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Abstract: We study the normalized solutions for nonlinear Kirchhoff equation with Sobolev critical
exponent in high dimensions RN(N ⩾ 4). In particular, in dimension N = 4, there is a special phe-
nomenon for Kirchhoff equation that the mass critical exponent 2 + 8

N is equal to the energy critical
exponent 2N

N−2 , which leads to the fact that the equation no longer has a variational structure in dimen-
sions N ⩾ 4 if we consider the mass supercritical case, and remains unsolved in the existing literature.
In this paper, by using appropriate transform, we first get the equivalent system of Kirchhoff equa-
tion. With the equivalence result, we obtain the nonexistence, existence and multiplicity of normalized
solutions by variational methods, Cardano’s formulas and Pohožaev identity.
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1. Introduction and main results

In this paper, we are concerned with the existence of positive solutions for the following Kirchhoff
equation in RN:

−

(
a + b

∫
RN
|∇u|2dx

)
∆u + λu = µ|u|q−2u + |u|p−2u, (K)

having prescribed mass ∫
RN
|u|2dx = c2, (1.1)

where c > 0 is prescribed, N ⩾ 4, µ ∈ R, a > 0 and b > 0 are positive parameters, 2 < q < p ⩽ 2∗, 2∗

is the Sobolev critical exponent, 2∗ = 2N
N−2 if N ⩾ 3, 2∗ = +∞ if N = 1, 2.
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Problem (K) is analogous to the stationary case of the following equation:

utt −

(
a + b

∫
Ω

|∇u|2dx
)
∆u = f (x, u), (x, t) ∈ Ω × R+,

where Ω ⊂ RN is a smooth domain, u stands for the displacement, f ∈ C(Ω × R,R) is the external
force, a is the initial tension and b is related to the intrinsic properties of the string. Such a hyperbolic
equation is a general version of the following equations

ρ
∂2u
∂t2 −

(
P0

h
+

E
2L

∫ L

0

∣∣∣∣∣∂u∂x
∣∣∣∣∣2 dx

)
∂2u
∂x2 = 0,

proposed by Kirchhoff [1] as an extension of the classical D’Alembert’s wave equation for transversal
oscillations of a stretched string, particularly, taking into account the subsequent change in string length
during the oscillations. In addition, nonlocal problems similar to (K) also arise in biological systems
that can be applied to describe the growth and movement of a specific species [2]. In this situation, u
may describe a process that depends on the average of itself, for example, the population density.

After the pioneering work of [3], problem (K) with fixed λ, or even with an additional external
and fixed potential V(x) has been extensively studied in the last ten years, see e.g., [2, 4–7] and the
references therein. Compared with Schrödinger type problem, the main difficulty for Kirchhoff type
problem is how to obtain the compactness of the Palais-Smale sequence. Tang-Cheng [5] proposed a
new approach to recover the compactness for the Palais-Smale sequences. Tang-Chen [6] proposed a
new approach to recover the compactness for the minimizing sequences.

In this situation, it is well known that solutions of (K) are the critical points of the associated energy
functional

Φλ(u) :=
1
2

∫
RN

(
a|∇u|2 + λ|u|2

)
dx +

b
4

(∫
RN
|∇u|2dx

)2

−
µ

q

∫
RN
|u|qdx −

1
p

∫
RN
|u|pdx.

In the present paper, motivated by the fact that physicists are more interested in solutions satisfying
the prescribed mass (1.1) which are called normalized solutions, we search for solutions of (K) having
a prescribed L2-norm. This type of solutions can be obtained as a constrained critical point of the
following functional

I(u) =
a
2

∫
RN
|∇u|2dx +

b
4

(∫
RN
|∇u|2dx

)2

−
µ

q

∫
RN
|u|qdx −

1
p

∫
RN
|u|pdx, (1.2)

on the L2-sphere
S (c) =

{
u ∈ H1(RN) : ∥u∥L2(RN ) = c

}
,

where the Hilbert space H1(RN) is defined as

H1(RN) :=
{

u ∈ L2(RN) :
∫
RN
|∇u|2dx < ∞

}
,

with the inner product and norm given by

(u, v)H1(RN ) =

∫
RN

(∇u∇v + uv) dx, ∥u∥H1(RN ) =
(
∥∇u∥2L2(RN ) + ∥u∥

2
L2(RN )

) 1
2
.
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When a = 1, b = µ = 0, problem (K) is reduced to the classical Schrödinger equation with pure
power nonlinearity:

− ∆u + λu = |u|p−2u, x ∈ RN , (1.3)

where N ⩾ 1, p ∈ (2, 2∗). It is well known that the L2-critical exponent

p̄ = 2 +
4
N
,

plays an important role in dealing with the Schrödinger equation. For the pure power nonlinearity
|u|p−2u satisfying L2-subcritical growth, i.e., 2 < p < p̄, then the energy functional associated to (1.3) is
bounded from below. Cazenave-Lions [8] and Shibata [9] proved the existence of normalized solution
via minimizing methods. We also refer the reader to the references [10,11]. While for L2-supercritical
and Sobolev subcritical case p̄ < p < 2∗, the energy functional associated to (1.3) cannot be minimized
on the L2-sphere S (c). Jeanjean [12] proved for the first time the existence of a normalized solution
in this case. When a = 1, b = 0 and µ , 0, problem (K) is reduced to the Schrödinger equation with
combined power nonlinearities:

− ∆u + λu = µ|u|q−2u + |u|p−2u, x ∈ RN , (1.4)

where N ⩾ 1, µ ∈ R, the nonlinearity satisfies the mixed growth, i.e., 2 < q ⩽ p̄ ⩽ p ⩽ 2∗. Recently,
a very complete analysis of the various cases that may occur for (1.4), depending on the values of p
and q, has been studied exhaustively in [13,14]. The paper [13] deals with the Sobolev subcritical case
and [14] with Sobolev critical case.

It is well known that two exponents play a special role for existence and properties of the solutions
for the Kirchhoff equation, in addition to the energy (Sobolev) critical exponent

2∗ =
2N

N − 2
,

we have the mass (L2-) critical one

2 +
8
N
.

The mass and energy critical exponents define the thresholds for the existence of global minima and
H1-solution, respectively. It follows from

2 +
8
N
<

2N
N − 2

that N ⩽ 3. For this reason possibly, there are many results on normalized solution of Kirchhoff
problem in low dimensions N ⩽ 3, we refer the readers to [15–19] and references therein. Howover, to
the best of our knowledge, the Kirchhoff type problems with prescribed L2-norm in high dimensions
N ⩾ 4 remains unsolved in the existing literature. This motivates us to study this kind of problem in the
present paper for the case of N = 4, 6, 8. When N ⩾ 4, since 2∗ ⩽ 4, it is difficult to study the geometric
structure of the energy functional. Also, it is not easy to prove the boundedness and convergence of
the Palais-Smale sequence.

Particularly, in dimension N = 4, there is a special phenomenon for Kirchhoff problems that will
never happen for the Schrödinger equation, i.e., the mass critical exponent 2 + 8

N is the same as the
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energy critical exponent 2∗ = 2N
N−2 . We call this special phenomenon the new doubly critical case, which

is first considered to happen for the Kirchhoff equation in this paper. For other types of double critical
exponents, we refer the readers to [20, 21] and references therein. Moreover, it is worth mentioning
that when N ⩾ 4, if we consider the mass (L2-) supercritical case, the problem will no longer have a
variational structure owing to the fact that the mass critical exponent is larger than the energy critical
exponent. Thus, there will be no mass supercritical and mixed cases.

Motivated by the works mentioned above, our contribution in this paper is to find appropriate trans-
formation to get the following equivalent system of (K) in different dimension spaces with respect to
(v, β) ∈ RN × R+: 

−∆v + λv = µ|v|q−2v + |v|p−2v,

β − a − bβ
N−2

2

∫
RN |∇v|2dx = 0,∫

RN |v|2dx = β̃−
N
2

N c2,

(PN)

where

β̃N =


a

1−d , N = 4,
1±
√

1−4ad
2d , N = 6,

2
√

3d
cos

(
θ + 2 jπ

3

)
( j = 0, 2), N = 8,

(1.5)

θ = 1
3 arccos

(
−3

2

√
3da

)
∈

(
π
6 ,
π
3

)
, and

d = b∥∇v∥2L2(RN ). (1.6)

We take two steps to get the existence of solutions for system (PN). First, we solve the equation−∆v + λv = µ|v|q−2v + |v|p−2v,∫
RN |v|2dx = β̃−

N
2

N c2,
(1.7)

for the special given β̃N . Then, when v is known, coincidentally, β̃N can solve the algebra equation

β − a − bβ
N−2

2

∫
RN
|∇v|2dx = 0. (1.8)

Therefore, Some known difficulties can be overcome by establishing equivalent results, which is the
key ingredient to prove the nonexistence, existence and multiplicity of normalized solutions for the
Kirchhoff equation (K).

Theorem 1.1. Let N = 4, 6, 8. Then equation (K) has at least one positive, radially symmetric normal-
ized solution u ∈ S (c) if and only if the system (PN) has at least one solution (v, β̃N) ∈ S (β̃−

N
4

N c) × R+

such that u is positive and radially symmetric, where β̃N is defined by (1.5).

To state our another main results, we introduce some frequently used constants. For p ∈ (2, 2∗), we
use the notation

γp :=
N(p − 2)

2p
,

and we denote by CN,p the best constant in the Gagliardo-Nirenberg inequality [22]

∥u∥Lp(RN ) ⩽ CN,p∥∇u∥γp

L2(RN )∥u∥
1−γp

L2(RN ), ∀ u ∈ H1(RN).

Electronic Research Archive Volume 30, Issue 4, 1282–1295.
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In the special case p = p̄, we denote by C̄N(β) =
(

p̄β
2C p̄

N, p̄

) N
4

the critical mass. For 2 < q ⩽ p̄ < p < 2∗

and µ > 0, we denote:

µ∗(β) =

(
p(2−γqq)

2Cp
N,p(γp p−γqq)

) 2−γqq
γp p−2

(
q(γp p−2)

2Cq
N,q(γp p−γqq)

)
(
(β−

N
4 c)(1−γq)q

) (
(β−

N
4 c)(1−γp)p

) 2−γqq
γp p−2

,

µ∗∗(β) =
p̄β

2C p̄
N, p̄c

4
N

.

For 2 < q ⩽ p̄ < p < 2∗ and µ < 0, we denote:

µ∗(β) =

(
1−γp

Cq
N,q(γp−γq)

) (
1

γpCp
N,p

) 2−γqq
γp p−2

(
(β−

N
4 c)(1−γq)q

) (
(β−

N
4 c)(1−γp)p

) 2−γqq
γp p−2

.

For 2 < q < p̄ < p = 2∗ and µ > 0, we denote:

µ̂(β) =

2∗S
2∗
2

(
2 − γqq

)
2
(
2∗ − γqq

) 
2−γqq
2∗−2  q (2∗ − 2)

2Cq
N,q

(
2∗ − γqq

)
(β−

N
4 c)(1−γq)q

 ,
µ̌(β) =

22∗

NγqC
q
N,q

(
2∗ − γqq

)
(β−

N
4 c)(1−γq)q

 γqqS
N
2

2 − γqq


2−γqq

2

.

For q = p̄ < p = 2∗ and µ > 0, we denote:

µ̄(β) =
p̄

2C p̄
N, p̄c

4
N (β−

N
4 c)(1−γq)q

.

For p̄ < q < p = 2∗ and µ > 0, we denote:

µ∗∗(β) = +∞ if N = 4, and µ∗∗(β) =
S

N
4 (1−γq)q

γq(β−
N
4 c)(1−γq)q

if N ⩾ 5,

where the optimal Sobolev embedding constant S [23] is given by

S = inf
u∈D1,2(RN)\{0}

∥∇u∥2L2(RN )

∥u∥2
L2∗ (RN )

,

where D1,2(RN) denotes the completion of C∞0 (RN) with respect to the semi-norm ∥u∥D1,2(RN ) :=
∥∇u∥L2(RN ).

Applying Theorem 1.1, we can prove the following results. Firstly, in the Sobolev subcritical case
2 < q < p = p̄ or 2 < q ⩽ p̄ < p < 2∗, we have:

Electronic Research Archive Volume 30, Issue 4, 1282–1295.



1287

Theorem 1.2. Suppose that a, b > 0 and 2 < q < p < 2∗ hold. Let β̃N and d be defined by (1.5) and
(1.6), respectively. If one of the following conditions holds:
(1) 2 < q < p = p̄, 0 < c < C̄N(β̃N) and µ > 0;
(2) 2 < q ⩽ p̄ < p < 2∗, c > 0 and 0 < µ < min{µ∗(β̃N), µ∗∗(β̃N)};
(3) 2 < q ⩽ p̄ < p < 2∗, c > 0 and −µ∗(β̃N) < µ < 0;
then we have the following conclusions:
(i) for N = 4, equation (K) has a positive, radially symmetric solution u ∈ S (c) if d ∈ (0, 1), and

has no nontrivial solution if d ∈ [1,+∞);
(ii) for N = 6, 8, equation (K) has two positive, radially symmetric solutions u1, u2 ∈ S (c) if

d ∈ (0, dN), has one positive, radially symmetric solution u ∈ S (c) if d = dN , and has no
nontrivial solution if d ∈ (dN ,+∞), where dN =

1
4a when N = 6 and dN =

4
27a2 when N = 8.

Next, in the Sobolev critical case 2 < q < p = 2∗, we have the following result:

Theorem 1.3. Suppose that a, b, c > 0 and 2 < q < p = 2∗ hold. Let β̃N and d be defined by (1.5) and
(1.6), respectively. If one of the following conditions holds:
(1) 2 < q < p̄ < p = 2∗ and 0 < µ < min{µ̌(β̃N), µ̂(β̃N)};
(2) p̄ = q < p = 2∗ and 0 < µ < µ̄(β̃N);
(3) p̄ < q < p = 2∗ and 0 < µ < µ∗∗(β̃N);
then we have the following conclusions:
(i) for N = 4, equation (K) has a positive, radially symmetric solution u ∈ S (c) if d ∈ (0, 1), and

has no nontrivial solution if d ∈ [1,+∞);
(ii) for N = 6, 8, equation (K) has two positive, radially symmetric solutions u1, u2 ∈ S (c) if

d ∈ (0, dN), has one positive, radially symmetric solution u ∈ S (c) if d = dN , and has no
nontrivial solution if d ∈ (dN ,+∞), where dN =

1
4a when N = 6 and dN =

4
27a2 when N = 8.

Remark 1.1. Theorem 1.3 covers the doubly critical case that the mass critical exponent is the same
as the energy critical exponent i.e., in dimension N = 4,

p = 2∗ = 2 +
8
N
.

Remark 1.2. As far as we know, Theorems 1.2 and 1.3 seem to be the first results on the existence and
multiplicity of normalized solutions for equation (K) in high dimensions N = 4, 6, 8. We also remark
that it is interesting to know whether (K) has a normalized solution for a

N−4
2 b small in more general

dimensions N ⩾ 4. However, we can not solve this question now. So far, we just know that (K) has
at least a positive normalized solution for a

N−4
2 b small, and has no nontrivial solution for a

N−4
2 b large in

the special dimensions N = 4, 6, 8. Moreover, it is reasonable to regard a and b as parameters in (K)
since, as already noted before, a is the initial tension and b is related to the intrinsic properties of the
string.

Finally, in the doubly Sobolev critical case q = p = 2∗, based on the Pohožaev identity, we have the
following nonexistence result, which is not related to the equivalent results but interesting in itself.

Theorem 1.4. Suppose that p = q = 2∗ and N = 4 holds, then equation (K) has no positive solutions
u ∈ S (c) for any µ > 0.

This paper is organized as follows: In Section 2, we present some preliminaries. In Section 3, we
show some results of (PN). In Section 4, we give the proofs of Theorems 1.1–1.4.

Electronic Research Archive Volume 30, Issue 4, 1282–1295.
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2. preliminaries

In this section, we introduce some preliminaries that will be used to prove Theorems 1.2–1.4.

Lemma 2.1. Let µ > 0, N ⩽ 4 and u ∈ S (c) be a solution of (K). If u ⩾ 0 and u . 0, then λ > 0.

Proof. Arguing indirectly, suppose that λ ⩽ 0. It follows from u ⩾ 0 that

−

(
a + b

∫
RN
|∇u|2dx

)
∆u = −λu + µ|u|q−2u + |u|p−2u ⩾ 0,

Thus −∆u ⩾ 0. Moreover, from standard regularity results we have that u ∈ C2(RN). By the Liouville’s
result [24, Lemma A.2], we obtain that u ≡ 0. This contradicts with u . 0. Thus λ > 0. □

Lemma 2.2. Let a, b > 0, p, q ∈ (2, 2∗] and µ, λ ∈ R. If u ∈ H1(RN) is a weak solution of the Kirchhoff
equation (K), then the following Pohožaev identity holds:

P(u) = a∥∇u∥2L2(RN ) + b∥∇u∥4L2(RN ) − µγq∥u∥
q
Lq(RN ) − γp∥u∥

p
Lp(RN ) = 0. (2.1)

Proof. Let M = ∥∇u∥2L2(RN ), then u ∈ H1(RN) is a weak solution of the following problem

−∆u =
1

a + bM
(µ|u|q−2u + |u|p−2u − λu).

Then the elliptic regularity theory implies that u ∈ C2(RN). Combining

a∥∇u∥2L2(RN ) + b∥∇u∥4L2(RN ) = µ∥u∥
q
Lq(RN ) + ∥u∥

p
Lp(RN ) − λ∥u∥

2
L2(RN )

with

a∥∇u∥2L2(RN ) + b∥∇u∥4L2(RN ) =
2N

N − 2

[
µ

q
∥u∥qLq(RN ) +

1
p
∥u∥pLp(RN ) −

λ

2
∥u∥2L2(RN )

]
,

we conclude that (2.1) holds. □

Lemma 2.3. For m, n ∈ R and (n
2 )2 + (m

3 )3 < 0, then the following cubic

x3 + mx + n = 0, (2.2)

has three distinct real roots, which can be written in the form

x j = 2 3√r cos
(
θ +

2 jπ
3

)
( j = 0, 1, 2), (2.3)

where r =
√
−(m

3 )3 and θ = 1
3 arccos(− n

2r ).

Proof. This lemma is a special case of Cardano’s formulas, and for the convenience of the reader, we
give a simple proof. Set

m = −3yz and n = −y3 − z3, (2.4)

Electronic Research Archive Volume 30, Issue 4, 1282–1295.
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it follows from the Binomial Theorem that x = y + z always satisfies (2.2). From (2.4), we can obtain
that y3 and z3 are the two roots of the quadratic

X2 + nX −
m3

27
= 0.

Furthermore, by (n
2 )2 + (m

3 )3 < 0, without loss of generality, we may assume that

y3 = −
n
2
+ i

√
−(

n
2

)2 − (
m
3

)3 = r(cos(3θ) + i sin(3θ)),

and

z3 = −
n
2
− i

√
−(

n
2

)2 − (
m
3

)3 = r(cos(3θ) − i sin(3θ)),

where r =
√
−(m

3 )3 and θ = 1
3 arccos(− n

2r ) ∈ (0, π3 ). It follows that

y = 3√r
(
cos(θ +

2 jπ
3

) + i sin(θ +
2 jπ
3

)
)

( j = 0, 1, 2),

and

z = 3√r
(
cos(θ +

2 jπ
3

) − i sin(θ +
2 jπ
3

)
)

( j = 0, 1, 2).

Note that x = y+ z, we then conclude that (2.2) has three distinct real roots, which can be expressed as
in (2.3). □

3. Existence of solutions of (PN)

We devote to solve system (PN) in this section. We will prove the following results which will be
used to conclude Theorems 1.2 and 1.3.

Firstly, in the Sobolev subcritical case 2 < q < p = p̄ or 2 < q ⩽ p̄ < p < 2∗, we have:

Proposition 3.1. Suppose that a > 0 and 2 < q < p < 2∗ hold. Let β̃N and d be defined by (1.5) and
(1.6), respectively. If one of the following conditions holds:
(1) 2 < q < p = p̄, 0 < c < C̄N(β̃N) and µ > 0;
(2) 2 < q ≤ p̄ < p < 2∗,c > 0 and 0 < µ < min{µ∗(β̃N), µ∗∗(β̃N)};
(3) 2 < q ≤ p̄ < p < 2∗, c > 0 and −µ∗(β̃N) < µ < 0;
then we can obtain the following results:
(i) for N = 4, system (PN) has a positive, radially symmetric solution (v, a

1−d ) if d ∈ (0, 1), and has
no nontrivial solution if d ∈ [1,+∞);

(ii) for N = 6, 8, system (PN) has two positive, radially symmetric solutions (v, β̃1
N) and (v, β̃2

N) if
d ∈ (0, dN), has one positive, radially symmetric solution (v, 1

2d ) if d = dN , and has no nontrivial
solution if d ∈ (dN ,+∞), where dN =

1
4a when N = 6 and dN =

4
27a2 when N = 8.

Next, in the Sobolev critical case 2 < q < p = 2∗, we have the following result.

Electronic Research Archive Volume 30, Issue 4, 1282–1295.
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Proposition 3.2. Suppose that c > 0 and 2 < q < p = 2∗ hold. Let β̃N and d be defined by (1.5) and
(1.6), respectively. If one of the following conditions holds:
(1) 2 < q < p̄ < p = 2∗ and 0 < µ < min{µ̌(β̃N), µ̂(β̃N)};
(2) p̄ = q < p = 2∗ and 0 < µ < µ̄(β̃N);
(3) p̄ < q < p = 2∗ and 0 < µ < µ∗∗(β̃N);
then we have the following results:
(i) for N = 4, system (PN) has a positive, radially symmetric solution (v, a

1−d ) if d ∈ (0, 1), and has
no nontrivial solution if d ∈ [1,+∞).

(ii) for N = 6, 8, system (PN) has two positive, radially symmetric solutions (v, β̃1
N) and (v, β̃2

N) if
d ∈ (0, dN), has one positive, radially symmetric solution (v, 1

2d ) if d = dN , and has no nontrivial
solution if d ∈ (dN ,+∞), where dN =

1
4a when N = 6 and dN =

4
27a2 when N = 8.

In order to obtain conclusions of Proposition 3.1 and 3.2, we first recall some results about existence
of normalized solutions for the equation (1.7).

Theorem 3.1. [13] Suppose that c, β̃N > 0, N ⩾ 4 and 2 < q < p < 2∗ hold. If one of the following
conditions holds:
(1) 2 < q < p = p̄, 0 < c < C̄N(β̃N) and µ > 0;
(2) 2 < q ⩽ p̄ < p < 2∗,c > 0 and 0 < µ < min{µ∗(β̃N), µ∗∗(β̃N)};
(3) 2 < q ⩽ p̄ < p < 2∗, c > 0 and −µ∗(β̃N) < µ < 0;
then Eq (1.7) has at least one positive, radially symmetric solution.

Theorem 3.2. [14, Theorem 1.1] Suppose that c, β̃N > 0, N ⩾ 4 and 2 < q < p = 2∗ hold. If one of
the following conditions holds:
(1) 2 < q < p̄ < p = 2∗ and 0 < µ < min{µ̌(β̃N), µ̂(β̃N)};
(2) p̄ = q < p = 2∗ and 0 < µ < µ̄(β̃N);
(3) p̄ < q < p = 2∗ and 0 < µ < µ∗∗(β̃N);
then Eq (1.7) has at least one positive, radially symmetric solution.

Remark 3.1.
(i) Theorem 3.1 can be obtained from [13] with some minor modifications. Specifically, (i), (ii) and

(iii) of Theorem 3.1 can be derived from Theorems 1.1, 1.3 and 1.6, 1.9 of [13], respectively.
(ii) In dimension N = 4, the right hand side of the condition (1.6) in [14] is positive infinity. In

dimension N ⩾ 5, instead, the value is finit. For more detail, we refer to the formula (6.1)
in [14].

Proof of Proposition 3.1. By Theorem 3.1, equation (1.7) has at least one positive, radially symmetric
solution v when the assumptions in any case are satisfied. We define the function fv(β) as

fv(β) = β − a − bβ
N−2

2 ∥∇v∥2L2(RN ). (3.1)

Case 1: N = 4. In this case, by (1.6), (3.1), we have

fv(β) = (1 − d)β − a.

It follows that if d ∈ (0, 1), then
β̃4 =

a
1 − d

,
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defined as in (1.5), is a solution of fv(β) = 0, and (v, β̃4) is a solution of (PN). If d ∈ [1,+∞), (PN) has
no nontrivial solution. This implies that Proposition 3.1 (i) holds.

Case 2: N = 6. In this case, by (1.6), (3.1), we have

fv(β) = −dβ2 + β − a.

Then it is easy to know that lim
β→+∞

fv(β) = −∞ for any a, b > 0 and fv(β) < 0 for any β ∈ (0, a]. If

d ∈ (0, 1
4a ), then there exist

β̃6,1 =
1 −
√

1 − 4ad
2d

∈ (a,
1

2d
),

and

β̃6,2 =
1 +
√

1 − 4ad
2d

∈ (
1

2d
,+∞),

such that (v, β̃6,1), (v, β̃6,2) solve (PN). If d = 1
4a , then (v, 1

2d ) solves (PN). If d ∈ ( 1
4d ,+∞), then (PN) has

no nontrivial solution. Thus, we can obtain that Proposition 3.1 (ii) holds.
Case 3: N = 8. In this case, by (1.6), (3.1), we have

fv(β) = −dβ3 + β − a.

Then it is easy to know that lim
β→+∞

fv(β) = −∞ for any a, b > 0 and fv(β) < 0 for any β ∈ (0, a]. For each

v , 0, we have
d

dβ
fv(β) = 1 − 3dβ2.

It is easy to see that fv(β) has a unique maximum point βv =
1
√

3d
> 0, and

max
β∈R+

fv(β) = fv (βv) =
2

3
√

3d
− a.

If d ∈ (0, 4
27a2 ), it follows from Lemma 2.3 that the equation fv(β) = 0 has three distinct real solutions

β̃8, j =
2
√

3d
cos(θ +

2 jπ
3

)( j = 0, 1, 2),

where

θ =
1
3

arccos
(
−

3a
2

√
3d

)
. (3.2)

It is easy to see that one of which is negative and two of which are positive. Due to β > 0, we next
wish to exclude the negative solution. Note that (3.2) and d ∈ (0, 4

27a2 ), it follows that

−
3a
2

√
3d ∈ (−1, 0),

and then
θ ∈

(
π

6
,
π

3

)
.
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This leads to β̃8,0, β̃8,2 > 0 and β̃8,1 < 0. Moreover, it is easy to see that β̃8,0 > β̃8,2. Therefore, we
conclude that if d ∈ (0, 4

27a2 ), then there exist

β̃8,0 =
2
√

3d
cos θ ∈ (

1
√

3d
,

1
√

d
),

and

β̃8,2 =
2
√

3d
cos(θ +

4π
3

) ∈ (a,
1
√

3d
),

such that (v, β̃8,0), (v, β̃8,2) solve (PN). If d = 4
27a2 , the equation fv(β) = 0 has a unique positive real

solution

β̃8 =
1
√

3d
,

then (v, β̃8) solves (PN). If d ∈ ( 4
27a2 ,+∞), then (PN) has no nontrivial solution. Thus, we can obtain

that Proposition 3.1 (iii) hold. □

Proof of Proposition 3.2. Similar to the proof of Proposition 3.1, and applying Theorem 3.2, we can
prove Proposition 3.2. □

4. Proof of the main results

Proof of Theorem 1.1. Firstly, it is clear that u and v have the same sign and radial symmetry. We next
prove the equivalence.

Necessary condition. Suppose the equation (K) has a normalized solution u ∈ S (c), we then have

(
a + b∥∇u∥2L2(RN )

) ∫
RN
∇u∇φdx + λ

∫
RN

uφdx

=µ

∫
RN
|u|q−2uφdx +

∫
RN
|u|p−2uφdx, ∀φ ∈ H1(RN).

Let β = a + b∥∇u∥2L2(RN ) and v(x) = u(β
1
2 x) = u(y), we conclude that

β = a + bβ
N−2

2 ∥∇v∥2L2(RN ). (4.1)

Let β̃N be defined by (1.5), i.e.,

β̃N =


a

1−d , N = 4,
1±
√

1−4ad
2d , N = 6,

2
√

3d
cos

(
θ + 2 jπ

3

)
( j = 0, 2), N = 8,
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where d = b∥∇v∥2L2(RN ), by a similar argument as used in the proof of Proposition 3.1, we obtain that

β = β̃N > 0 can solve (4.1) in dimensions N = 4, 6, 8. Furthermore, let ϕ(x) = φ(β
1
2 x) = φ(y), we have∫

RN
∇v(x)∇ϕ(x)dx + λ

∫
RN

v(x)ϕ(x)dx

=β̃
− N

2
N

(
β̃N

∫
RN
∇u(y)∇φ(y)dy + λ

∫
RN

u(y)φ(y)dy
)

=β̃
− N

2
N

(
a + b

∫
RN
|∇u(y)|2dy

) ∫
RN
∇u(y)∇φ(y)dy + λβ̃−

N
2

N

∫
RN

u(y)φ(y)dy

=β̃
− N

2
N µ

∫
RN
|u(y)|q−2u(y)φ(y)dy + β̃−

N
2

N

∫
RN
|u(y)|p−2u(y)φ(y)dy

=µ

∫
RN
|v(x)|q−2v(x)ϕ(x)dx +

∫
RN
|v(x)|p−2v(x)ϕ(x)dx.

Moreover,
∫
RN |v|2dx = β̃−

N
2

N

∫
RN |u(y)|2dy = β̃−

N
2

N c2, which implies that (v, β̃N) ∈ S (β̃−
N
4

N c) × R+ is a
solution of (PN).

Sufficient condition. Suppose the system (PN) has a solution (v, β̃N) ∈ S (β̃−
N
4

N c) × R+. At least in a
weak sense, we then have, in dimensions N = 4, 6, 8,∫

RN
∇v∇ϕdx + λ

∫
RN

vϕdx = µ
∫
RN
|v|q−2vϕdx +

∫
RN
|v|p−2vϕdx, ∀ϕ ∈ H1(RN),

and
β̃N = a + bβ̃

N−2
2

N

∫
RN
|∇v|2dx.

Let u(x) = v(β̃−
1
2

N x) = v(y) and φ(x) = ϕ(β̃−
1
2

N x) = ϕ(y) we can obtain that(
a + b

∫
RN
|∇u(x)|2dx

) ∫
RN
∇u(x)∇φ(x)dx + λ

∫
RN

u(x)φ(x)dx

=β̃
N
2
N

(
β̃−1

N

(
a + bβ̃

N−2
2

N

∫
RN
|∇v(y)|2dy

) ∫
RN
∇v(y)∇ϕ(y)dy + λ

∫
RN

v(y)ϕ(y)dy
)

=β̃
N
2
N

(∫
RN
∇v(y)∇ϕ(y)dy + λ

∫
RN

v(y)ϕ(y)dy
)

=β̃
N
2
N

(
µ

∫
RN
|v(y)|q−2v(y)ϕ(y)dy +

∫
RN
|v(y)|p−2v(y)ϕ(y)dy

)
=µ

∫
RN
|u(x)|q−2u(x)φ(x)dx +

∫
RN
|u(x)|p−2u(x)φ(x)dx,

and ∫
RN
|u|2dx = β̃

N
2
N

∫
RN
|v(y)|2dy = c2,

which implies that u ∈ S (c) is a solution of (K). □

Proof of Theorem 1.2. The conclusions follow directly from Theorem 1.1 and Proposition 3.1. □
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Proof of Theorem 1.3. The conclusions follow directly from Theorem 1.1 and Proposition 3.2. □

Proof of Theorem 1.4. Suppose that u ∈ S (c) is a positive solution of (K) with p = q = 2∗, then

a∥∇u∥2L2(RN ) + b∥∇u∥4L2(RN ) + λ∥u∥
2
L2(RN ) = µ∥u∥

q
Lq(RN ) + ∥u∥

p
Lp(RN ).

It follows from Lemma 2.2 and u ∈ S (c) that

λc2 = µ(1 − γq)∥u∥qLq(RN ) + (1 − γp)∥u∥pLp(RN ).

Since p = q = 2∗, we have γp = γq = 1, it follows that λc2 = 0. However, by Lemma 2.1, we
have λ > 0, which is a contradiction. Hence, equation (K) has no positive solutions u ∈ S (c) for any
µ > 0. □
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