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1. Introduction

Several years ago, Bensoussan, Sethi, Vickson and Derzko [1] have been considered the case of a
factory producing one type of economic goods and observed that it is necessary to solve the simple
partial differential equation

 −σ2

2 ∆zαs +
1
4

∣∣∣∇zαs
∣∣∣2 + αzαs = |x|

2 for x ∈ RN ,

zαs = ∞ as |x| → ∞,
(1.1)

where σ ∈ (0,∞) denotes the diffusion coefficient, α ∈ [0,∞) represents psychological rate of time
discount, x ∈ RN is the product vector, z := zαs (x) denotes the value function and |x|2 is the loss function.

Regime switching refers to the situation when the characteristics of the state process are affected by
several regimes (e.g., in finance bull and bear market with higher volatility in the bear market).

It is important to point out that, when dealing with regime switching, we can describe a wide variety
of phenomena using partial differential equations. In [1], the authors Cadenillas, Lakner and Pinedo [2]
adapted the model problem in [1] to study the optimal production management characterized by the
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two-state regime switching with limited/unlimited information and corresponding to the system
−
σ2

1
2 ∆us

1 + (a11 + α1) us
1 − a11us

2 − ρ
σ2

1
2

∑
i, j

∂2us
1

∂xi∂x j
− |x|2 = −1

4

∣∣∣∇us
1

∣∣∣2 , x ∈ RN ,

−
σ2

2
2 ∆us

2 + (a22 + α2) us
2 − a22us

1 − ρ
σ2

2
2

∑
i, j

∂2us
2

∂xi∂x j
− |x|2 = −1

4

∣∣∣∇us
2

∣∣∣2 , x ∈ RN ,

us
1 (x) = us

2 (x) = ∞ as |x| → ∞,

(1.2)

where σ1, σ2 ∈ (0,∞) denote the diffusion coefficients, α1, α2 ∈ [0,∞) represent the psychological
rates of time discount from what place the exponential discounting, x ∈ RN is the product vector,
us

r := us
r (x) (r = 1, 2) denotes the value functions, |x|2 is the loss function, ρ ∈ [−1, 1] is the correlation

coefficient and anm (n,m = 1, 2) are the elements of the Markov chain’s rate matrix, denoted by G =
[ϑnm]2×2 with

ϑnn = −ann ≤ 0, ϑnm = anm ≥ 0 and ϑ2
nn + ϑ

2
nm , 0 for n , m,

the diagonal elements ϑnn may be expressed as ϑnn = − Σ
m,n
ϑnm.

Furthermore, in civil engineering, Dong, Malikopoulos, Djouadi and Kuruganti [3] applied the
model described in [2] to the study of the optimal stochastic control problem for home energy systems
with solar and energy storage devices; the two regimes switching are the peak and the peak energy
demands.

After that, there have been numerous applications of regime switching in many important problems
in economics and other fields, see the works of: Capponi and Figueroa-López [4], Elliott and Hamada
[5], Gharbi and Kenne [6], Yao, Zhang and Zhou [7] and Wang, Chang and Fang [8] for more details.
Other different research studies that explain the importance of regime switching in the real world
are [9, 10].

In this paper, we focus on the following parabolic partial differential equation and system, corre-
sponding to (1.1)

∂z
∂t (x, t) − σ

2

2 ∆z (x, t) + 1
4 |∇z (x, t)|2 + αz (x, t) = |x|2 , (x, t) ∈ RN × (0,∞) ,

z (x, 0) = c + zαs (x) , for all x ∈ RN and fixed c ∈ (0,∞) ,
z (x, t) = ∞ as |x| → ∞, for all t ∈ [0,∞) ,

(1.3)

and (1.2) respectively

∂u1
∂t −

σ2
1

2 ∆u1 + (a11 + α1) u1 − a11u2 − ρ
σ2

1
2

∑
i, j

∂2u1
∂xi∂x j

− |x|2 = −1
4 |∇u1|

2 , (x, t) ∈ RN × (0,∞) ,
∂u2
∂t −

σ2
2

2 ∆u2 + (a22 + α2) u2 − a22u1 − ρ
σ2

2
2

∑
i, j

∂2u2
∂xi∂x j

− |x|2 = −1
4 |∇u2|

2 , (x, t) ∈ RN × (0,∞) ,

(u1 (x, 0) , u2 (x, 0)) =
(
c1 + us

1 (x) , c2 + us
2 (x)

)
for all x ∈ RN and for fixed c1, c2 ∈ (0,∞) ,

∂u1
∂t (x, t) = ∂u2

∂t (x, t) = ∞ as |x| → ∞ for all t ∈ [0,∞) ,
(1.4)

where zαs is the solution of (1.1) and
(
us

1 (x) , us
2 (x)

)
is the solution of (1.2). The existence and the

uniqueness for the case of (1.1) is proved by [10] and the existence for the system case of (1.2)
by [11].

From the mathematical point of view the problem (1.3) has been extensively studied when the space
RN is replaced by a bounded domain and when α = 0. In particular, some great results can be found
in the old papers of Barles, Porretta [12] and Tchamba [13]. More recently, but again for the case of
a bounded domain, α = 0 and in the absence of the gradient term, the problem (1.3) has been also
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discussed by Alves and Boudjeriou [14]. The interest of these authors [12–14] is to give an asymptotic
stable solution at infinity for the considered equation, i.e., a solution which tends to the stationary
Dirichlet problem associated with (1.3) when the time go to infinity.

Next, we propose to find a similar result as of [12–14], for the case of equation (1.3) and system
(1.4) that model some real phenomena. More that, our first interest is to provide a closed form solution
for (1.3) and (1.4). Our second objective is inspired by the paper of [14, 15], and it is to solve the
parabolic partial differential equation{

∂z
∂t (x, t) − σ

2

2 ∆z (x, t) + 1
4 |∇z (x, t)|2 = |x|2 , in BR × [0,T ) ,

z (x,T ) = 0, for |x| = R,
(1.5)

where T < ∞ and BR is a ball of radius R > 0 with origin at the center of RN .
Let us finish our introduction and start with the main results.

2. The main results

We use the change of variable
u (x, t) = e−

z(x,t)
2σ2 , (2.1)

in
∂z
∂t

(x, t) −
σ2

2
∆z (x, t) +

1
4
|∇z (x, t)|2 + αz (x, t) = |x|2

to rewrite (1.3) and (1.5) in an equivalent form
∂u
∂t (x, t) − σ

2

2 ∆u (x, t) + αu (x, t) ln u (x, t) + 1
2σ2 |x|2 u (x, t) = 0, if (x, t) ∈ Ω × (0,T )

u (x,T ) = u1,0, on ∂Ω,

u (x, 0) = e−
c+zαs (x)

2σ2 , for x ∈ Ω = RN , c ∈ (0,∞)
(2.2)

where

u1,0 =

{
1 if Ω = BR, i.e., |x| = R, T < ∞,
0 if Ω = RN , i.e., |x| → ∞, T = ∞.

Our first result is the following.

Theorem 2.1. Assume Ω = BR, N ≥ 3, T < ∞ and α = 0. There exists a unique radially symmetric
positive solution

u(x, t) ∈ C2 (BR × [0,T )) ∩C
(
BR × [0,T ]

)
,

of (2.2) increasing in the time variable and such that

lim
t→T

u(x, t) = us(x), (2.3)

where us ∈ C2 (BR)∩C
(
BR

)
is the unique positive radially symmetric solution of the Dirichlet problem σ2

2 ∆us =
(

1
2σ2 |x|2 + 1

)
us, in BR,

us = 1, on ∂BR,
(2.4)
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which will be proved. In addition,

z (x, t) = −2σ2 (t − T ) − 2σ2 ln us (|x|) , (x, t) ∈ BR × [0,T ] ,

is the unique radially symmetric solution of the problem (1.5).

Instead of the existence results discussed in the papers of [12–14], in our proof of the Theorem 2.1
we give the numerical approximation of solution u (x, t).

The next results refer to the entire Euclidean space RN and present closed-form solutions.

Theorem 2.2. Assume Ω = RN , N ≥ 1, T = ∞, α > 0 and c ∈ (0,∞) is fixed. There exists a unique
radially symmetric solution

u(x, t) ∈ C2
(
RN × [0,∞)

)
,

of (2.2), increasing in the time variable and such that

u(x, t)→ uαs (x) as t → ∞, for all x ∈ RN , (2.5)

where uαs ∈ C2
(
RN

)
is the unique radially symmetric solution of the stationary Dirichlet problem

associated with (2.2) {
σ2

2 ∆uαs = αuαs ln uαs +
1

2σ2 |x|2 uαs , in RN ,

uαs (x)→ 0, as |x| → ∞.
(2.6)

Moreover, the closed-form radially symmetric solution of the problem (1.3) is

z (x, t) = ce−αt + B |x|2 + D, (x, t) ∈ RN × [0,∞) , c ∈ (0,∞) , (2.7)

where
B = 1

Nσ2

(
1
2 Nσ2

√
α2 + 4 − 1

2 Nασ2
)
, D = 1

2α

(
Nσ2
√
α2 + 4 − Nασ2

)
. (2.8)

The following theorem is our main result regarding the system (1.4).

Theorem 2.3. Suppose that N ≥ 1, α1, α2 ∈ (0,∞) and a11, a22 ∈ [0,∞) with a2
11 + a2

22 , 0. Then, the
system (1.4) has a unique radially symmetric convex solution

(u1(x, t), u2(x, t)) ∈ C2
(
RN × [0,∞)

)
×C2

(
RN × [0,∞)

)
,

of quadratic form in the x variable and such that

(u1(x, t), u2(x, t))→
(
us

1(x), us
2(x)

)
as t → ∞ uniformly for all x ∈ RN , (2.9)

where (
us

1(x), us
2(x)

)
∈ C2

(
RN

)
×C2

(
RN

)
is the radially symmetric convex solution of quadratic form in the x variable of the stationary system
(1.2) which exists from the result of [11].

Our results complete the following four main works: Bensoussan, Sethi, Vickson and Derzko [1],
Cadenillas, Lakner and Pinedo [2], Canepa, Covei and Pirvu [15] and Covei [10], which deal with a
stochastic control model problem with the corresponding impact for the parabolic case (see [13,16] for
details).
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2.1. An auxiliary result

To prove our Theorem 2.1, we use a lower and upper solution method and the comparison principle
that can be found in [17].

Lemma 2.1. If, there exist u (x), u (x) ∈ C2 (BR) ∩C
(
BR

)
two positive functions satisfying −σ2

2 ∆u (x) +
(

1
2σ2 |x|2 + 1

)
u (x) ≥ 0 ≥ −σ

2

2 ∆u (x) +
(

1
2σ2 |x|2 + 1

)
u (x) in BR,

u (x) = 1 = u (x) on ∂BR,

then
u (x) − u (x) ≥ 0 for all x ∈ BR,

and there exists
u (x) ∈ C2 (BR) ∩C

(
BR

)
,

a solution of (2.4) such that
u (x) ≤ u (x) ≤ u (x) , x ∈ BR,

where u (x) and u (x) are respectively, called a lower solution and an upper solution of (2.4).

The corresponding result of Lemma 2.1 for the parabolic equations can be found in the work of
Pao [18] and Amann [19]. To achieve our goal, complementary to the works [12–15] it can be used the
well known books of Gilbarg and Trudinger [20], Sattinger [17], Pao [18] and a paper of Amann [19].
Further on, we can proceed to prove Theorem 2.1.

3. Proof of Theorem 2.1

By a direct calculation, if there exists and is unique, us ∈ C2 (BR)∩C
(
BR

)
, a positive solution of the

stationary Dirichlet problem (2.4) then

u (x, t) = et−T us (x) , (x, t) ∈ BR × [0,T ] ,

is the solution of the problem (2.2) and

z (x, t) = −2σ2 (t − T ) − 2σ2 ln us (x) , (x, t) ∈ BR × [0,T ] ,

is the solution of the problem (1.5) belonging to

C2 (BR × [0,T )) ∩C
(
BR × [0,T ]

)
.

We prove that (2.4) has a unique radially symmetric solution. The existence of solution for (2.4) is
obtained by a standard monotone iteration and the lower and the upper solution method, Lemma 2.1.
Hence, starting from the initial iteration

u0
s (x) = e−

R2−|x|2

2σ2 ,

we construct a sequence {uk
s (x)}k≥1 successively by

Electronic Research Archive Volume 30, Issue 4, 1340–1353.
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 σ2

2 ∆uk
s (x) =

(
1

2σ2 |x|2 + 1
)

uk−1
s (x) , in BR,

uk
s (x) = 1, on ∂BR,

(3.1)

and this sequence will be pointwise convergent to a solution us (x) of (2.4).
Indeed, since for each k the right-hand side of (3.1) is known, the existence theory for linear elliptic

boundary-value problems implies that {uk
s (x)}k≥1 is well defined, see [20].

Let us prove that {uk
s (x)}k≥1 is a pointwise convergent sequence to a solution of (2.4) in BR. To

do this, first we prove that {uk
s (x)}k≥1 is monotone nondecreasing of k. We apply the mathematical

induction by verifying the first step, k = 1.{
σ2

2 ∆u1
s (x) ≤ σ

2

2 ∆u0
s (x) , in BR,

u1
s (x) = 1 = u0

s (x) , on ∂BR.

Now, by the standard comparison principle, Lemma 2.1, we have

u0
s (x) ≤ u1

s (x) in BR.

Moreover, the induction argument yields the following

u0
s (x) = e−

R2−|x|2

2σ2 ≤ ... ≤ uk
s (x) ≤ uk+1

s (x) ≤ ... in BR, (3.2)

i.e., {uk
s (x)}k≥1 is a monotone nondecreasing sequence.

Next, using again Lemma 2.1, we find

us (x) := u0
s (x) = e−

R2−|x|2

2σ2 ≤ ... ≤ uk
s (x) ≤ uk+1

s (x) ≤ ... ≤ us (x) := 1 in BR, (3.3)

where we have used

σ2

2
∆us (x) = us (x)

σ2

2

(
|x|2 + σ2

σ4 +
N − 1
σ2

)
≥ us (x)

(
1

2σ2 |x|
2 + 1

)
σ2

2
∆us (x) =

σ2

2
∆1 = 0 ≤ us (x)

(
1

2σ2 |x|
2 + 1

)
i.e., Lemma 2.1 confirm. Thus, in view of the monotone and bounded property in (3.3) the sequence
{uk

s (x)}k≥1 converges. We may pass to the limit in (3.3) to get the existence of a solution

us (x) := lim
k→∞

uk
s (x) in BR,

associated to (2.4), which satisfies

us (x) ≤ us (x) ≤ us (x) in BR.

Furthermore, the convergence of {uk
s (x)} is uniformly to us (x) in BR and us (x) has a radial symmetry,

see [15] for arguments of the proof. The regularity of solution us (x) is a consequence of classical
results from the theory of elliptic equations, see Gilbarg and Trudinger [20]. The uniqueness of us (x)
follows from a standard argument with the use of Lemma 2.1 and we omit the details.
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Clearly, u (x, t) is increasing in the time variable. The regularity of u (x, t) follows from the regularity
of us (x). Letting t → T we see that (2.3) holds. The solution of the initial problem (1.5) is saved from
(2.1).

Finally, we prove the uniqueness for (2.2). Let

u (x, t) , v (x, t) ∈ C2 (BR × [0,T )) ∩C
(
BR × [0,T ]

)
,

be two solutions of the problem (2.2), i.e., its hold{
∂u
∂t (x, t) − σ

2

2 ∆u (x, t) + 1
2σ2 |x|2 u (x, t) = 0, if (x, t) ∈ BR × [0,T ) ,

u (x,T ) = 1, on ∂BR,

and {
∂v
∂t (x, t) − σ

2

2 ∆v (x, t) + 1
2σ2 |x|2 v (x, t) = 0, if (x, t) ∈ BR × [0,T ) ,

v (x,T ) = 1, on ∂BR.

Setting
w (x, t) = u (x, t) − v (x, t) , in BR × [0,T ] ,

and subtracting the two equations corresponding to u and v we find{
∂w
∂t (x, t) = σ

2

2 ∆w (x, t) − 1
2σ2 |x|2 w (x, t) , i f (x, t) ∈ BR × [0,T ) ,

w (x,T ) = 0, on ∂BR.

Let us prove that u (x, t)− v (x, t) ≤ 0 in BR× [0,T ]. If the conclusion were false, then the maximum of

w (x, t) , in BR × [0,T ) ,

is positive. Assume that the maximum of w in BR × [0,T ] is achieved at (x0, t0). Then, at the point
(x0, t0) ∈ BR × [0,T ), where the maximum is attained, we have

∂w
∂t

(x0, t0) ≥ 0, ∆w (x0, t0) ≤ 0, ∇w (x0, t0) = 0,

and

0 ≤
∂w
∂t

(x0, t0) =
σ2

2
∆w (x0, t0) −

1
2σ2 |x|

2 w (x0, t0) < 0

which is a contradiction. Reversing the role of u and v we obtain that u (x, t)−v (x, t) ≥ 0 in BR× [0,T ].
Hence u (x, t) = v (x, t) in BR × [0,T ]. The proof of Theorem 2.1 is completed.

Finally, our main result, Theorem 2.2 will be obtained by a direct computation.

4. Proof of Theorem 2.2

In view of the arguments used in the proof of Theorem 2.1 and the real world phenomena, we use
a purely intuitive strategy in order to prove Theorem 2.2.

Indeed, for the verification result in the production planning problem, we need z (x, t) to be almost
quadratic with respect to the variable x.
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More exactly, we observe that there exists and is unique

u (x, t) = e−
h(t)+B|x|2+D

2σ2 , (x, t) ∈ RN × [0,∞) , with B, D ∈ (0,∞) ,

that solve (2.2), where
h (0) = c, (4.1)

and B, D are given in (2.8). The condition (4.1) is used to obtain the asymptotic behaviour of solution
to the stationary Dirichlet problem associated with (2.2). Then our strategy is reduced to find B,D ∈
(0,∞) and the function h which depends of time and c ∈ (0,∞) such that

−
1
2

h′ (t)
σ2 −

σ2

2

[
−

B
σ4

(
σ2 − B |x|2

)
− (N − 1)

B
σ2

]
+ α

(
−

h (t) + B |x|2 + D
2σ2

)
+

1
2σ2 |x|

2 = 0,

or, after rearranging the terms

|x|2
(
1 − αB − B2

)
+ Nσ2B − αD − h′ (t) − αh (t) = 0,

where (4.1) holds. Now, by a direct calculation we see that the system of equations
1 − αB − B2 = 0
Nσ2B − αD = 0
−h′ (t) − αh (t) = 0
h (0) = c

has a unique solution that satisfies our expectations, namely,

u (x, t) = e−
ce−αt+B|x|2+D

2σ2 , (x, t) ∈ RN × [0,∞) , (4.2)

where B and D are given in (2.8), is a radially symmetric solution of the problem (2.2). The unique-
ness of the solution is followed by the arguments in [10] combined with the uniqueness proof in The-
orem 2.1. The justification of the asymptotic behavior and regularity of the solution can be proved
directly, once we have a closed-form solution. Finally, the closed-form solution in (2.7) is due to
(2.1)–(4.2) and the proof of Theorem 2.2 is completed.

5. Proof of Theorem 2.3

One way of solving this system of partial differential equation of parabolic type (1.4) is to show that
the system (1.4) is solvable by

(u1 (x, t) , u2 (x, t)) =
(
h1 (t) + β1 |x|2 + η1, h2 (t) + β2 |x|2 + η2

)
, (5.1)

for some unique β1, β2, η1, η2 ∈ (0,∞) and h1 (t), h2 (t) are suitable chosen such that

h1 (0) = c1 and h2 (0) = c2. (5.2)
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The main task for the proof of existence of (5.1) is performed by proving that there exist

β1, β2, η1, η2, h1,h2,

such that h′1 (t) − 2β1Nσ2
1

2 + (a11 + α1)
[
h1 (t) + β1 |x|2 + η1

]
− a11

[
h2 (t) + β2 |x|2 + η2

]
− |x|2 = −1

4 (2β1 |x|)2 ,

h′2 (t) − 2β2Nσ2
2

2 + (a22 + α2)
[
h2 (t) + β2 |x|2 + η2

]
− a22

[
h1 (t) + β1 |x|2 + η1

]
− |x|2 = −1

4 (2β2 |x|)2 ,

or equivalently, after grouping the terms
|x|2

[
−a11β2 + (a11 + α1)β1 + β

2
1 − 1

]
− β1Nσ2

1 − a11η2 + (a11 + α1)η1

+h′1 (t) + (a11 + α1) h1 (t) − a11h2 (t) = 0,
|x|2

[
−a22β1 + (a22 + α2)β2 + β

2
2 − 1

]
− β2Nσ2

2 − a22η1 + (a22 + α2) η2

+h′2 (t) + (a22 + α2) h2 (t) − a22h1 (t) = 0,

where h1 (t) , h2 (t) must satisfy (5.2). Now, we consider the system of equations

−a11β2 + (a11 + α1)β1 + β
2
1 − 1 = 0

−a22β1 + (a22 + α2)β2 + β
2
2 − 1 = 0

−β1Nσ2
1 − a11η2 + (a11 + α1)η1 = 0

−β2Nσ2
2 − a22η1 + (a22 + α2) η2 = 0

h′1 (t) + (a11 + α1) h1 (t) − a11h2 (t) = 0
h′2 (t) + (a22 + α2) h2 (t) − a22h1 (t) = 0.

(5.3)

To solve (5.3), we can rearrange those equations 1, 2 in the following way{
−a11β2 + (a11 + α1)β1 + β

2
1 − 1 = 0

−a22β1 + (a22 + α2)β2 + β
2
2 − 1 = 0

. (5.4)

We distinguish three cases:
1. in the case a22 = 0 we have an exact solution for (5.4) of the form

β1 = −
1
2
α1 −

1
2

a11 +
1
2

√
α2

1 + a2
11 − 4a11

(
1
2
α2 −

1
2

√
α2

2 + 4
)
+ 2α1a11 + 4

β2 = −
1
2
α2 +

1
2

√
α2

2 + 4

2. in the case a11 = 0 we have an exact solution for (5.4) of the form

β1 = −
1
2
α1 +

1
2

√
α2

1 + 4

β2 = −
1
2
α2 −

1
2

a22 +
1
2

√
α2

2 + a2
22 − 4a22

(
1
2
α1 −

1
2

√
α2

1 + 4
)
+ 2α2a22 + 4
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3. in the case a11 , 0 and a22 , 0, to prove the existence and uniqueness of solution for (5.4) we
will proceed as follows. We retain from the first equation of (5.4)

β1 =
1
2

√
α2

1 + 2α1a11 + a2
11 + 4β2a11 + 4 −

1
2

a11 −
1
2
α1.

and from the second equation

β2 =
1
2

√
α2

2 + 2α2a22 + a2
22 + 4β1a22 + 4 −

1
2

a22 −
1
2
α2.

The existence of β1, β2 ∈ (0,∞) for (5.4) can be easily proved by observing that the continuous
functions f1, f2 : [0,∞)→ R defined by

f1 (β1) = −a11

(
1
2

√
α2

2 + 2α2a22 + a2
22 + 4β1a22 + 4 − 1

2a22 −
1
2α2

)
+ (a11 + α1)β1 + β

2
1 − 1,

f2 (β2) = −a22

(
1
2

√
α2

1 + 2α1a11 + a2
11 + 4β2a11 + 4 − 1

2a11 −
1
2α1

)
+ (a22 + α2)β2 + β

2
2 − 1,

have the following properties
f1 (∞) = ∞ and f2 (∞) = ∞, (5.5)

respectively

f1 (0) = −a11

(
1
2

√
α2

2 + 2α2a22 + a2
22 + 4 − 1

2a22 −
1
2α2

)
− 1 < 0,

f2 (0) = −a22

(
1
2

√
α2

1 + 2α1a11 + a2
11 + 4 − 1

2a11 −
1
2α1

)
− 1 < 0.

(5.6)

The observations (5.5) and (5.6) imply {
f1 (β1) = 0
f2 (β2) = 0

has at least one solution (β1, β2) ∈ (0,∞) × (0,∞) and furthermore it is unique (see also, the references
[21, 22] for the existence and the uniqueness of solutions).

The discussion from cases 1–3 show that the system (5.4) has a unique positive solution. Next,
letting

(β1, β2) ∈ (0,∞) × (0,∞) ,

be the unique positive solution of (5.4), we observe that the equations 3, 4 of (5.3) can be written
equivalently as a system of linear equations that is solvable and with a unique solution(

a11 + α1 −a11

−a22 a22 + α2

) (
η1

η2

)
=

(
β1Nσ2

1
β2Nσ2

2

)
. (5.7)

By defining

Ga,α :=
(

a11 + α1 −a11

−a22 a22 + α2

)
,

we observe that

G−1
a,α =

( α2+a22
α1α2+α2a11+α1a22

a11
α1α2+α2a11+α1a22

a22
α1α2+α2a11+α1a22

α1+a11
α1α2+α2a11+α1a22

)
.
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Using the fact that G−1
a,α has all ellements positive and rewriting (5.7) in the following way(

η1

η2

)
= G−1

a,α

(
β1Nσ2

1
β2Nσ2

2

)
,

we can see that there exist and are unique η1, η2 ∈ (0,∞) that solve (5.7). Finally, the equations 5, 6, 7
of (5.3) with initial condition (5.2) can be written equivalently as a solvable Cauchy problem for a first
order system of differential equations

(
h′1 (t)
h′2 (t)

)
+Ga,α

(
h1 (t)
h2 (t)

)
=

(
0
0

)
,

h1 (0) = c1 and h2 (0) = c2,

(5.8)

with a unique solution and then (5.1) solve (1.4). The rest of the conclusions are easily verified.

6. Application for the system case

Next, we present an application.
Application 1. Suppose there is one machine producing two products (see [23,24], for details). We

consider a continuous time Markov chain generator(
−1

2
1
2

1
2 −1

2

)
,

and the time-dependent production planning problem with diffusion σ1 = σ2 =
1
√

2
and let α1 = α2 =

1
2

the discount factor. Under these assumptions, we can write the system (5.4) with our data{
β2

1 + β1 −
1
2β2 − 1 = 0

β2
2 −

1
2β1 + β2 − 1 = 0

which has a unique positive solution

β1 =
1
4

(√
17 − 1

)
, β2 =

1
4

(√
17 − 1

)
.

On the other hand, the system (5.7) becomes(
1 −1

2
−1

2 1

) (
η1

η2

)
=

(
β1

β2

)
,

which has a unique positive solution

η1 =
4
3
β1 +

2
3
β2 =

1
2

(√
17 − 1

)
,

η2 =
2
3
β1 +

4
3
β2 =

1
2

(√
17 − 1

)
.

Finally, the system in (5.8) becomes
(

h′1 (t)
h′2 (t)

)
+

(
1 −1

2
−1

2 1

) (
h1 (t)
h2 (t)

)
=

(
0
0

)
,

h1 (0) = c1 and h2 (0) = c2,
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which has the solution

h1 (t) = s1e−
1
2 t − s2e−

3
2 t, h2 (t) = s1e−

1
2 t + s2e−

3
2 t, with s1, s2 ∈ R.

Next, from
h1 (0) = c1 and h2 (0) = c2,

we have {
s1 − s2 = c1

s1 + s2 = c2
=⇒ s1 =

1
2

c1 +
1
2

c2, s2 =
1
2

c2 −
1
2

c1,

and finally {
h1 (t) = 1

2 (c1 + c2) e−
1
2 t − 1

2 (c2 − c1) e−
3
2 t,

h2 (t) = 1
2 (c1 + c2) e−

1
2 t + 1

2 (c2 − c1) e−
3
2 t,

from where we can write the unique solution of the system (1.4) in the form (5.1).

7. Discussion

Let us point that in Theorem 2.3 we have proved the existence and the uniqueness of a solution of
quadratic form in the x variable and then the existence of other different types of solutions remain an
open problem.

8. Conclusions

Some closed-form solutions for equations and systems of parabolic type are presented. The form of
the solutions is unique and tends to the solutions of the corresponding elliptic type problems that were
considered.
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22. I. Győri, F. Hartung, N. A. Mohamady, Boundedness of positive solutions of a system of
nonlinear delay differential equations, Discrete Contin. Dyn. Syst. B, 23 (2018), 809–836.
https://doi.org/10.1007/s10998-016-0179-3

23. L. Sheng, Y. Zhu, K. Wang, Uncertain dynamical system-based decision making with
application to production-inventory problems, Appl. Math. Model., 56 (2018), 275–288.
https://doi.org/10.1016/j.apm.2017.12.006

24. M. K. Ghosh, A. Arapostathis, S. I. Marcus, Optimal Control of Switching Diffusions with Ap-
plication to Flexible Manufacturing Systems, SIAM J. Control Optim., 31 (1992), 1183–1204.
https://doi.org/10.1137/0331056

© 2022 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

Electronic Research Archive Volume 30, Issue 4, 1340–1353.

http://dx.doi.org/https://doi.org/10.1007/BF00251255
http://dx.doi.org/https://doi.org/10.1007/978-3-642-61798-0
http://dx.doi.org/https://doi.org/10.1007/s10998-016-0179-3
http://dx.doi.org/https://doi.org/10.1007/s10998-016-0179-3
http://dx.doi.org/https://doi.org/10.1016/j.apm.2017.12.006
http://dx.doi.org/https://doi.org/10.1137/0331056
http://creativecommons.org/licenses/by/4.0

	Introduction
	The main results
	An auxiliary result

	Proof of Theorem 2.1
	Proof of Theorem 2.2
	Proof of Theorem 2.3
	Application for the system case 
	Discussion
	Conclusions

