∈ Γ(ũ0)ϵ for
k ≥ k0. Moreover, since the orbit Γ(u0) is isolated in the set of critical points of the potential U, for ϵ
sufficiently small the obtained subsequence consists of non-stationary 2π-periodic solutions.

Remark 3.3. To prove Theorems 1.1 and 1.2 we use the fact (see Lemma 3.1 of [12]) that the existence
of a local bifurcation in the function space implies the existence of a local bifurcation in the phase
space. More precisely, the existence of a local bifurcation of solutions of (3.5) from the Γ-orbit Γ(ũ0)×
{λ0} ⊂ T implies the existence of a sequence (uk) of periodic solutions of the system (1.1) with a
sequence (Tk) of (not necessarily minimal) periods such that Tk → 2πλ0 and for any ϵ > 0 there exists
k0 ∈ N such that uk([0,Tk]) ⊂ Γ(u0)ϵ for all k ≥ k0.

To formulate the necessary condition of a local bifurcation we use the following result given in [10]:
the orbit Γ(ũ0) × {λ0} can be an orbit of local bifurcation only if

ker∇2
uΦ(ũ0, λ0) ∩

∞⊕
k=1

Hk , ∅,
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i.e., if the kernel is not fully contained in H0. The description of ker∇2
uΦ(ũ0, λ0) can be obtained with

the use of the formulas characterizing the action of such an operator on subrepresentations Hk given in
Lemma 5.1.1 of [18]. From this lemma it follows that

σ(∇2
uΦ(ũ0, λ)) =

{
k2 − λ2α

k2 + 1
: α ∈ σ(∇2U(u0)), k = 0, 1, 2, . . .

}
. (3.6)

Recall thatB = {β1, β2, . . . , βq}, where β1 > β2 > . . . > βq > 0 are such that σ+(∇2U(u0)) = {β2
1, . . . , β

2
q}.

Put Λ = { k
β

: k ∈ N, β ∈ B}. Then we have:

Fact 3.4. If Γ(ũ0) × {λ0} is an orbit of local bifurcation of solutions of (3.5) then λ0 ∈ Λ.

To obtain the sufficient condition we use Izydorek’s version of the Conley index, see Appendix for
the definition. For λ < Λ from Fact 3.4 it follows that the orbit Γ(ũ0) is isolated in (∇Φ(·, λ))−1(0). Since
the operator is a gradient one, this orbit is an isolated invariant set of the flow generated by −∇uΦ(·, λ),
i.e., it is an isolated invariant set in the sense of the Conley index theory. Hence the Conley index
CIΓ(Γ(ũ0),−∇uΦ(·, λ)) is well-defined for λ < Λ. From the continuation property it follows that if there
is a change of this index then there occurs a local bifurcation, see [13]. More precisely, there holds the
following theorem.

Theorem 3.5. Let λ0 ∈ Λ. If λ−, λ+ are such that [λ−, λ+] ∩ Λ = {λ0} and

CIΓ(Γ(ũ0),−∇uΦ(·, λ−)) , CIΓ(Γ(ũ0),−∇uΦ(·, λ+)), (3.7)

then Γ(ũ0) × {λ0} is an orbit of local bifurcation of solutions of (3.5).

Remark 3.6. Note that from Remark 3.3 and Fact 3.4 it follows that the periods of solutions of (1.1) in
the bifurcating sequences have to converge to 2π k

β
, where k

β
∈ Λ. However, these periods do not have

to be minimal. On the other hand, if we consider bifurcations from the orbits of the form Γ(ũ0) × { 1
β j0
},

where β j0 ∈ B satisfies the nonresonance condition β j/β j0 < N for β j ∈ B \ {β j0}, then the obtained
periods are minimal. Therefore to prove the assertions of Theorems 1.1 and 1.2 we restrict our attention
to such orbits.

Now we are in a position to prove the main results of our article, namely Theorems 1.1 and 1.2.

3.1. Proof of Theorem 1.1

To prove the assertion we study local bifurcations from the levels satisfying the necessary condition
given in Fact 3.4. From Remark 3.6 it follows that we can restrict our attention to the set Λ0 ⊂ Λ,
where

Λ0 =

{
1
β j0

: β j0 ∈ B and β j0 satisfies (A1) and (A2)
}
. (3.8)

Obviously, if the assumptions of Theorem 1.1 are satisfied, this set is nonempty.
Fix λ0 =

1
β j0
∈ Λ0. By the definition of Λ, there exists ε > 0 such that [λ0 − ε, λ0 + ε] ∩ Λ = {λ0}.

Put λ± = λ0 ± ε. Then, since λ± < Λ, the Conley indices CIΓ(Γ(ũ0),−∇uΦ(·, λ±)) are well-defined.
By Theorem 3.5, to prove our assertion it is enough to show that the inequality (3.7) holds. Note

that ∇Φ(·, λ±) are of the form of completely continuous perturbations of the identity and therefore
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completely continuous perturbations of linear, bounded, Fredholm, self adjoint operators ∇2
uΦ(ũ0, λ±).

From the definition of the equivariant Conley index (see [13] or Subsection 4.2 of Appendix),
CIΓ (Γ(ũ0),−∇uΦ(·, λ±)) are the Γ-homotopy types of Γ-spectra of the types (H+n+1,±)

∞
n=0, where H+n+1,±

are the direct sums of eigenspaces of −∇2
uΦ(ũ0, λ±)|Hn+1 corresponding to the positive eigenvalues. Since

∇2
uΦ(ũ0, λ±) = Id−L± withL± being linear, compact and self adjoint operators, by the spectral theorem

for compact operators it follows that the eigenvalues of −∇2
uΦ(ũ0, λ±) converge to −1. Consequently,

for n sufficiently large, H+n+1,± = ∅ and the sequences of Γ-CW-complexes CIΓ(Γ(ũ0),−∇uΦ
n(·, λ±))

stabilize, where Φn = Φ|Hn×R. Therefore, the condition (3.7) is equivalent to

CIΓ(Γ(ũ0),−∇uΦ
n(·, λ−)) , CIΓ(Γ(ũ0),−∇uΦ

n(·, λ+)) (3.9)

for n sufficiently large. In the following we assume that such n is fixed.
Consider T⊥u0

Γ(u0) - the space normal to the orbit Γ(u0) at u0 in RN . IdentifyingH0 with RN , we write
Wn = T⊥u0

Γ(u0) ⊕
⊕n

k=1Hk for the normal space to Γ(ũ0) in
⊕n

k=0Hk. Put Ψn
± = Φ

n(·, λ±)|Wn : Wn → R.
It is known that the spaceWn and the functionals Ψn

± are H-invariant. Moreover, the set {ũ0} is isolated
in (∇Ψn

±)
−1(0), and so {ũ0} is an isolated invariant set in the sense of the Conley index. Therefore, the

Conley indices CIH({ũ0},−∇Ψ
n
±) are well-defined. Furthermore, by Theorem 4.3 we have

CIΓ(Γ(ũ0),−∇uΦ
n(·, λ±)) = Γ+ ∧H CIH({ũ0},−∇Ψ

n
±). (3.10)

Therefore to study inequality (3.9) we will first investigate the indices CIH({ũ0},−∇Ψ
n
±) and then apply

the abstract results from the previous section.
Since ũ0 is a non-degenerate critical point of Ψn

±, we can apply Remark 4.2 to conclude that these
indices are the homotopy types of S (Wn

±)+ , where (Wn
±)
+ is the direct sum of eigenspaces of −∇2Ψn

±(ũ0)
corresponding to the positive eigenvalues. Therefore we study the spectral decompositions ofWn given
by the isomorphisms −∇2Ψn

±(ũ0).
Note that for both operators,Wn can be decomposed as

Wn = H1 ⊕
(
T⊥u0
Γ(u0) ⊕

n⊕
k=2

Hk

)
.

Observe that the direct sum of the eigenspaces corresponding to the positive eigenvalues of
−∇2Ψn

±(ũ0)|Hk is H+k,±. Analogously, as an appropriate direct sum of the eigenspaces, we can de-
fine (T⊥u0

Γ(u0))+±. Moreover the description of these spaces can be obtained in the same way as for-
mula (3.6). More precisely, from Lemma 5.1.1 of [18] we obtain that the action of −∇2Ψn

±(ũ0) on
u(t) = ak cos kt + bk sin kt ∈ Hk is given by

−∇2Ψn
±(ũ0)(u(t)) = −

(
k2

k2 + 1
Id −

1
k2 + 1

λ2
±A

)
ak cos kt −

(
k2

k2 + 1
Id −

1
k2 + 1

λ2
±A

)
bk sin kt.

Therefore, using (3.3) we obtain that for k ≥ 0

H+k,± =
⊕
β2

j>
k2

λ2
±

(
VA(β2

j) ⊕ VA(β2
j)
)
.
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In particular, from the definition of λ± it follows that

H+1,− =
⊕
β2

j>β
2
j0

(
VA(β2

j) ⊕ VA(β2
j)
)
,

H+1,+ =
⊕
β2

j≥β
2
j0

(
VA(β2

j) ⊕ VA(β2
j)
)
= H+1,− ⊕

(
VA(β2

j0) ⊕ VA(β2
j0)

)
.

Moreover (T⊥u0
Γ(u0))+− = (T⊥u0

Γ(u0))++ and H+k,− = H
+
k,+ for k ≥ 2.

PutV = VA(β2
j0) ⊕ VA(β2

j0). If H = S 1, then by V̂ we denote the orthogonal complement ofVS 1
in

V, whereVS 1
is the set of fixed points of the S 1-action onV. By the assumption (A2) of our theorem

we have dim V̂ ≥ 4.
Therefore we obtain

(Wn
−)
+ = (T⊥u0

Γ(u0))+− ⊕
( n⊕

k=2

H+k,−
)
⊕ H+1,−,

(Wn
+)
+ = (T⊥u0

Γ(u0))++ ⊕
( n⊕

k=2

H+k,+
)
⊕ H+1,+ = (T⊥u0

Γ(u0))+− ⊕
( n⊕

k=2

H+k,−
)
⊕ H+1,− ⊕V.

Put V1 = (T⊥u0
Γ(u0))+− ⊕

( n⊕
k=2

H+k,−
)
⊕ H+1,−. Summing up,

CIH({ũ0},−∇Ψ
n
−) = S V1 , CIH({ũ0},−∇Ψ

n
+) = S V1⊕V

and the representations V1 and V2 = V1 ⊕ V satisfy the assumptions of Theorem 2.5 (in the case
H = S 1 we take into consideration that dim V̂ ≥ 4). Hence

Γ+ ∧H S V1 0Γ Γ
+ ∧H S V1⊕V.

Applying formula (3.10) we obtain that inequality (3.9) holds, which completes the proof.

3.2. Proof of Theorem 1.2

Throughout this proof we use the notation of the one of Theorem 1.1. As in that proof, to show the
assertion we will study local bifurcations from the orbit Γ(ũ0) × {λ0} for a fixed λ0 ∈ Λ0, where Λ0 is
defined by (3.8). To this end we will apply an equivariant version of the so called splitting lemma, see
for instance Lemma 3.2 of [18].

As in the previous proof, our aim is to study inequality (3.9), so we again investigate the indices
CIH({ũ0},−∇Ψ

n
±). We first shift the critical point ũ0 to the origin, i.e., we consider H-invariant maps

Πn
± : Wn → R given by Πn

±(u) = Ψn
±(u + ũ0). Then

CIH({ũ0},−∇Ψ
n
±) = CIH({0},−∇Πn

±).

It is easy to observe that ker∇2Πn
−(0) = ker∇2Πn

+(0) and im ∇2Πn
−(0) = im ∇2Πn

+(0), for simplicity
we denote these spaces respectively byN and R. Note that from the definition of λ± we obtainN ⊂ H0.

Electronic Research Archive Volume 30, Issue 5, 1691–1707.



1702

Put A± = (∇2Πn
±(0))|R and note that A± are isomorphisms. Applying the splitting lemma we get H-

invariant maps φ± : N → R and H-invariant homotopies between ∇Πn
± and (∇φ±,A±), with {0} being

an isolated invariant set at all levels of these homotopies. Applying the continuation property of the
Conley index we obtain

CIH({0},−∇Πn
±) = CIH({0}, (−∇φ±,−A±)).

Reasoning as in the proof of Lemma 3.3.1 of [10] one can prove that 0 ∈ N is an isolated critical point
(more precisely: an isolated local maximum) of φ±. Therefore {0} is an isolated invariant set for the
flows generated by −∇φ±. Moreover, since −A± are isomorphisms, {0} is also an isolated invariant set
for the flows generated by these operators. Hence we can apply the product formula (see Theorem 4.1)
and obtain

CIH({0}, (−∇φ±,−A±)) = CIH({0},−∇φ±) ∧CIH({0},−A±). (3.11)

Moreover, reasoning as in the proof of Lemma 2.2 of [12], we get

CIH({0},−∇φ±) = SN .

To find the latter factor in (3.11) consider V = ((T⊥u0
Γ(u0) ⊖ N) ⊕

⊕n
k=2Hk and the subspace V+± being

the direct sum of the eigenspaces of −(A±)|V corresponding to the positive eigenvalues. Then, as in the
proof of Theorem 1.1,

CIH({0},−A±) = S V
+
±⊕H

+
1,±

and H+1,+ = H
+
1,− ⊕

(
VA(β2

j0) ⊕ VA(β2
j0)

)
and V++ = V

+
−. Hence

CIH({0},−∇Πn
±) = SN ∧ S V

+
±⊕H

+
1,± = SN⊕V

+
±⊕H

+
1,± .

As in the proof of Theorem 1.1, by Theorem 2.5 we obtain

Γ+ ∧H (SN⊕V
+
±⊕H

+
1,−) 0Γ Γ+ ∧H (SN⊕V

+
±⊕H

+
1,+).

Applying the equality (3.10) and Theorem 3.5 we finish the proof.

3.3. Final remarks and open questions

We finish this paper with some remarks.

Remark 3.7. One can prove Theorems 1.1 and 1.2 (the proof is litterally the same), if Γu0 = S 1 and
the assumption (A2) is replaced by one of the following conditions:

1. (RN)S 1
= {0},

2. VA(β2
j) are trivial S 1-representations for every β j ∈ B,

3. VA(β2
j0) is a trivial S 1-representation and one of the following assumptions is fullfilled:

(a) there exists β j ∈ B such that β2
j > β

2
j0 and VA(β2

j) is a non-trivial S 1-representation,

(b) there exists β j ∈ B such that VA(β2
j) is a non-trivial S 1-representation and dim V̂A(β2

j) > 2,

where V̂A(β2
j) is the orthogonal complement of (VA(β2

j))
S 1

in VA(β2
j),

(c) there exist β j1 , β j2 ∈ B, β2
j1 , β2

j2 , such that VA(β2
j1), VA(β2

j2) are non-trivial S 1-
representations.
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Remark 3.8. Taking into consideration the assumption (1) of Theorems 1.1 and 1.2 the following
question seems to be interesting: are the counterparts of these theorems true for Γu0 being any closed
subgroup of the Lie group Γ? As far as we know, this question is at present far from being solved.

Remark 3.9. In the assertions of our theorems we obtain the existence of sequences of non-stationary
periodic solutions of system (1.1) emanating from the orbit. An interesting question is as follows:
under the assumptions of these theorems, does it emanate a connected set of such solutions? It is
known, that the branching of connected sets can be obtained via a suitable degree theory. Therefore
a natural approach to answer this question is to use the relationship between the equivariant Conley
index and the degree for equivariant gradient maps, see [19]. However, this problem is a little bit
delicate, since in general a change of the equivariant Conley index does not imply a change of the
degree for equivariant gradient maps. That is why the further study of the obtained degree is needed.
Another approach is to apply the theory of the index of an orbit defined via the degree, see [20], [21].

Remark 3.10. It is well-known thatH1
2π is an orthogonal representation of the group S 1 with the action

given by shift in time. Therefore, with the action of Γ described above, it can also be considered as a
(Γ×S 1)-representation. However, in our paper we study bifurcations from orbits of constant solutions.
In such a case the (Γ×S 1)-orbit is the same as the Γ-orbit, i.e., (Γ×S 1)(ũ0) ≈ Γ(ũ0). Using our method
and considering additionally the S 1-action one cannot obtain any additional information. Hence, for
simplicity of computation, we restrict our attention to the action of the group Γ.

4. Appendix

4.1. Representations of S 1 and Zm.

In this subsection we give a description of finite-dimensional orthogonal real representations of S 1

and Zm and recall the definitions of the two topological objects which we use to prove our abstract
results.

Let l ∈ N and consider a two-dimensional S 1-representation (denoted by R[1, l]) with the action of
the group S 1 given by (eiϕ, (x, y)) 7→ Φ(ϕ)l(x, y)T = Φ(l · ϕ)(x, y)T , where

Φ(ϕ) =
[

cos ϕ − sin ϕ
sin ϕ cos ϕ

]
.

For k, l ∈ N we will denote by R[k, l] the direct sum of k copies of R[1, l] and additionally by R[k, 0]
the trivial k-dimensional S 1-representation. It is known that if V is a finite-dimensional orthogonal
S 1-representation, then there exist finite sequences (ki), (mi) such that k0 ∈ N ∪ {0}, ki,mi ∈ N and V is
equivalent to

R[k0, 0] ⊕ R[k1,m1] ⊕ . . . ⊕ R[kp,mp], (4.1)

see [22].
Analogously, when no confusion can arise, for l ∈ {1, . . . ,m − 1} we denote by R[1, l] the two-

dimensional irreducible representation of the finite cyclic group Zm with the action (ei 2πk
m , (x, y)) 7→

Φ( 2πk
m )l(x, y)T and by R[k, 0] the trivial k-dimensional Zm-representation. As before, R[k, l] is the direct

sum of k copies of R[1, l]. It is known that if V is a finite-dimensional orthogonal Zm-representation,
then V is equivalent to

R[k0, 0] ⊕ R[k1,m1] ⊕ . . . ⊕ R[kp,mp], (4.2)
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where k0 ∈ N ∪ {0}, k1, . . . , kp ∈ N, m1, . . . ,mp ∈ {1, . . . ,m − 1}, see [22].
If now V is an S 1-representation without non-trivial fixed points, i.e., such that k0 = 0 in (4.1), then

the orbit space S (V)/S 1 of the action of S 1 on the sphere S (V) is called the twisted projective space.
Similarly if V is a Zm-representation such that k0 = 0 in (4.2), then the orbit space S (V)/Zm is called
the lens complex.

Note that we use in this article results of Kawasaki from [15] and therefore the above terminology
is taken from this paper. However, these topological spaces are also known by different names - the
twisted projective space is called the weighted projective space and the lens complex is known as the
weighted lens space.

4.2. Equivariant Conley index

In this subsection we introduce the basic notion of the equivariant Conley index. We start with the
finite-dimensional case, for a more complete exposition we refer to [23, 24].

As before, we denote by Γ a compact Lie group. Let V be a real finite-dimensional orthogonal
Γ-representation and φ : V → R a Γ-invariant map of class C2. Suppose that S is an isolated invariant
set of the flow generated by −∇φ. In such a situation the Conley index of S is defined (see [23, 24]) as
the Γ-homotopy type of a pointed Γ-CW-complex. We denote it by CIΓ(S ,−∇φ).

The equivariant Conley index has all the properties of the classical (non-equivariant) index given
in [25]. For the convenience of the reader we recall some of them, particularly important in the proofs
of our results. We start with the product formula.

Theorem 4.1. Let S i, for i = 1, 2, be isolated Γ-invariant sets for the Γ-flows generated by
−∇φi : Vi → Vi which are Γ-equivariant maps of class C1 and Vi are real finite-dimensional or-
thogonal Γ-representations. Then

CIΓ(S 1 × S 2, (−∇φ1,−∇φ2)) = CIΓ(S 1,−∇φ1) ∧CIΓ(S 2,−∇φ2).

In the case of an isolated invariant set containing only a non-degenerate critical point the Conley
index has a relatively simple structure. Namely, analogously as in the non-equivariant case (see [26]),
we have the following:

Remark 4.2. Suppose that φ : V → R is a Γ-invariant map of class C2 and suppose that x0 ∈ V is an
isolated non-degenerate critical point of φ. Then CIΓ({x0},−∇φ) is the Γ-homotopy type of S V

+

, where
V+ is the direct sum of eigenspaces of −∇2φ(x0) corresponding to the positive eigenvalues.

In a more general case of the isolated invariant set containing an isolated critical orbit, there is a
relation between the Γ-indices of this orbit and a critical point of the restriction, see Theorem 2.4.2
of [10]. The relation is given in terms of the smash product over the stabilizer of this critical point. For
the convenience of the reader we recall it in the next theorem.

Theorem 4.3. Suppose that φ : V→ R is a Γ-invariant map of class C2 and the orbit Γ(x0) ⊂ (∇φ)−1(0)
is isolated. Define ψ = φ|T⊥x0Γ(x0). Then

CIΓ(Γ(x0),−∇φ) = Γ+ ∧Γx0
CIΓx0

({x0},−∇ψ).

Let us now consider the infinite-dimensional case. First we recall the notion of a Γ-spectrum. Let
ξ = (Vn)∞n=0 be a sequence of finite-dimensional orthogonal representations of the group Γ. The pair

Electronic Research Archive Volume 30, Issue 5, 1691–1707.



1705

E = ((En)∞n=n(E), (ϵn)∞n=n(E)) is called a Γ-spectrum of the type ξ if, for every n ≥ n(E), En is a finite
pointed Γ-CW-complex, ϵn : S Vn ∧ En → En+1 is a morphism and there exists n0 > n(E) such that ϵn is
a Γ-homotopy equivalence for n ≥ n0.

The equivariant Conley index in the infinite-dimensional situation has been defined by Izydorek,
see [13], as the Γ-homotopy type of a Γ-spectrum. Izydorek’s definition is given for a generalLS-flow.
Since in our paper we do not need the equivariant Conley index in the general case, we will briefly
sketch the definition in the simplified situation, appropriate in our applications.

Consider an infinite-dimensional separable Hilbert spaceHwhich is an orthogonal representation of
Γ. Let Φ : H → R be a functional of the form Φ(u) = 1

2⟨Lu, u⟩ − K(u) such that L is a linear, bounded,
self adjoint, Fredholm and Γ-equivariant operator and ∇K is a Γ-equivariant completely continuous
operator of class C1.

Suppose that H =
⊕∞

k=0Hk, where Hk are disjoint orthogonal finite-dimensional representations of
Γ such that H0 = ker L and L(Hk) = Hk for every k. Suppose that S is an isolated invariant set of the
flow generated by −∇Φ and put Hn =

⊕n
k=0Hk. If O is an isolating Γ-neighborhood of S , then O ∩Hn

is an isolating Γ-neighborhood for the flow generated by −∇Φ|Hn for n sufficiently large. Denote by S n

the maximal invariant subset in O ∩ Hn and consider En = CIΓ(S n,−∇Φ|Hn). Then the Conley index
of S , denoted as in the finite-dimensional case by CIΓ(S ,−∇Φ), is defined as the Γ-homotopy type
of a Γ-spectrum (En, ϵn) of the type (H+n+1)∞n=0, where H+n+1 is the direct sum of eigenspaces of −L|Hn+1

corresponding to the positive eigenvalues and ϵn : S H
+
n+1 ∧En → En+1 are some morphisms obtained via

the product formula given in Theorem 4.1.
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9. E. Pérez-Chavela, S. Rybicki, D. Strzelecki, Symmetric Liapunov center theorem, Calc. Var. Par-
tial Differ. Equ., 56 (2017), 1–23. https://doi.org/10.1007/s00526-017-1120-1
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