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Abstract: The spatial memory effect in predator and fear effect in prey are incorporated in a
diffusive predator-prey model. We are interested in studying the dynamics generated by the memory
effect and fear effect, and mainly study the local stability of coexisting equilibrium, the existence
of Hopf bifurcation and the property of Hopf bifurcation. Through the numerical simulations, we
show that increasing memory-based diffusion coefficient is not conducive to the stability of the
coexisting equilibrium, and the fear effect has both stabilizing and destabilizing effect on the coexisting
equilibrium under different parameters.
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1. Introduction

The relationship between predator and prey is an important research content in ecosystem, and
many scholars have studied this interaction by differential equation models [1–6]. The direct
relationship between predator and prey is the consumption of prey. One of the indirect relationship
between predator and prey is the fear of predator. When the prey gets the predator’s signal
(chemical/vocal), they will increase their vigilance time and reduce their foraging [7], such as mule
deer v.s. mountain lions [8], elk v.s. wolves [9]. Consider the fear effect, Panday et al. [10] proposed
the following model  du

dt = R0
1+Kvu

(
1 − u

K0

)
− CAuv

B+u ,
dv
dt = Auv

B+X − Dv.
(1.1)

All parameters are positive. The biological interpretation of parameters is given in Table 1. They
incorporated fear effect by modifying the prey intrinsic growth rate R0 as R0

1+Kv . By the scaling

u
K0

= ū,
Cv
K0

= v̄, R0t = t̄,
AK0

R0B
= a,

K0

B
= b,

KK0

C
= c,

D
R0

= µ, (1.2)
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model (1.1) is changed to (drop the bars){
du
dt =

u(1−u)
1+cv −

auv
1+bu ,

dv
dt = auv

1+bu − µv.
(1.3)

Panday et al. [10] introduced time delay of perceiving predator signals to model (1.3), and mainly
studied the boundedness, persistence, local and global behavior of the delayed model.

Table 1. Biological description of parameters.

Parameter Definition Parameter Definition
t Time variable x Spatial variable
u Prey density v Predator density
R0 Prey intrinsic growth rate K0 Prey carrying capacity
A Maximum predation rate B Half-saturation constant of predator
C−1 Conversion efficiency D Death rate of predators
K Fear parameter τ Averaged memory period of predator
d1 Diffusion coefficient of prey d2 Diffusion coefficient of predator
d Memory-based diffusion coefficient

In the real world, in addition to the fear effect of the prey, the clever predator also has
spatial-memory and cognition [11], which is often ignored in modeling the predator-prey interaction.
For example, blue whales rely on memory for migration, which is presented by B. Abrahms et al. [12]
and W. F. Fagan [13]. As another example, animals in polar regions usually determine their spatial
movement by judging footprints, which record the history of species distribution and movement,
involving time delay [14]. Obviously, highly developed animals can even remember the historical
distribution or cluster of species in space. Much progress has been made in implicitly integrating
spatial cognition or memory [14–18]. To incorporate the memory effect, Shi et al. proposed a single
specie model with spatial memory by introducing a additional delayed diffusion term [14]. They
supposed that in addition to the negative gradient of the density distribution function at the present
time, there is a directed movement toward the negative gradient of the density distribution function at
past time [14]. After this pioneering work, some recent works [19–23] about the population model
with memory effect have emerged. In [23], Song et al. obtained a computing method for the normal
forms of the Hopf bifurcations in the diffusive predator-prey model with memory effect, which is
friendly to use.

Inspired by the above work, we suppose the predator has spatial-memory diffusion and the prey has
fear effect, then modified the model (1.3) as follow

∂u(x, t)
∂t

= d1∆u(x, t) +
u(1 − u)
1 + cv

−
auv

1 + bu
,

∂v(x, t)
∂t

= −d∇(v(x, t)∇u(x, t − τ)) + d2∆v(x, t) +
auv

1 + bu
− µv, x ∈ Ω, t > 0

∂u(x, t)
∂ν̄

=
∂v(x, t)
∂ν̄

= 0, x ∈ ∂Ω, t > 0

u(x, θ) = u0(x, θ) ≥ 0, v(x, θ) = v0(x, θ) ≥ 0, x ∈ Ω̄, θ ∈ [−τ, 0].

(1.4)
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All parameters are positive. The biological description of parameters is given in Table 1. The term
−d∇(v∇u(t−τ)) represents the memory-based diffusion effect of the predator. The Neumann boundary
conditions is used. The aim of this paper is to study the effect of predator’s memory-based diffusion
and prey’s fear on the model (1.4).

The rest of this paper is organized as follows. In Section 2, the stability of coexisting equilibrium
and the existence of Hopf bifurcation are considered. In Section 3, the property of Hopf bifurcation is
studied. In Section 3, some numerical simulations are given to analyze the effect of spatial-memory
and fear effect. In Section 4, a short conclusion is given.

2. Stability analysis

For simplicity, we choose Ω = (0, lπ). Denote N as positive integer set, and N0 as nonnegative
integer set. It is easy to obtain (0, 0) and (1, 0) are two boundary equilibria of model (1.4). Next, we
will give the existence of coexisting equilibrium.

Lemma 2.1. If a > (1 + b)µ, model (1.4) has one unique coexisting equilibrium (u∗, v∗) where

u∗ =
µ

a−bµ , v∗ = 1
2c

(
−1 +

√
1 +

4c[a−(1+b)µ]
(a−bµ)2

)
.

Proof. The coexisting equilibrium of (1.4) is a positive root of the following equations
u(1 − u)
1 + cv

−
auv

1 + bu
= 0,

auv
1 + bu

− µv = 0.
(2.1)

From the second equation, we have u =
µ

a−bµ . Substitute it into the first equation, we have

cv2 + v −
(a − (1 + b)µ)

(a − bµ)2 = 0.

Then v = 1
2c

(
−1 ±

√
1 + 4c (a−(1+b)µ)

(a−bµ)2

)
. Obviously, the conclusion holds.

In this paper, we mainly study the stability of coexisting equilibrium E∗(u∗, v∗). Linearize model
(1.4) at E∗(u∗, v∗), we have

∂u
∂t

(
u(x, t)
u(x, t)

)
= D1

(
∆u(t)
∆v(t)

)
+ D2

(
∆u(t − τ)
∆v(t − τ)

)
+ L

(
u(x, t)
v(x, t)

)
, (2.2)

where

D1 =

(
d1 0
0 d2

)
, D2 =

(
0 0
−dv∗ 0

)
, L =

(
a1 a2

b1 0

)
,

and a1 = u∗
(

abv∗
(1+bu∗)2 −

1
1+cv∗

)
, a2 = −

u∗(1−u∗)(1+2cv∗)
v∗(1+cv∗)2 < 0, b1 = av∗

(1+bu∗)2 > 0. The characteristic equations
are

λ2 + Anλ + Bn + Cne−λτ = 0, n ∈ N0, (2.3)

where

An = (d1 + d2)
n2

l2 − a1, Bn = −a2b1 − a1d2
n2

l2 + d1d2
n4

l4 , Cn = −a2dv∗
n2

l2 .
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2.1. τ = 0

When τ = 0, the characteristic Eq (2.3) become

λ2 + Anλ + Bn + Cn = 0, n ∈ N0, (2.4)

where Bn + Cn = −a2b1 − (a2dv∗ + a1d2)n2

l2 + d1d2
n4

l4 . Make the following hypothesis

(H1) a > (1 + b)µ, a1 < 0.

Theorem 2.1. For model (1.4) with τ = 0, E∗(u∗, v∗) is locally asymptotically stable under the
hypothesis (H1).

Proof. If (H1) holds, we can easily obtain that An > 0 and Bn + Cn > 0. Then the characteristic roots
of (2.4) all have negative real parts. Then E∗(u∗, v∗) is locally asymptotically stable.

2.2. τ > 0

In the following, we assume (H1) holds. Let iω (ω > 0) be a solution of Eq (2.3), then we have

−ω2 + Aniω + Bn + Cn(cosωτ − isinωτ) = 0.

We can obtain cosωτ = ω2−Bn
Cn

, sinωτ = Anω
Cn

> 0 under hypothesis (H1). It leads to

ω4 +
(
A2

n − 2Bn

)
ω2 + B2

n −C2
n = 0. (2.5)

Let p = ω2, then (2.5) becomes

p2 +
(
A2

n − 2Bn

)
p + B2

n −C2
n = 0, (2.6)

and the roots of (2.6) are p±n = 1
2 [−

(
A2

n − 2Bn

)
±

√(
A2

n − 2Bn
)2
− 4(B2

n −C2
n)]. By direct computation,

we have 
A2

n − 2Bn = a2
1 + 2a2b1 − 2a1d1

n2

l2 + (d2
1 + d2

2)
n4

l4 ,

Bn −Cn = d1d2
n4

l4 + (a2dv∗ − a1d2)
n2

l2 − a2b1,

and Bn + Cn > 0 under hypothesis (H1). Define z± =
−(a2dv∗−a1d2)±

√
(a2dv∗−a1d2)2−4d1d2(−a2b1)

2d1d2
, d∗ = a1d2

a2v∗
+

2
v∗

√
−

b1d1d2
a2

, andM = {n| n
2

l2
∈ (z−, z+), n ∈ N0}. Then we can obtain that

Bn −Cn > 0, for d ≤ d∗, n ∈ N0,

Bn −Cn > 0, for d > d∗, n < M,

Bn −Cn < 0, for d > d∗, n ∈ M.

(2.7)

The existence of purely imaginary roots of Eq (2.3) can be divided into the following two cases.
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Case 1 : a2
1 + 2a2b1 > 0. We can obtain A2

n − 2Bn > a2
1 + 2a2b1 > 0. For d > d∗ and n ∈ M, Eq (2.3)

has a pair of purely imaginary roots ±iω+
n at τ j,+

n for j ∈ N0 and n ∈ M. Otherwise, Eq (2.3) does not
have characteristic roots with zero real parts.

Case 2 : a2
1 + 2a2b1 < 0. This case can be divided into the following two subcases.

• For d ≤ d∗ and n ∈ M1 := {n|A2
n − 2Bn < 0,

(
A2

n − 2Bn

)2
− 4(B2

n −C2
n) > 0, n ∈ N0}, Eq (2.3) has two

pairs of purely imaginary roots ±iω±n at τ j,±
n for j ∈ N0 and n ∈ M1. Otherwise, Eq (2.3) does not have

characteristic roots with zero real parts.
• For d > d∗ and n ∈ M2 := {n|A2

n − 2Bn < 0,
(
A2

n − 2Bn

)2
− 4(B2

n −C2
n) > 0, n ∈ N0, n < M}, Eq (2.3)

has two pairs of purely imaginary roots ±iω±n at τ j,±
n for j ∈ N0 and n ∈ M1. For d > d∗ and n ∈ M, Eq

(2.3) has a pair of purely imaginary roots ±iω+
n at τ j,+

n for j ∈ N0 and n ∈ M. Otherwise, Eq (2.3) does
not have characteristic roots with zero real parts.

The ω±n and τ j,±
n are defined as follow

ω±n =
√

p±n , τ j,±
n =

1
ω±n

arccos(
(ω±n )2 − Bn

Cn
) + 2 jπ. (2.8)

Define

S = {τ j,+
n or τ j,−

n |Eq (2.3) has purely imaginary roots ± iω+
n or ± iω−n when τ = τ j,+

n or τ j,−
n }.

We have the following lemma.

Lemma 2.2. Assume (H1) holds. Then Re(dλ
dτ )|τ=τ j,+

n
> 0, Re( dλ

dτ )|τ=τ j,−
n
< 0 for τ j,±

n ∈ S and j ∈ N0.

Proof. By Eq (2.3), we have

(
dλ
dτ

)−1 =
2λ + An

Cnλe−λτ
−
τ

λ
.

Then

[Re(
dλ
dτ

)−1]τ=τ j,±
n

= Re[
2λ + An

Cnλe−λτ
−
τ

λ
]τ=τ j,±

n

= [
1

A2
nω

2 + (Bn − ω)2 (2ω2 + A2
n − 2Bn)]τ=τ j,±

n

= ±[
1

A2
nω

2 + (Bn − ω)2

√
(A2

n − 2Bn)2 − 4(B2
n −C2

n)]τ=τ j,±
n
.

Therefore Re(dλ
dτ )|τ=τ j,+

n
> 0, Re(dλ

dτ )|τ=τ j,−
n
< 0.

Denote τ∗ = min{τ0,±
n | τ

0,±
n ∈ S}. We have the following theorem.

Theorem 2.2. Assume (H1) holds, then the following statements are true for model (1.4).
• E∗(u∗, v∗) is locally asymptotically stable for τ > 0 when S = ∅.
• E∗(u∗, v∗) is locally asymptotically stable for τ ∈ [0, τ∗) when S , ∅.
• E∗(u∗, v∗) is unstable for τ ∈ (τ∗, τ∗ + ε) for some ε > 0 when S , ∅.
• Hopf bifurcation occurs at (u∗, v∗) when τ = τ

j,+
n (τ = τ

j,−
n ), j ∈ N0, τ j,±

n ∈ S.
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Remark 2.1. In the Theorem 2.2, if E∗(u∗, v∗) is locally asymptotically stable, the densities of prey
and predator will tend to the equilibrium state in the whole region when the initial densities of prey
and predator is near E∗(u∗, v∗). When Hopf bifurcation occurs at (u∗, v∗), then the densities of prey and
predator will produce periodic oscillation. Especially, spatially homogeneous periodic oscillations
may occur when τ near the critical value τ = τ

j,+
0 or τ = τ

j,−
0 , and spatially inhomogeneous periodic

oscillations may occur when τ near the critical value τ = τ
j,+
n or τ = τ

j,−
n (n > 0).

3. Property of Hopf bifurcation

In this section, we use the algorithm in [23] to compute the normal form of Hopf bifurcation. We
denote the critical value of Hopf bifurcation as τ̃ and the purely imaginary roots as ±iωn of Eq (2.3).
Let ū(x, t) = u(x, τt) − u∗ and v̄(x, t) = v(x, τt) − v∗. Drop the bar, the model (1.4) can be written as

∂u
∂t

= τ[d1∆u +
(u + u∗)(1 − (u + u∗))

1 + c(v + v∗)
−

a(u + u∗)(v + v∗)
1 + b(u + u∗)

],

∂v
∂t

= τ[−d∇((v + v∗)∇(u(t − 1) + u∗)) + d2∆v +
a(u + u∗)(v + v∗)

1 + b(u + u∗)
− µ(v + v∗)].

(3.1)

Define the real-valued Sobolev space X =
{
U = (u, v)T ∈ W2,2(0, lπ)2, (∂u

∂x ,
∂v
∂x )|x=0,lπ = 0

}
, the inner

product

[U,V] =

∫ lπ

0
UT Vdx, for U, V ∈ X,

and C = C([−1, 0];X). Set τ = τ̃ + ε, where ε is small perturbation. Then system (3.1) is rewritten as

dU(t)
dt

= d(ε)∆(Ut) + L(ε)(Ut) + F(Ut, ε), (3.2)

where for ϕ = (ϕ,ϕ2)T ∈ C, d(ε)∆, L(ε) : C→ X, F : C × R2 → X. They are defined as

d(ε)∆(ϕ) = d0∆(ϕ) + Fd(ϕ, ε), L(ε)(ϕ) = (τ̃ + ε)Aϕ(0),

F(ϕ, ε) = (τ̃ + ε)
(

f (φ(1)(0) + u∗, φ(2)(0) + v∗)
g(φ(1)(0) + u∗, φ(2)(0) + v∗)

)
− L(ε)(ϕ),

and
d0∆(ϕ) = τ̃D1ϕxx(0) + τ̃D2ϕxx(−1),

Fd(ϕ, ε) = −d(τ̃ + ε)
(

0
φ(1)

x (−1)φ(2)
x (0) + φ(1)

xx (−1)φ(2)(0)

)
+ ε

(
d1φ

(1)
xx (0)

−dv∗φ
(1)
xx (−1) + d2φ

(2)
xx (0)

)
.

Denote L0(ϕ) = τ̃Aϕ(0), and rewrite (3.2) as

dU(t)
dt

= d0∆(Ut) + L0(Ut) + F̃(Ut, ε), (3.3)

where F̃(ϕ, ε) = εAϕ(0) + F(ϕ, ε) + Fd(ϕ, ε). The characteristic equation for the linearized equation
dU(t)

dt = d0∆(Ut) + L0(Ut) is Γ̃n(λ) = det
(
M̃n((λ))

)
, where

M̃n(λ) = λI2 + τ̃
n2

l2 D1 + τ̃e−λ
n2

l2 D2 − τ̃A. (3.4)
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The eigenvalue problem

−z(x)′′ = νz(x), x ∈ (0, lπ); z(0)′ = z(lπ)′ = 0,

has eigenvalues n2

l2 and normalized eigenfunctions

zn(x) =
cos nx

l

||cosnx
l ||2,2

=

{ 1
lπ n = 0,
√

2
lπ cos nx

l n , 0,
(3.5)

Set β( j)
n = zn(x)e j, j = 1, 2, where e1 = (1, 0)T and e2 = (0, 1)T . Define ηn(θ) ∈ BV([−1, 0],R2), such

that ∫ 0

−1
dηn(θ)φ(θ) = Ld

0(ϕ(θ)) + L0(ϕ(θ)), ϕ ∈ C,

C = C([−1, 0],R2), C∗ = C([0, 1],R2∗), and

< ψ(s), ϕ(θ) >= ψ(0)ϕ(0) −
∫ 0

−1

∫ θ

0
ψ(ξ − θ)dηn(θ)ϕ(ξ)dξ, ψ ∈ C∗, ϕ ∈ C. (3.6)

Let
∧

= {iω̃,−iω̃}, the eigenspace P, and corresponding adjoint space P∗. Decompose C = P ⊕ Q,
where Q = {ϕ ∈ C :< ψ, ϕ >= 0,∀ψ ∈ P∗}. Choose Φ(θ) = (φ(θ), φ̄(θ)), Ψ(θ) = col(ψT (s), ψ̄T (s)),
where

φ(θ) = φeiω̃θ :=
(
φ1(θ)
φ2(θ)

)
, ψ(s) = ψe−iω̃s :=

(
ψ1(s)
ψ2(s)

)
,

φ =

 1
1
a2

(
−a1 + d1

n2

l2 + iω̃
)  , ψ = M

 1
a2

d2
n2

l2
+iω̃

 ,
and

M =

(
−

a1l2 − d1n2 − d2n2 − a2dv∗e−iω̃n2τ̃ − 2il2ω̃

d2n2 + il2ω̃

)−1

.

Then φ(θ) and ψ(s) are the bases of P and P∗, respectively, and such that < φ, ψ >= I2.
By direct computation, we have

f20 =

(
f (1)
20

f (2)
20

)
, f11 =

(
f (1)
11

f (2)
11

)
, f02 =

(
f (1)
02

f (2)
02

)
,

f30 =

(
f (1)
30

f (2)
30

)
, f21 =

(
f (1)
21

f (2)
21

)
, f12 =

(
f (1)
12

f (2)
12

)
, f03 =

(
f (1)
03

f (2)
03

)
,

where f (1)
20 = 2abv∗

(1+bu∗)3 −
2

1+cv∗
, f (1)

11 = − a
(1+bu∗)2 +

c(−1+2u∗)
(1+cv∗)2 , f (1)

02 =
2c2(1−u∗)u∗

(1+cv∗)3 , f (1)
30 = − 6ab2v∗

(1+bu∗)4 , f (1)
21 = 2ab

(1+bu∗)3 +

2c
(1+cv∗)2 , f (1)

12 =
2c2(1−2u∗)

(1+cv∗)3 , f (1)
03 = −

6c3(1−u∗)u∗
(1+cv∗)4 , f (2)

20 = − 2abv∗
(1+bu∗)3 , f (2)

11 = a
(1+bu∗)2 , f (2)

02 = 0, f (2)
30 = 6ab2v∗

(1+bu∗)4 ,
f (2)
21 = − 2ab

(1+bu∗)3 , f (2)
12 = 0, f (2)

03 = 0. We can compute the following parameters

A20 = f20φ1(0)2 + f02φ2(0)2 + 2 f11φ1(0)φ2(0) = A02,

A11 = 2 f20φ1(0)φ̄1(0) + 2 f02φ2(0)φ̄2(0) + 2 f11(φ1(0)φ̄2(0) + φ̄1(0)φ2(0)),

A21 = 3 f30φ1(0)2φ̄1(0) + 3 f03φ2(0)2φ̄2(0) + 3 f21

(
φ1(0)2φ̄2(0) + 2φ1(0)φ̄1(0)φ2(0)

)
+ 3 f12

(
φ2(0)2φ̄1(0) + 2φ2(0)φ̄2(0)φ1(0)

)
,

(3.7)
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Ad
20 = −2dτ

(
0

φ1(0)(−1)φ2(0)(0)

)
= Ād

02, Ad
11 = −2dτ

(
0

2Re
[
φ1(−1)φ̄2(0)

] )
,

and Ã j1 j2 = A j1 j2−2n2

l2 Ad
j1 j2

for j1, j2 = 0, 1, 2, j1 + j2 = 2. In addition, h0,20(θ) = 1
lπ (M̃0(2iω̃))−1A20e2iω̃θ,

h0,11(θ) = 1
lπ (M̃0(0))−1A11, h2n,20(θ) = 1

2lπ (M̃2n(2iω̃))−1Ã20e2iω̃θ, h2n,11(θ) = 1
lπ (M̃2n(0))−1Ã11.

S 2(φ(θ), hn,q1q2(θ)) = 2φ1h(1)
n,q1q2

f20 + 2φ2h(2)
n,q1q2

f02 + 2(φ1h(2)
n,q1q2

+ φ2h(1)
n,q1q2

) f11,

S 2(φ̄(θ), hn,q1q2(θ)) = 2φ̄1h(1)
n,q1q2

f20 + 2φ̄2h(2)
n,q1q2

f02 + 2(φ̄1h(2)
n,q1q2

+ φ̄2h(1)
n,q1q2

) f11,

S d,1
2 (φ(θ), h0,11(θ)) = −2dτ̃

(
0

φ1(−1)h(2)
0,11(0)

)
, S d,1

2 (φ̄(θ), h0,11(θ)) = −2dτ̃
(

0
φ̄1(−1)h(2)

0,20(0)

)
,

S d,1
2 (φ(θ), h2n,11(θ)) = −2dτ̃

(
0

φ1(−1)h(2)
2n,11(0)

)
, S d,1

2 (φ̄(θ), h2n,20(θ)) = −2dτ̃
(

0
φ̄1(−1)h(2)

2n,20(0)

)
,

S d,2
2 (φ(θ), h2n,11(θ)) = −2dτ̃

(
0

φ1(−1)h(2)
2n,11(0)

)
− 2dτ̃

(
0

φ2(0)h(1)
2n,11(−1)

)
,

S d,2
2 (φ̄(θ), h2n,20(θ)) = −2dτ̃

(
0

φ̄1(−1)h(2)
2n,20(0)

)
− 2dτ̃

(
0

φ̄2(0)h(1)
2n,20(−1)

)
,

S d,3
2 (φ(θ), h2n,11(θ)) = −2dτ̃

(
0

φ2(0)h(1)
2n,11(−1)

)
, S d,3

2 (φ̄(θ), h2n,20(θ)) = −2dτ̃
(

0
φ̄1(0)h(2)

2n,20(−1)

)
.

Then we have

B21 =
3

2lπ
ψT A21,

B22 =
1
lπ
ψT (S 2(φ(θ), h0,11(θ)) + S 2(φ̄(θ), h0,20(θ))) +

1
2lπ

ψT (S 2(φ(θ), h2n,11(θ)) + S 2(φ̄(θ), h2n,20(θ))),

B23 = −
1
lπ

n2

l2 ψ
T (S d,1

2 (φ(θ), h0,11(θ)) + S d,1
2 (φ̄(θ), h0,20(θ)))

+
1

2lπ
ψT

∑
j=1,2,3

b( j)
2n (S d, j

2 (φ(θ), h2n,11(θ)) + S d, j
2 (φ̄(θ), h2n,20(θ))),

where b(1)
2n = −n2

l2 , b(2)
2n = −2n2

l2 , b(3)
2n = −4n2

l2 . The normal form of the Hopf bifurcation is

ż = Bz +
1
2

(
B1z1ε

B̄1z2ε

)
+

1
3!

(
B2z2

1z2ε

B̄2z1z2
2ε

)
+ O(|z|ε2 + |z4|), (3.8)

where
B1 = 2iω̃ψTφ, B2 = B21 +

3
2

(B22 + B23).

By the coordinate transformation z1 = ω1 − iω2, z2 = ω1 + iω2, and ω1 = ρcosξ, ω2 = ρsinξ, the
normal form (3.8) can be rewritten as

ρ̇ = K1ερ + K2ρ
3 + O(ρε2 + |(ρ, ε)|4), (3.9)

where K1 = 1
2Re(B1), K2 = 1

3!Re(B2).
By the work [23], we have the following theorem.
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Theorem 3.1. If K1K2 < 0(> 0), the Hopf bifurcation is supercritical (subcritical), and the
bifurcating periodic orbits is stable (unstable) for K2 < 0(> 0).

Remark 3.1. In the Theorem 3.1, when Hopf bifurcation is supercritical (subcritical), then the
bifurcating periodic solutions exist for τ > τ̃ (τ < τ̃), where τ̃ is some critical value τ = τ

j,±
n . When

the periodic solution is stable, the densities of prey and predator will produce periodic oscillation, and
finally continue to oscillate.

4. Numerical simulations

In this section, we give some numerical simulations to analyze the effect of spatial memory in
predator and fear in prey on the model (1.4). Fix the following parameters

a = 0.5, b = 1, µ = 0.2, d1 = 0.1, d2 = 0.2, l = 2. (4.1)

4.1. The effect of d

If we choose c = 1, then model (1.4) has a unique coexisting equilibrium
(u∗, v∗) ≈ (0.6667, 0.0.6667), and a2

1 + 2a2b1 ≈ 0.0352 > 0, d∗ ≈ 0.6206. To study the effect of
memory-based diffusion coefficient d on the model (1.4), we give the bifurcation diagram of model
(1.4) with parameter d as in Figure 1. By the Theorem 2.2, we know that (u∗, v∗) is locally stable for
τ ≥ 0 when d < d∗. But when d > d∗, the inhomogeneous Hopf bifurcation curves exist. This means
that increasing parameter d is not conducive to the stability of the equilibrium (u∗, v∗), and the
densities of prey and predator will produce spatially inhomogeneous periodic oscillation.

Stable region

Τ2
0,+

Τ4
0,+

Τ3
0,+

0.7 0.8 0.9 1.0
d

5

10

15

20

25

30

Τ

Figure 1. Stability region and Hopf bifurcation curves in τ − d plane. The dotted region is
the stability region of (u∗, v∗) and τ = τ0,+

i , i = 2, 3, 4, are Hopf bifurcations curves.

4.2. The effect of τ

Choose d = 0.7, we have M = {2, 3} and τ∗ = τ0,+
2 ≈ 17.4593 < τ0,+

3 ≈ 19.1380. When τ ∈

[0, τ∗), (u∗, v∗) is locally stable (Figure 2). By direct calculation, we can obtain K1 ≈ 0.0166, and
K2 ≈ −0.0699. Then, the Hopf bifurcation is supercritical and the bifurcating periodic solution is
stable (Figure 3). At this time, the bifurcating periodic solution is spatially inhomogeneous and with
mode-2.
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Prey u(x, t) Predator v(x, t)

Figure 2. The numerical simulations of model (1.4) with d = 0.7, τ = 9 and initial
values u0(x) = u∗ + 0.01cosx, v0(x) = v∗ + 0.01cosx. The coexisting equilibrium (u∗, v∗)
is asymptotically stable.

(a)

(c)

(b)

(b)

Figure 3. The numerical simulations of model (1.4) with d = 0.7, τ = 18 and initial values
u0(x) = u∗ + 0.01cosx, v0(x) = v∗ + 0.01cosx. The coexisting equilibrium (u∗, v∗) is unstable
and there exists a spatially inhomogeneous periodic solution with mode-2 spatial pattern.

Electronic Research Archive Volume 30, Issue 4, 1322–1339.



1332

Prey u(x, t) Predator v(x, t)

Figure 4. The numerical simulations of model (1.4) with d = 0.8, τ = 5 and initial
values u0(x) = u∗ + 0.01cosx, v0(x) = v∗ + 0.01cosx. The coexisting equilibrium (u∗, v∗)
is asymptotically stable.

(a)

(c)

(b)

(d)

Figure 5. The numerical simulations of model (1.4) with d = 0.8, τ = 9 and initial values
u0(x) = u∗ + 0.01cosx, v0(x) = v∗ + 0.01cosx. The coexisting equilibrium (u∗, v∗) is unstable
and there exists a spatially inhomogeneous periodic solution with mode-3 spatial pattern.
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Prey u(x, t) Predator v(x, t)

Figure 6. The numerical simulations of model (1.4) with d = 0.8, τ = 10 and initial values
u0(x) = u∗ + 0.01cosx, v0(x) = v∗ + 0.01cosx. The coexisting equilibrium (u∗, v∗) is unstable
and pattern transitions from a spatially inhomogeneous periodic solution with mode-2 to a
spatially inhomogeneous periodic solution with mode-3.
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Choose d = 0.8, we have M = {2, 3} and τ∗ = τ0,+
3 ≈ 8.4754 < τ0,+

2 ≈ 9.9645. When τ ∈ [0, τ∗),
(u∗, v∗) is locally stable (Figure 4). By direct calculation, we can obtain K1 ≈ 0.1236, K2 ≈ −0.3994.
Then, the Hopf bifurcation is supercritical and the bifurcating periodic solution is stable (Figure 5). At
this time, the bifurcating periodic solution is spatially inhomogeneous with mode-3. When τ∗ = τ0,+

3 <

τ0,+
2 < τ = 10, there is an unstably spatially inhomogeneous periodic solution with mode-2 which

transitions to the stably spatially inhomogeneous periodic solution with mode-3 (Figure 6).

4.3. The effect of c

Next, we will study the effect of fear effect c on the model (1.4). Fix the parameters as (4.1), then
model (1.4) has a unique coexisting equilibrium (u∗, v∗). And a2

1 + 2a2b1 > 0 when 0 < c < 2.6194.
We give the figure of d∗ with parameter c as in Figure 7. Set parameter d = 0.7 and d = 0.8, we give
the bifurcation diagrams of model (1.4) with parameter c as in Figure 8.

When d = 0.7 and τ = 20, increasing parameter c can destroy the stability of the coexisting
equilibrium (u∗, v∗), and induce spatially inhomogeneous periodic solution (Figure 9). This means that
increasing parameter c is not conducive to the stability of the coexisting equilibrium (u∗, v∗).

When d = 0.8 and τ = 9, increasing parameter c can destroy the stability of the coexisting
equilibrium (u∗, v∗), and induce spatially inhomogeneous periodic solution initially (Figure 10). But
when c is larger enough, increasing parameter c can rule out the spatially inhomogeneous periodic
oscillation and stabilize the coexisting equilibrium (u∗, v∗) (Figure 10). This means that increasing
parameter c is not conducive to the stability of the equilibrium (u∗, v∗), initially. But when c is large,
increasing parameter c is conducive to the stability of the coexisting equilibrium (u∗, v∗).

d
*

0.5 1.0 1.5 2.0 2.5

c

0.62

0.63

0.64

0.65

0.66

0.67

d

Figure 7. Figure of d∗ with parameter c.
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Stable region

Τ2
0,+

Τ3
0,+

0.5 1.0 1.5 2.0 2.5
c

20

25

30

35

40

Τ

d = 0.7

Stable region

Τ3
0,+

Τ2
0,+

0.5 1.0 1.5 2.0 2.5
c

9

10

11

12

Τ

d = 0.8

Figure 8. Stability region and Hopf bifurcation curves in τ − c plane. The dotted region is
the stability region of (u∗, v∗) and τ = τ0,+

i , i = 2, 3, are Hopf bifurcations curves.

(a)

(c)

(b)

(d)

Figure 9. The numerical simulations of model (1.4) with d = 0.7, τ = 20 and initial
values u0(x) = u∗ + 0.01cosx, v0(x) = v∗ + 0.01cosx. The coexisting equilibrium (u∗, v∗)
is asymptotically stable for c = 0.3 ((a), (b)). The coexisting equilibrium (u∗, v∗) is unstable
and there exists a spatially inhomogeneous periodic solution with mode-2 for c = 1.5 ((c),
(d)).
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(a)

(c)

(e)

(b)

(d)

( f )

Figure 10. The numerical simulations of model (1.4) with d = 0.8, τ = 9 and initial
values u0(x) = u∗ + 0.01cosx, v0(x) = v∗ + 0.01cosx. The coexisting equilibrium (u∗, v∗) is
asymptotically stable for c = 0.3 ((a), (b)) and c = 1.5 ((e), ( f )). The coexisting equilibrium
(u∗, v∗) is unstable and there exists a spatially inhomogeneous periodic solution with mode-3
for c = 0.8 ((c), (d)).

5. Conclusions

In this paper, we incorporate the memory effect in predator and fear effect in prey into a predator-
prey model. By using time delay in the memory of predator as bifurcating parameter, we analyze
the local stability of coexisting equilibrium, the existence of Hopf bifurcation, and the property of
Hopf bifurcation by the method in [23]. Through the numerical simulations, we analyzed the effect of
memory effect in predator and fear in prey on the model.

The spatial memory effect plays an important role in the dynamics of the predator-prey model.
Through the numerical simulations, we observed that the memory-based diffusion coefficient d has
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destabilizing effect on the predator-prey model when it is larger than some critical value. In addition.
when d crosses the critical value, time delay τ in the memory of predator can affect the stability of the
equilibrium (u∗, v∗). In the numerical simulations, we observe that the first Hopf bifurcation curve is
inhomogeneous bifurcation curve, and homogeneous Hopf bifurcation curve does not exist. This is
different from the predator-prey model without the spatial memory effect. When τ crosses the critical
value τ∗, the densities of prey and predator will produce spatially inhomogeneous periodic oscillation.
When τ crosses the second critical value, the spatially inhomogeneous periodic oscillations with
different modes exist, but the densities of prey and predator will converge to the spatially
inhomogeneous periodic solution corresponding to the first bifurcation curve. This shows that the
spatially memory effect in predator can destroy the stability of the coexisting equilibrium, and induce
spatially inhomogeneous periodic oscillations.

In addition, the fear effect parameter c in prey can also affect the stability of the coexisting
equilibrium (u∗, v∗). A small fear effect parameter c means a large birth rate 1

1+cv , then the large birth
rate can support fluctuations. Increasing parameter c can destroy the stability of the coexisting
equilibrium (u∗, v∗), and induce spatially inhomogeneous periodic solution. Hence, we observed the
destabilizing effect on the the coexisting equilibrium (u∗, v∗). A large fear effect parameter c means a
low birth rate, then the low birth rate can not support fluctuations. Increasing parameter c can rule out
the spatially inhomogeneous periodic oscillation and stabilize the coexisting equilibrium (u∗, v∗).
Hence, we observed the stabilizing effect on the the coexisting equilibrium (u∗, v∗).
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