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Abstract: We study the stability of compactness of solutions for the Yamabe boundary problem on
a compact Riemannian manifold with non umbilic boundary. We prove that the set of solutions of
Yamabe boundary problem is a compact set when perturbing the mean curvature of the boundary from
below and the scalar curvature with a function whose maximum is not too positive. In addition, we
prove the counterpart of the stability result: there exists a blowing up sequence of solutions when we
perturb the mean curvature from above or the mean curvature from below and the scalar curvature with
a function with a large positive maximum.
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1. Introduction

Let (M, g), a smooth, compact Riemannian manifold of dimension n ≥ 7 with non umbilic boundary.
We recall that the boundary of M is called non umbilic if the trace-free second fundamental form of
∂M is everywhere different from zero. Here we study the linearly perturbed problem{

−∆gu + n−2
4(n−1)Rgu + ε1αu = 0 in M

∂u
∂ν
+ n−2

2 hgu + ε2βu = (n − 2)u
n

n−2 on ∂M
. (1.1)

Where ∆g is the Laplace-Beltrami operator and ν denotes the outer normal. Also, ε1, ε2 are positive
parameters and α, β : M → R are smooth functions. We can restate Problem (1.1) in the more compact
form {

Lgu − ε1αu = 0 in M
Bgu − ε2βu + (n − 2)u

n
n−2 = 0 on ∂M

,

where Lg = ∆g −
n−2

4(n−1)Rg and Bg = −
∂
∂ν
− n−2

2 hg.
Problem (1.1) is the perturbed version of the Yamabe boundary problem when the target metric

has zero scalar curvature, that is, given a compact Riemannian manifold with boundary, finding a
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Riemannian metric, conformal to the original one, with zero scalar curvature and constant boundary
mean curvature. This represents an extension of the Yamabe problem on manifold with boundary and,
since the target metric is conformally flat, also a generalization of the Riemann mapping theorem to
higher dimensions. Solving this problem is equivalent to find a positive solution of the equation{

−∆gu + n−2
4(n−1)Rgu = 0 in M

∂u
∂ν
+ n−2

2 hgu = (n − 2)u
n

n−2 on ∂M
(1.2)

which is, as noticed before, the unperturbed version of (1.1). In this paper we study if the perturbation
term affects the property of solutions. In particular we want to investigate if the compactness of the set
of the solution of the problem holds true for the perturbed problem. Our main results are the following.

Theorem 1. Let (M, g) a smooth, n-dimensional Riemannian manifold of positive type with regular
boundary ∂M. Suppose that n ≥ 7 and that π(x), the trace free second fundamental form of ∂M, is non
zero everywhere.

Let α, β : M → R smooth functions such that β < 0 on ∂M and max
q∈∂M
{α(q) − n−6

4(n−1)(n−2)2 ∥π(q)∥2} < 0.

Then, there exist two constants C > 0 and 0 < ε̄ < 1 such that, for any 0 ≤ ε1, ε2 ≤ ε̄ and for any u > 0
solution of (1.1), it holds

C−1 ≤ u ≤ C and ∥u∥C2,η(M) ≤ C

for some 0 < η < 1. The constant C does not depend on u, ε1, ε2.

Theorem 2. Let (M, g) a smooth, n-dimensional Riemannian manifold of positive type with regular
boundary ∂M. Suppose that n ≥ 7 and that the trace free second fundamental form of ∂M, is non zero
everywhere. Let α, β : M → R smooth functions.

• If β > 0 on ∂M then for ε1, ε2 > 0 small enough there exists a sequence of solutions uε1,ε2 of (1.1)
which blows up at a suitable point of ∂M as (ε1, ε2)→ (0, 0).

• If β < 0 on ∂M, ε1 = 1, α > 0 on M and inf
q∈∂M

α(q) +
1
B
φ(q) > 0, then for ε2 > 0 small enough

there exists a sequence of solutions uε2 of (1.1) which blows up at a suitable point of ∂M as
ε2 → 0.

Here B and φ(q) are defined in Lemma 24.

We remark that in the above Theorem 2, B is strictly positive, φ(q) is strictly negative, and both are
completely determined by (M, g).

The result of Theorem 1 (and its counterpart Theorem 2) is somewhat unexpected: in classical
Yamabe problem [1] the compactness of solution is guaranteed as soon as α is negative. In a
forthcoming paper we prove that also for boundary Yamabe problem on manifold with umbilic
boundary compactness is granted when α is negative while for α positive everywhere there exists a
blowing up sequence of solutions. So, this is an example in which the strong analogy between classical
Yamabe problem and boundary Yamabe problem breaks down.

The boundary Yamabe problem was firstly introduced by Escobar in [2]. Existence results for (1.2)
were proved by Escobar [2], Marques [3], Almaraz [4], Brendle and Chen [5], Mayer and Ndiaye [6].
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Solutions of (1.2) could be found by minimization of the quotient

Q(M, ∂M) := inf
u∈H1∖0

∫
M

(
|∇u|2 + n−2

4(n−1)Rgu2
)

dvg +
∫
∂M

n−2
2 hgu2dσg ∫

∂M

|u|
2(n−1)

n−2 dσg

 n−2
n−1

.

In particular, the solution of is unique, up to symmetries, when −∞ < Q ≤ 0 while multiplicity results
hold when Q > 0. Manifolds for which Q > 0 are called of positive type, and it is natural to ask, in that
case, when the full set of the solutions of (1.2) forms a C2-compact set. This is in complete analogy
with classical Yamabe problem. In addition, the celebrated strategy of Khuri, Marques and Schoen [7]
to prove compactness of solutions of Yamabe problem up to dimension n = 24 can be succesfully
adapted to Problem (1.2). Indeed, with this method compactness has been proved firstly in the case of
locally flat manifolds not conformally equivalent to euclidean balls in [8], then for manifolds with non
umbilic boundary in [9], and, recently, for manifolds with umbilic boundary on which the Weyl tensor
does not vanish, in [10, 11]. These results have been successively extended, but an exhaustive list of
reference of compactness results is beyond the scope of this introduction. In [12], Almaraz proved
that, for n ≥ 25, it is possible to construct umbilic boundary manifolds, not conformally equivalent to
euclidean balls, for which Problem (1.2) admits a non compact set of solutions. It is conjectured that
also for boundary Yamabe the critical dimension is n = 24, but compactness for dimension n ≤ 24 is
not yet proved in all generality.

As mentioned before, a parallelism arises studying stability of Yamabe problem with respect of
small perturbations of curvatures. For classical Yamabe problem, Druet, in the second claim of the
main theorem of [1], proves that the set of solutions of −∆gu+ n−2

4(n−1)a(x)u = cu
n+2
n−2 in M is still compact

if a(x) ≤ Rg(x) on a manifold M which is not conformally the round sphere and which dimension is n =
3, 4, 5. Thus, he claims that in this case the Yamabe problem is stable with respect of perturbation of
scalar curvature from below. Also he claims that these results could be extended to higher dimensions.
On the other hand, in [13,14], Druet, Hebey and Robert found counterexamples to compactness, and so
instability, when a(x) is greater than Rg(x). In [15] the same problem is studied in the case of boundary
Yamabe equation by perturbing the mean curvature term, and the same compactness versus blow up
phenomenon appeared. So, a first analogy between the role of scalar curvature in classical case and
mean curvature in boundary case is established. An analogy between the role of scalar curvature in
classical and boundary Yamabe problem when the boundary is umbilic will be investigated by the
authors in a forthcoming paper.

As far as we know, Theorem 1 is the first case in which stability is possible when pertrubing a
curvature from above, and, therefore, in which the parallelism between classical and boundary Yamabe
problem is lost. The result of Theorem 1 is strictly related to non umbilicity of the boundary. In fact,
the trace-free second fundamental form competes with the perturbation of the scalar curvature. Thus,
when the tensor does not vanish, it could compensate a small positive perturbation. This is clearly
observable in Proposition 17, which is a key tool to prove the compactness result (and for the blow-up
counterpart, in Lemma 24).

The paper is organized as follows. Hereafter we recall basic definitions and preliminary notions
useful to achieve the result. Section 2 is devoted to the proof of the compactness theorem, while in
Section 3 we prove the non compactness result.
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1.1. Notations and preliminary definitions

Remark 3 (Notations). We will use the indices 1 ≤ i, j, k,m, p, r, s ≤ n − 1 and 1 ≤ a, b, c, d ≤ n.
Moreover we use the Einstein convention on repeated indices. We denote by g the Riemannian metric,
by Rabcd the full Riemannian curvature tensor, by Rab the Ricci tensor and by Rg and hg respectively the
scalar curvature of (M, g) and the mean curvature of ∂M. The bar over an object (e.g., R̄g) will means
the restriction to this object to the metric of ∂M

On the half space Rn
+ = {y = (y1, . . . , yn−1, yn) ∈ Rn, yn ≥ 0} we set Br(y0) = {y ∈ Rn, |y − y0| ≤ r} and

B+r (y0) = Br(y0) ∩ {yn > 0}. When y0 = 0 we will use simply Br = Br(y0) and B+r = B+r (y0). On the
half ball B+r we set ∂′B+r = B+r ∩ ∂R

n
+ = B+r ∩ {yn = 0} and ∂+B+r = ∂B+r ∩ {yn > 0}. On Rn

+ we will use
the following decomposition of coordinates: (y1, . . . , yn−1, yn) = (ȳ, yn) = (z, t) where ȳ, z ∈ Rn−1 and
yn, t ≥ 0.

Fixed a point q ∈ ∂M, we denote by ψq : B+r → M the Fermi coordinates centered at q. We denote
by B+g (q, r) the image of B+r . When no ambiguity is possible, we will denote B+g (q, r) simply by B+r ,
omitting the chart ψq.

We recall also that ωn−2 denotes the volume of the n − 1 dimensional unit sphere Sn−1.

At last we introduce here the standard bubble U(y) :=
1[

(1 + yn)2 + |ȳ|2
] n−2

2

which is the unique

solution, up to translations and rescaling, of the nonlinear critical problem .{
−∆U = 0 on Rn

+;
∂U
∂yn
= −(n − 2)U

n
n−2 on ∂Rn

+.
(1.3)

Set
jl := ∂lU = −(n − 2)

yl[
(1 + yn)2 + |ȳ|2

] n
2

(1.4)

∂k∂lU = (n − 2)

 nylyk[
(1 + yn)2 + |ȳ|2

] n+2
2

−
δkl[

(1 + yn)2 + |ȳ|2
] n

2


jn := yb∂bU +

n − 2
2

U = −
n − 2

2
|y|2 − 1[

(1 + yn)2 + |ȳ|2
] n

2
, (1.5)

we recall that j1, . . . , jn are a base of the space of the H1 solutions of the linearized problem
−∆ϕ = 0 on Rn

+,
∂ϕ

∂t + nU
2

n−2ϕ = 0 on ∂Rn
+,

ϕ ∈ H1(Rn
+).

(1.6)

Given a point q ∈ ∂M, we introduce now the function γq which arises from the second order term of
the expansion of the metric g on M (see 1.14). The choice of this function plays a twofold role in this
paper. On the one hand, using the function γq we are able to perform the estimates of Lemmas 13, 14
and Proposition 15. On the other hand, it gives the correct correction to the standard bubble in order to
perform finite dimensional reduction.

For the proof of the following Lemma we refer to [9, Prop 5.1] and [16, Proposition 7]
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Lemma 4. Assume n ≥ 3. Given a point q ∈ ∂M, there exists a unique γq : Rn
+ → R a solution of the

linear problem {
−∆γ = 2hi j(q)t∂2

i jU on Rn
+;

∂γ

∂t + nU
2

n−2γ = 0 on ∂Rn
+.

(1.7)

which is L2(Rn
+)-orthogonal to the functions j1, . . . , jn defined in (1.4) and (1.5).

In addition it holds
|∇τγq(y)| ≤ C(1 + |y|)3−τ−n for τ = 0, 1, 2. (1.8)∫

Rn
+

γq∆γqdy ≤ 0, (1.9)∫
∂Rn
+

U
n

n−2 (t, z)γq(t, z)dz = 0 (1.10)

γq(0) =
∂γq

∂y1
(0) = · · · =

∂γq

∂yn−1
(0) = 0. (1.11)

Finally the map q 7→ γq is C2(∂M).

1.2. Expansion of the metric

It is well known that there exists a metric g̃, conformal to g, such that hg̃ ≡ 0 (see [2, Lemma 3.3]).
So, up to a global conformal change of coordinates Problem (1.1) becomes{

−∆gu + n−2
4(n−1)Rgu + ε1αu = 0 in M

∂u
∂ν
+ ε2βu = (n − 2)u

n
n−2 on ∂M

. (1.12)

With this change of coordinates the expansion of the metric is

|g(y)|1/2 =1 −
1
2

[
∥π∥2 + Ric(0)

]
y2

n −
1
6

R̄i j(0)yiy j + O(|y|3) (1.13)

gi j(y) =δi j + 2hi j(0)yn +
1
3

R̄ik jl(0)ykyl + 2
∂hi j

∂yk
(0)tyk

+
[
Rin jn(0) + 3hik(0)hk j(0)

]
y2

n + O(|y|3) (1.14)

gan(y) =δan (1.15)

where π is the second fundamental form and hi j(0) are its coefficients, and Ric(0) = Rnini(0) = Rnn(0)
(see [2]).

2. The compactness result

We start this section by recalling a Pohozaev type identity. This indentity gives us a fundamental
sign condition to rule out the possibility of blowing up sequence, as shown in subsection 2.5. A recall
of preliminary results on blow up points is collected in subsection 2.2, while a careful analysis of blow
up sequences is performed in subsection 2.4. This allows us to conclude the section with the proof of
Theorem 1. Throughout this section we work in g̃ metric. For the sake of readability we will omit the
tilde symbol in all this section.
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2.1. A Pohozaev type identity

A Pohozaev type identity is often used in Yamabe boundary problem. Here we use the same local
version which is introduced in [9, 10].

Theorem 5 (Pohozaev Identity). Let u a C2-solution of the following problem{
−∆gu + n−2

4(n−1)Rgu + ε1αu = 0 = 0 in B+r
∂u
∂ν
+ ε2βu = (n − 2)u

n
n−2 on ∂′B+r

for B+r = ψ
−1
q (B+g (q, r)) for q ∈ ∂M. Let us define

P(u, r) :=
∫

∂+B+r

(
n − 2

2
u
∂u
∂r
−

r
2
|∇u|2 + r

∣∣∣∣∣∂u
∂r

∣∣∣∣∣2) dσr +
r(n − 2)2

2(n − 1)

∫
∂(∂′B+r )

u
2(n−1)

n−2 dσ̄g,

and

P̂(u, r) := −
∫
B+r

(
ya∂au +

n − 2
2

u
)

[(Lg − ∆)u]dy+

+ ε1

∫
B+r

(
ya∂au +

n − 2
2

u
)
αudy

+
n − 2

2
ε2

∫
∂′B+r

(
ȳk∂ku +

n − 2
2

u
)
βudȳ.

Then P(u, r) = P̂(u, r).
Here a = 1, . . . , n, k = 1, . . . , n − 1 and y = (ȳ, yn), where ȳ ∈ Rn−1 and yn ≥ 0.

2.2. Isolated and isolated simple blow up points

We collect here the definitions of some type of blow up points, and the basic properties about the
behavior of these blow up points (see [8, 9, 19, 20]).

Let {ui}i be a sequence of positive solution to{
Lgiu − ε1,iαu = 0 in M

Bgiu + (n − 2)u
n

n−2 − ε2,iβu = 0 on ∂M
. (2.1)

where gi → g0 in the C3
loc topology and 0 < ε1,i, ε2,i < ε̄ for some 0 < ε̄ ≤ 1. As before, we suppose

without loss of generality that hg0 ≡ 0 and hgi ≡ 0 for all i.

Definition 6. 1) We say that x0 ∈ ∂M is a blow up point for the sequence ui of solutions of (2.1) if
there is a sequence xi ∈ ∂M of local maxima of ui|∂M such that xi → x0 and ui(xi)→ +∞.

Shortly we say that xi → x0 is a blow up point for {ui}i.
2) We say that xi → x0 is an isolated blow up point for {ui}i if xi → x0 is a blow up point for {ui}i

and there exist two constants ρ,C > 0 such that

ui(x) ≤ Cdḡ(x, xi)
2−n

2 for all x ∈ ∂M ∖ {xi} , dḡ(x, xi) < ρ.
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Given xi → x0 an isolated blow up point for {ui}i, and given ψi : B+ρ (0) → M the Fermi coordinates
centered at xi, we define the spherical average of ui as

ūi(r) =
2

ωn−1rn−1

∫
∂+B+r

ui ◦ ψidσr

and
wi(r) := r

2−n
2 ūi(r)

for 0 < r < ρ.
3) We say that xi → x0 is an isolated simple blow up point for {ui}i solutions of (2.1) if xi → x0 is

an isolated blow up point for {ui}i and there exists ρ such that wi has exactly one critical point in the
interval (0, ρ).

Remark 7. Notice that blow up for elliptic equation with neumann boundary condition often occurs at
a point of the boundary (e.g., in the pioneering paper of Ni and Takagi [25]). Concerning boundary
Yamabe problem, this fact was at first explicitly proved, as in [8]. Later on, it was assumed, without
loss of generality, that the blow up point x0 as well as the whole sequence xi → x0 belongs to the
boundary (see [9, Definition 4.1]),

Given xi → x0 a blow up point for {ui}i, we set

Mi := ui(xi) and δi := M
2

2−n
i .

Obviously Mi → +∞ and δi → 0.
The proofs of the following propositions can be found in [4] and in [8].

Proposition 8. Let xi → x0 is an isolated blow up point for {ui}i and ρ as in Definition 6. We set

vi(y) = M−1
i (ui ◦ ψi)(M

2
2−n
i y), for y ∈ B+

ρM
n−2

2
i

(0).

Then, given Ri → ∞ and ci → 0, up to subsequences, we have

1. |vi − U |
C2

(
B+Ri

(0)
) < ci;

2. lim
i→∞

Ri

log Mi
= 0.

Proposition 9. Let xi → x0 be an isolated simple blow-up point for {ui}i. Let η small. If 0 < ε̄ ≤ 1 is
small enough and 0 < ε1, ε2 < ε̄, then there exist C, ρ > 0 such that

Mλi
i |∇

kui(ψi(y))| ≤ C|y|2−k−n+η

for y ∈ B+ρ (0) ∖ {0} and k = 0, 1, 2. Here λi =
(

2
n−2

)
(n − 2 − η) − 1.

2.3. A splitting lemma

Here we summarize a result which proves that only a finite number of blow up points may occur
to a blowing up sequence of solution. For its proof we refer to [21, Proposition 5.1], [22, Lemma
3.1], [19, Proposition 1.1], [9, Propositions 4.2 and 8.2].
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Proposition 10. Given K > 0 and R > 0 there exist two constants C0,C1 > 0 (depending on K, R and
(M, g)) such that if u is a solution of{

Lgu − ε1α = 0 in M
Bgu − ε2βu + (n − 2)u

n
n−2 = 0 on ∂M

(2.2)

and max∂M u > C0, then there exist q1, . . . , qN ∈ ∂M, with N = N(u) ≥ 1 with the following properties:
for j = 1, . . . ,N

1. set r j := Ru(q j)1−p, then
{
Br j ∩ ∂M

}
j
are a disjoint collection;

2. we have
∣∣∣u(q j)−1u(ψ j(y)) − U(u(q j)p−1y)

∣∣∣
C2(B+2r j

)
< K (here ψ j are the Fermi coordinates at point

q j;
3. we have

u(x)dḡ (x, {q1, . . . , qn})
1

p−1 ≤ C1 for all x ∈ ∂M

u(q j)dḡ

(
q j, qk

) 1
p−1
≥ C0 for any j , k.

In addition, if n ≥ 7 and |π(x)| , 0 for any x ∈ ∂M, there exists d = d(K,R) such that

min
i , j

1 ≤ i, j ≤ N(u)

dḡ(qi(u), q j(u)) ≥ d.

Here ḡ is the geodesic distance on ∂M.

2.4. Blowup estimates

In this section we provide a fine estimate for the approximation of the rescaled solution near an
isolated simple blow up point.

Proposition 11. Let xi → x0 be an isolated simple blow-up point for {ui}i and β < 0. Then ε2,i → 0.

Proof. We compute the Pohozaev identity in a ball of radius r and we set r
δi
=: Ri → ∞.

By Proposition 9 we have that

P(ui, r) ≤ δλi(n−2)
i . (2.3)

We estimate now P̂(ui, r). By comparing this term with P(ui, r) we will get the proof.

P̂(ui, r) : = −
∫
B+r

(
ya∂aui +

n − 2
2

ui

)
[(Lg − ∆)ui]dy + ε1,i

∫
B+r

(
ya∂aui +

n − 2
2

ui

)
αuidy

+
n − 2

2
ε2,i

∫
∂′B+r

(
ȳk∂kui +

n − 2
2

ui

)
βuidȳ =: I1(ui, r) + I2(ui, r) + I3(ui, r).

The terms I3 has been estimated in [15, Proposition 8] and it holds

I3(ui, r) = ε2,iδi(B + o(1)), (2.4)
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where B is a positive real constant.
For I2(ui, r) we have, by change of variables,

I2(ui, r) = ε1,iδ
2
i
n − 2

2
α(xi)

∫
Rn
+

1 − |y|2[
(1 + yn)2 + |ȳ|2

]n−1 dy + ε1,iδ
2
i O(δ2

i ).

Now, set Iαm :=
∫ ∞

0
sαds

(1+s2)m we have

∫
Rn
+

1 − |y|2[
(1 + yn)2 + |ȳ|2

]n−1 dy

= ωn−2

[
In−2
n−1

∫ ∞

0

1 − t2

(1 + t)n−2 dt − In
n−1

∫ ∞

0

1
(1 + t)n−2 dt

]
= ωn−2

[
In−2
n−1

n − 5
(n − 3)(n − 4)

− In
n−1

1
n − 4

]
using the identities

∫ ∞
0

tkdt
(1+t)m =

k!
(m−1)(m−2)···(m−1−k) and

∫ ∞
0

dt
(1+t)m =

1
m−1 . At this point, since Iαm =

2m
2m−α−1 Iαm+1 and Iαm =

2m−α−3
α+1 Iα+2

m (see [9, Lemma 9.4]) we have

(n − 5)In−2
n−1

(n − 3)(n − 4)
−

In
n−1

n − 4
= −

4In
n−1

(n − 1)(n − 4)
= −

8In
n

(n − 3)(n − 4)
,

thus ∫
B+r

(
ya∂aui +

n − 2
2

ui

)
ε1,iαuidy = −

4(n − 2)In
nωn−2

(n − 3)(n − 4)
ε1,iδ

2
i α(xi) + o(δ2

i )

= ε1,iδ
2
i (A + o(1)) (2.5)

where A is a real constant.
For the term I1(ui, r) we slightly improve the estimate provided by Almaraz in [9]. By the expansion

of the metric (1.13), (1.14) and (1.15) we have

I1(ui, r) ≤ −δi

∫
B+r/δi

(
ya∂avi +

n − 2
2

vi

)
vihkl(0)yn∂k∂lvidy + O(δ2

i )

By simmetry reasons we have that

lim
i→∞

∫
B+r/δi

(
ya∂avi +

n − 2
2

vi

)
vihkl(0)yn∂k∂lvidy

=

∫
Rn
+

(
ya∂aU +

n − 2
2

U
)

Uhkl(0)yn∂k∂lUdy

= hg(0)
∫
Rn
+

(
ya∂aU +

n − 2
2

U
)

Uyn∂1∂1Udy = 0
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since we choose a metric for which the mean curvature of the boundary is zero. So

|I1(ui, r)| ≤ δio+(1) (2.6)

where o+(1) is a nonnegative constant that vanishes when i→ ∞.
Comparing P̂(ui, r) and P(ui, r), by (2.3), (2.4), (2.5) and (2.6) we get

−cδio+(1) + (A + o(1))ε1,iδ
2
i + (B + o(1))ε2,iδi ≤ δ

λi(n−2)
i ,

so
−co+(1) + (A + o(1))ε1,iδi + (B + o(1))ε2,i ≤ δ

λi(n−2)−1
i .

Being ε1,i < ε̄ < 1, the above inequality holds only if ε2,i → 0. □

Since ε2,i → 0, δi → 0 and ε1,i < ε̄ < 1, the proof of the next proposition is analogous to Prop. 4.3
of [9].

Proposition 12. Let xi → x0 be an isolated simple blow-up point for {ui}i. Then there exist C, ρ > 0
such that

1. Miui(ψi(y)) ≤ C|y|2−n for all y ∈ B+ρ (0) ∖ {0};

2. Miui(ψi(y)) ≥ C−1Gi(y) for all y ∈ B+ρ (0)∖B+ri
(0) where ri := RiM

2
2−n
i and Gi is the Green’s function

which solves 
LgiGi = 0 in B+ρ (0) ∖ {0}

Gi = 0 on ∂+B+ρ (0)
BgiGi = 0 on ∂′B+ρ (0) ∖ {0}

and |y|n−2Gi(y)→ 1 as |z| → 0.

By Proposition 8 and Proposition 12 we have that, if xi → x0 is an isolated simple blow-up point
for {ui}i, then it holds

vi ≤ CU in B+
ρM

2
2−n

i

(0).

Which follows is the core of the compacntess claim: we provide the estimates of the blowup profile
of an isolated simple blow up point xi → x0 for a sequence {ui}i of solutions of (2.1). The strategy to
achieve these results is similar to the one contained in [9, Lemma 6.1] and in [15, Section 5], so we will
give only the general scheme and emphasize the main differences, while we refer to the cited papers
for detailed proofs. Set

δi := u
2

2−n
i (xi) = M

2
2−n
i vi(y) := δ

n−2
2

i ui(δiy) for y ∈ B+R
δi

(0), (2.7)

we have that vi satisfies 
Lĝivi − ε1,iα(δiy)vi = 0 in B+R

δi

(0)

Bĝivi + (n − 2)v
n

n−2
i − ε2,iβ(δiy)vi = 0 on ∂′B+R

δi

(0)
(2.8)

where ĝi := gi(δiy).

Electronic Research Archive Volume 30, Issue 4, 1209–1235.



1219

Lemma 13. Assume n ≥ 7. Let γxi be defined in (1.7). There exist R,C > 0 such that

|vi(y) − U(y) − δiγxi(y)| ≤ C
(
δ2

i + ε1,iδ
2
i + ε2,iδi

)
for |y| ≤ R/δi.

Proof. Let yi such that

µi := max
|y|≤R/δi

|vi(y) − U(y) − δiγxi(y)| = |vi(yi) − U(yi) − δiγxi(yi)|.

We can assume, without loss of generality, that |yi| ≤
R

2δi
. This will be useful in the next.

By contradiction, suppose that

max
{
µ−1

i δ
2
i , µ
−1
i ε1,iδ

2
i , µ
−1
i ε2,iδi

}
→ 0 when i→ ∞. (2.9)

Defined
wi(y) := µ−1

i
(
vi(y) − U(y) − δiγxi(y)

)
for |y| ≤ R/δi,

we have, by direct computation, that
Lĝiwi = Ai in B+R

δi

(0)

Bĝiwi + biwi = Fi on ∂′B+R
δi

(0)
(2.10)

where

bi =(n − 2)
v

n
n−2
i − (U + δiγxi)

n
n−2

vi − U − δiγxi

,

Qi = −
1
µi

{(
Lĝi − ∆

)
(U + δiγxi) + δi∆γxi

}
,

Ai =Qi +
ε1,iδ

2
i

µi
αi(δiy)vi(y),

Q̄i = −
1
µi

{
(n − 2)(U + δiγxi)

n
n−2 − (n − 2)U

n
n−2 − nδiU

2
n−2γxi

}
,

Fi =Q̄i +
ε2,iδi

µi
βi(δiy)vi(y).

Since vi → U in C2
loc(R

n
+) we have, at once,

bi → nU
2

n−2 in C2
loc(R

n
+) (2.11)

|bi(y)| ≤ (1 + |y|)−2 for |y| ≤ R/δi. (2.12)

We proceed now by estimating Qi and Q̄i. As in [9, Lemma 6.1], using the expansion of the metric and
the decays properties of U and γxi we obtain

Qi = O(µ−1
i δ

2
i (1 + |y|)2−n) and Q̄i = O(µ−1

i δ
2
i (1 + |y|)3−n) (2.13)
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from which we get

Ai = O(µ−1
i δ

2
i (1 + |y|)2−n) + O(µ−1

i ε1,iδ
2
i (1 + |y|)2−n) (2.14)

Fi = O(µ−1
i δ

2
i (1 + |y|)3−n) + O(µ−1

i ε2,iδi (1 + |y|)2−n).

In light of (2.9) we also have Ai ∈ Lp(B+R/δi
) and Fi ∈ Lp(∂′B+R/δi

) for all p ≥ 2. Since |wi(y)| ≤ 1, by (2.9)
(2.11), (2.12), (2.14) and by standard elliptic estimates we conclude that {wi}i, up to subesequences,
converges in C2

loc(R
n
+) to some w solution of{

∆w = 0 in Rn
+

∂
∂ν

w + nU
n

n−2 w = 0 on ∂Rn
+

. (2.15)

Now we prove that |w(y)| ≤ C(1 + |y|−1) for y ∈ Rn
+. Consider Gi the Green function for the conformal

Laplacian Lĝi defined on B+r/δi
with boundary conditions BĝiGi = 0 on ∂′B+r/δi

and Gi = 0 on ∂+B+r/δi
. It

is well known that Gi = O(|ξ − y|2−n). By the Green formula and by (2.14) we have

wi(y) = −
∫

B+R
δi

Gi(ξ, y)Ai(ξ)dµĝi(ξ) −
∫
∂+B+R

δi

∂Gi

∂ν
(ξ, y)wi(ξ)dσĝi(ξ)

+

∫
∂′B+R

δi

Gi(ξ, y) (bi(ξ)wi(ξ) − Fi(ξ)) dσĝi(ξ),

so

|wi(y)| ≤
δ2

i

µi

∫
B+R
δi

|ξ − y|2−n(1 + |ξ|)2−ndξ +
ε1,iδ

2
i

µi

∫
B+R
δi

|ξ − y|2−n(1 + |ξ|)2−ndξ

+

∫
∂+B+R

δi

|ξ − y|1−nwi(ξ)dσ(ξ)

+

∫
∂′B+R

δi

|ξ̄ − y|2−n

(
(1 + |ξ̄|)−2 +

δ2
i

µi
(1 + |ξ̄|)3−n +

ε2,iδi

µi
(1 + |ξ̄|)2−n

)
dξ̄,

Notice that in the third integral we used that |y| ≤ R
2δi

to estimate |ξ − y| ≥ |ξ| − |y| ≥ R
2δi

on ∂+B+R/δi
.

Moreover, since vi(ξ) ≤ CU(ξ), we get |wi(ξ)| ≤ C δn−2
i
µi

on ∂+B+R/δi
. Hence∫

∂+B+R
δi

|ξ − y|1−nwi(ξ)dσ(ξ) ≤ C
∫
∂+B+R

δi

δ2n−3
i

µi
dσĝi(ξ) ≤ C

δn−2
i

µi
. (2.16)

For the other terms we use the formula∫
Rm
|ξ − y|l−m(1 + |ξ|)−ηdξ ≤ C(1 + |y|)l−η (2.17)

where y ∈ Rm+k ⊇ Rm, η, l ∈ N, 0 < l < η < m (see [9, Lemma 9.2] and [23, 24]), obtaining at last

|wi(y)| ≤ C
(
(1 + |y|)−1 +

δ2
i

µi
(1 + |y|)4−n +

ε1,iδ
2
i

µi
(1 + |y|)4−n +

ε2,iδi

µi
(1 + |y|)3−n

)
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for |y| ≤ R
2δi

. By assumption (2.9) we prove

|w(y)| ≤ C(1 + |y|)−1 for y ∈ Rn
+ (2.18)

as claimed.
Now we can derive a contradiction. Notice that, since vi → U near 0, and by (1.11) we have

wi(0)→ 0 as well as ∂wi
∂y j

(0)→ 0 for j = 1, . . . , n − 1. This implies that

w(0) =
∂w
∂y1

(0) = · · · =
∂w
∂yn−1

(0) = 0. (2.19)

It is known (see [9, Lemma 2]) that any solution of (2.15) that decays as (2.18) is a linear combination
of ∂U

∂y1
, . . . , ∂U

∂yn−1
, n−2

2 U + yb ∂U
∂yb

. This, combined with (2.19), implies that w ≡ 0.
Now, on one hand |yi| ≤

R
2δi

, so estimate (2.18) holds; on the other hand, since wi(yi) = 1 and w ≡ 0,
we get |yi| → ∞, obtaining

1 = wi(yi) ≤ C(1 + |yi|)−1 → 0

which gives us the contradiction. □

Lemma 14. Assume n ≥ 7 and β < 0. There exists R,C > 0 such that

ε2,i ≤ Cδi

for |y| ≤ R/δi.

Proof. We proceed by contradiction, supposing that

ε−1
2,iδi =

(
ε2,iδi

)−1 δ2
i → 0 when i→ ∞. (2.20)

Thus, by Lemma 13, we have

|vi(y) − U(y) − δiγxi(y)| ≤ Cε2,iδi for |y| ≤ R/δi.

We define, similarly to Lemma 13,

wi(y) :=
1

ε2,iδi

(
vi(y) − U(y) − δiγxi(y)

)
for |y| ≤ R/δi,

and we have that wi satisfies (2.10), where bi is as in Lemma 13, and

Qi = −
1

ε2,iδi

{(
Lĝi − ∆

)
(U + δiγxi) + δi∆γxi

}
,

Ai =Qi +
ε1,iδ

2
i

ε2,iδi
αi(δiy)vi(y),

Q̄i = −
1

ε2,iδi

{
(n − 2)(U + δiγxi)

n
n−2 − (n − 2)U

n
n−2 − nδiU

2
n−2γxi

}
,

Fi =Q̄i + βi(δiy)vi(y).
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As before, bi satisfies inequality (2.12) while

Ai = O
(
δ2

i

ε2,iδi
(1 + |y|)2−n

)
(2.21)

Fi = O
(
δ2

i

ε2,iδi
(1 + |y|)3−n

)
+ O

(
(1 + |y|)2−n

)
,

so by classic elliptic estimates we can prove that the sequence wi converges in C2
loc(R

n
+) to some w.

We proceed as in Lemma 13 to deduce that, by (2.20)

|wi(y)| ≤ C
(
(1 + |y|)−1 +

δ2
i (1 + |y|)4−n

ε2,iδi
+ (1 + |y|)3−n

)
≤ C

(
(1 + |y|)−1

)
for |y| ≤

R
2δi

. (2.22)

Now let jn be defined as in (1.5). Similarly to [15, Lemma 12], since wi satisfies (2.10), integrating
by parts we obtain∫

∂′B+R
δi

jnFidσĝi =

∫
∂′B+R

δi

jn

[
Bĝiwi + biwi

]
dσĝi

=

∫
∂′B+R

δi

wi

[
Bĝi jn + bi jn

]
dσĝi +

∫
∂+B+R

δi

[
∂ jn

∂ηi
wi −

∂wi

∂ηi
jn

]
dσĝi

+

∫
B+R
δi

[
wiLĝi jn − jnLĝiwi

]
dµĝi (2.23)

where ηi is the inward unit normal vector to ∂+B+R
δi

. One can check easily that

lim
i→+∞

∫
∂′B+R

δi

jnQ̄idσĝi = 0.

Also, since β < 0, by Proposition 8, we have

β(δiy)vi(y)→ β(x0)U(y) for i→ +∞.

and thus

lim
i→+∞

∫
∂′B+R

δi

β(δiy)vi(y) jn(y) =
n − 2

2
β(x0)

∫
Rn−1

1 − |ȳ|2(
1 + |ȳ|2

)n−1 =: B > 0 (2.24)

so ∫
∂′B+R

δi

jnFidσĝi = B + o(1). (2.25)
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By (2.23) and (2.25) we derive a contradiction. Indeed, by the decay of jn and by the decay of wi, given
by (2.22) and by (2.20), we have

lim
i→+∞

∫
∂+B+R

δi

[
∂ jn

∂ηi
wi −

∂wi

∂ηi
jn

]
dσĝi = 0 (2.26)

Since ∆ jn = 0, one can check that

lim
i→+∞

∫
B+R
δi

wiLĝi jndµĝi = 0. (2.27)

Also, we can prove that

lim
i→+∞

∫
B+R
δi

jnQidµĝi = 0. (2.28)

Finally

lim
i→+∞

∫
∂′B+R

δi

wi

[
Bĝi jn + bi jn

]
dσĝi =

∫
∂Rn
+

w
[
∂ jn

∂yn
+ nU

2
n−2 jn

]
dσĝi = 0 (2.29)

since ∂ jn
∂yn
+ nU

2
n−2 jn = 0 when yn = 0.

In light of (2.26) (2.28) and (2.27) we infer, by (2.23), that∫
∂′B+R

δi

jnFidσĝi = −

∫
B+R
δi

[
jnAiwi

]
dµĝi + o(1). (2.30)

Again we have α(δiy)vi(y)→ α(x0)U(y) for i→ +∞, so,

lim
i→∞

∫
B+R
δi

jn(y)α(δiy)vi(y)dµĝi = α(x0) lim
i→∞

∫
Rn
+

(
sa∂avi +

n − 2
2

vi

)
vids =: A ∈ R. (2.31)

Thus ∫
B+R
δi

[
jnAiwi

]
= −

δ2
i

ε2,iδi
(A + o(1)) = o(1) (2.32)

by (2.20). At this point, by (2.25), (2.30) and (2.32), we get

B + o(1) = o(1). (2.33)

which gives us a contradiction since B > 0. □

The following proposition is the main result of this section. The proof can be obtained with a
first estimate in the spirit of the previous Lemmas, which is iterated until we get the final result. In
fact, once one have the result of Lemma 14, the proof of the Proposition is very similar to the one
of [9, Proposition 6.1]. For the sake of brevity we prefer to omit it.
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Proposition 15. Assume n ≥ 7 and β < 0. Let γxi be defined in (1.7). There exist R,C > 0 such that∣∣∣∇τȳ (
vi(y) − U(y) − δiγxi(y)

)∣∣∣ ≤ Cδ2
i (1 + |y|)4−τ−n∣∣∣∣∣yn

∂

∂n

(
vi(y) − U(y) − δiγxi(y)

)∣∣∣∣∣ ≤ Cδ2
i (1 + |y|)4−n

for |y| ≤ R
2δi

. Here τ = 0, 1, 2 and ∇τȳ is the differential operator of order τ with respect the first n − 1
variables.

2.5. Sign estimates of Pohozaev identity terms

We estimate now P(ui, r), where {ui}i is a family of solutions of (2.1) which has an isolated simple
blow up point xi → x0. This estimate, contained in Proposition 17, is a crucial point when proving the
vanishing of the second fundamental form at an isolated simple blow up point.

The leading term of P(ui, r) will be −
∫

B+r/δi

(
yb∂bu + n−2

2 u
) [

(Lĝi − ∆)v
]

dy, so we set

R(u, v) = −
∫

B+r/δi

(
yb∂bu +

n − 2
2

u
) [

(Lĝi − ∆)v
]

dy, (2.34)

and we recall the following result by Almaraz [9, Propositions 5.2 and 7.1].

Lemma 16. For n ≥ 7 we have

R(U + δ2γq,U + δ2γq) =δ2 (n − 6)ωn−2In
n

(n − 1)(n − 2)(n − 3)(n − 4)

[
∥π∥2

]
−

1
2
δ2

∫
Rn
+

γq∆γqdy + o(δ2)

where In
n :=:=

∫ ∞
0

snds
(1+s2)n .

Proposition 17. Let xi → x0 be an isolated simple blow-up point for ui solutions of (2.1). Let β < 0
and n ≥ 7. Fixed r, we have, for i large

P̂(ui, r) ≥δ2
i

(n − 6)ωn−2In
n

(n − 1)(n − 2)(n − 3)(n − 4)

[
∥π∥2

]
− ε1,iδ

2
i
4(n − 2)In

nωn−2

(n − 3)(n − 4)
α(xi) + o(δ2

i ).

Proof. We remind that the definition of P̂ is given in Theorem 5 and we take vi(y) as in (2.7). By
Proposition 15 and by (1.8) of Lemma 4, for |y| < R/δi we have

|vi(y) − U(y)| = O(δ2
i (1 + |y|4−n) + O(δi(1 + |y|3−n) = O(δi(1 + |y|3−n)

|ya∂avi(y) − ya∂aU(y)| = O(δ2
i (1 + |y|4−n) + O(δi(1 + |y|3−n) = O(δi(1 + |y|3−n),

so, recalling (2.5) we have∫
B+r

(
ya∂aui +

n − 2
2

ui

)
ε1,iαiuidy = −

4(n − 2)In
nωn−2

(n − 3)(n − 4)
ε1,iδ

2
i α(xi) + o(δ2

i ).
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Analogously we obtain∫
∂′B+r

(
ȳk∂kui +

n − 2
2

ui

)
ε2,iβiuidȳ

= ε2,iδi
n − 2

2
β(xi)

∫
Rn−1

1 − |ȳ|2[
1 + |ȳ|2

]n−1 dȳ + ε2,iδiO(δ2
i ) > 0.

So, for i sufficiently large we obtain

P̂(ui, r) ≥ −
∫

B+r/δi

(
yb∂bvi +

n − 2
2

vi

) [
(Lĝi − ∆)vi

]
dy

−
4(n − 2)In

nωn−2

(n − 3)(n − 4)
ε1,iδ

2
i α(xi) + o(δ2

i ).

Then, by the estimates on vi obtained in the previous section, using Lemma 16, and recalling that, by
inequality (1.9),

∫
Rn
+

γq∆γqdy ≤ 0, we get

P̂(ui, r) ≥R(U + δ2γq,U + δ2γq)

−
4(n − 2)In

nωn−2

(n − 3)(n − 4)
ε1,iδ

2
i α(xi) + o(δ2

i )

≥δ2
i

(n − 6)ωn−2In
n

(n − 1)(n − 2)(n − 3)(n − 4)

[
|hkl(xi)|2

]
−

4(n − 2)In
nωn−2

(n − 3)(n − 4)
ε1,iδ

2
i α(xi) + o(δ2

i )

which gives the proof. □

Proposition 18. Assume n ≥ 7, 0 ≤ ε1,i, ε2,1 ≤ ε̄ < 1, β < 0 and

max
q∈∂M

{
α(q) −

n − 6
4(n − 1)(n − 2)2 ∥π(q)∥2

}
< 0.

Let xi → x0 be an isolated simple blow-up point for ui solutions of (2.1). Then

1. For i large, P̂(ui, r) ≥ δ2
i C1

[
∥π(xi)∥2

]
+ o(δ2

i ) for some C1 > 0;
2. ∥π(x0)∥ = 0.

Proof. By Proposition 11 and Proposition 9 we have

P(ui, r) ≤ Cδn−2
i .

On the other hand recalling Proposition 17, Theorem 5, the assumption on α, and that ε1,i < 1, we have

P(ui, r) = P̂(ui, r) ≥ δ2
i C1

[
∥π(xi)∥2

]
+ o(δ2

i ),

with C1 > 0. In addition, we get ∥π(xi)∥2 ≤ δn−4
i , which gives the proof. □
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Once we have the result of Proposition 17, with strategy similar to 18, we can prove the following
Proposition. For a detailed proof we refer to [9, Proposition 8.1].

Proposition 19. Let xi → x0 be an isolated blow up point for ui solutions of (2.1). Assume n ≥ 7,

0 ≤ ε1,i, ε2,1 ≤ ε̄ < 1, β < 0, max
q∈∂M

{
α(q) −

n − 6
4(n − 1)(n − 2)2 ∥π(q)∥2

}
< 0 and ∥π(x0)∥ , 0. Then x0 is

isolated simple.

2.6. Proof of Theorem 1

Using what we have obtained throughout this section, we can now prove the compactness result.

Proof of Theorem 1. . By contradiction, suppose that xi → x0 is a blowup point for ui solutions of
(1.1). Let qi

1, . . . q
i
N(ui)

the sequence of points given by Proposition 10. By Claim 3 of Proposition 10
there exists a sequence of indices ki ∈ 1, . . .N such that dḡ

(
xi, qi

ki

)
→ 0. Up to relabeling, we say

ki = 1 for all i. Then also qi
1 → x0 is a blow up point for ui. By Proposition 10 and Proposition 19 we

have that qi
1 → x0 is an isolated simple blow up point for ui. Then by Proposition 18 we deduce that

∥π(x0)∥ = 0, contradicting the assumption of the theorem. This concludes the proof. □

3. The non compactness result

In this section we perform the Ljapunov-Schmidt finite dimensional reduction, which relies on
three steps. First, we start finding a solution of the infinite dimensional problem (3.4) with a ansatz
u = Wδ,q + δVδ,q + ϕ where Wδ,q + δVδ,q is a model solution and ϕ = ϕδ,q is a small remainder. Then, we
study a finite dimensional reduced problem which depends only on δ, q. Finally, we give the proof of
Theorem 2.

In the Ljapunov-Schmidt procedure, it will be necessary that −Lg+ε1α is a positive definite operator.
Since −Lg is positive definite, in the case α < 0, we choose ε1 small enough in order to ensure the
positivity of −Lg + ε1α .

3.1. The finite dimensional reduction

Since −Lg + ε1α is a positive definite operator, we define an equivalent scalar product on H1 as

⟨⟨u, v⟩⟩g =
∫

M
(∇gu∇gv +

n − 2
4(n − 1)

Rguv + ε1αuv)dµg (3.1)

which leads to the norm ∥ · ∥g equivalent to the usual one.
Given 1 ≤ t ≤ 2(n−1)

n−2 we have the well known embedding

i : H1(M)→ Lt(∂M),

and we define, by the scalar product ⟨⟨·, ·⟩⟩g,

i∗α : Lt′(∂M)→ H1(M)

in the following sense: given f ∈ L
2(n−1)

n−2 (∂M) there exists a unique v ∈ H1(M) such that

v = i∗α( f ) ⇐⇒ ⟨⟨v, φ⟩⟩g =
∫
∂M

fφdσ for all φ (3.2)
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⇐⇒

{
−∆gv + n−2

4(n−1)Rgv + ε1α = 0 on M;
∂v
∂ν
= f on ∂M.

At this point Problem (1.1) is equivalent to find v ∈ H1(M) such that

v = i∗α( f (v) − ε2βv)

where
f (v) = (n − 2)

(
v+

) n
n−2 .

Notice that, if v ∈ H1
g , then f (v) ∈ L

2(n−1)
n (∂M).

Also, problem (1.1) has a variational structure and a positive solution for (1.1) is a critical point for
the following functional defined on H1(M)

Jε1,ε2,g(v) = Jg(v) : =
1
2

∫
M
|∇gv|2 +

n − 2
4(n − 1)

Rgv2 + ε1αv2dµg

+
1
2

∫
∂M
ε2βv2dσg −

(n − 2)2

2(n − 1)

∫
∂M

(
v+

) 2(n−1)
n−2 dσg.

We define a model solution of (1.1) by means of the standard bubble U and of the function γq introduced
in Lemma 4

Given q ∈ ∂M and ψ∂q : Rn
+ → M the Fermi coordinates in a neighborhood of q, we define

Wδ,q(ξ) = Uδ

((
ψ∂q

)−1
(ξ)

)
χ
((
ψ∂q

)−1
(ξ)

)
=

=
1

δ
n−2

2

U
(y
δ

)
χ(y) =

1

δ
n−2

2

U (x) χ(δx)

where y = (z, t), with z ∈ Rn−1 and t ≥ 0, δx = y =
(
ψ∂q

)−1
(ξ) and χ is a radial cut off function, with

support in ball centered in 0, of radius R. In an analogous way, we define

Vδ,q(ξ) =
1

δ
n−2

2

γq

(
1
δ

(
ψ∂q

)−1
(ξ)

)
χ
((
ψ∂q

)−1
(ξ)

)
.

Finally, given ja defined in (1.4) and (1.5) we define

Zb
δ,q(ξ) =

1

δ
n−2

2

jb

(
1
δ

(
ψ∂q

)−1
(ξ)

)
χ
((
ψ∂q

)−1
(ξ)

)
.

By means of ⟨⟨·, ·⟩⟩g it is possible to decompose H1 in the direct sum of the following two subspaces

Kδ,q = Span
〈
Z1
δ,q, . . . ,Z

n
δ,q

〉
K⊥δ,q =

{
φ ∈ H1(M) :

〈〈
φ,Zb

δ,q

〉〉
g
= 0, b = 1, . . . , n

}
and to define the projections

Π = H1(M)→ Kδ,q and Π⊥ = H1(M)→ K⊥δ,q.
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As claimed before, we look for a solution uq of (1.1) having the form

uq = Wδ,q + δVδ,q + ϕ

where ϕ ∈ K⊥δ,q. Using i∗α, (1.1) is equivalent to the following pair of equations

Π
{
Wδ,q + δVδ,q + ϕ − i∗α

[
f (Wδ,q + δVδ,q + ϕ) − ε2β(Wδ,q + δVδ,q + ϕ)

]}
= 0 (3.3)

Π⊥
{
Wδ,q + δVδ,q + ϕ − i∗α

[
f (Wδ,q + δVδ,q + ϕ) − ε2β(Wδ,q + δVδ,q + ϕ)

]}
= 0. (3.4)

Let us define the linear operator L : K⊥δ,q → K⊥δ,q as

L(ϕ) = Π⊥
{
ϕ − i∗α

(
f ′(Wδ,q + δVδ,q)[ϕ]

)}
, (3.5)

and a nonlinear term N(ϕ) and a remainder term R as

N(ϕ) =Π⊥
{
i∗α

(
f (Wδ,q + δVδ,q + ϕ) − f (Wδ,q + δVδ,q) − f ′(Wδ,q + δVδ,q)[ϕ]

)}
(3.6)

R =Π⊥
{
i∗α

(
f (Wδ,q + δVδ,q)

)
−Wδ,q − δVδ,q

}
, (3.7)

With these operators, the infinite dimensional equation (3.4) becomes

L(ϕ) = N(ϕ) + R − Π⊥
{
i∗α

(
ε2β(Wδ,q + δVδ,q + ϕ)

)}
.

In this subsection we find, for any δ, q given, a function ϕ which solves equation (3.4). Many of the
estimates which follow are contained in [16], which we refer to for further details. Here we describe
only the main steps of each proof.

Lemma 20. Assume n ≥ 7. It holds
∥R∥g = O(δ2)

Proof. Take the unique Γ such that

Γ = i∗α
(

f (Wδ,q + δVδ,q)
)
,

that is the function solving  −∆gΓ +
n−2

4(n−1)RgΓ + ε1αΓ = 0 on M;
∂Γ
∂ν
= (n − 2)

(
(Wδ,q + δVδ,q)+

) n
n−2 on ∂M.

We have, by (3.1) that

∥R∥2g ≤
∥∥∥∥i∗g

(
f (Wδ,q + δVδ,q

)
−Wδ,q − δVδ,q

∥∥∥∥2

g
= ∥Γ −Wδ,q − δVδ,q∥

2
g

=

∫
M

[
∆g(Wδ,q + δVδ,q) −

n − 2
4(n − 1)

Rg(Wδ,q + δVδ,q)
]

(Γ −Wδ,q − δVδ,q)dµg

−

∫
M
ε1α(Wδ,q + δVδ,q)(Γ −Wδ,q − δVδ,q)dµg
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+

∫
∂M

[
f (Wδ,q + δVδ,q) −

∂

∂ν
(Wδ,q + δVδ,q)

]
(Γ −Wδ,q − δVδ,q)dσg

=: I1 + I2 + I3.

For I1 we have

I1 ≤

∣∣∣∣∣∆g(Wδ,q + δVδ,q) −
n − 2

4(n − 1)
Rg(Wδ,q + δVδ,q)

∣∣∣∣∣
L

2n
n+2
g (M)

∥R∥g

and direct computation and by the expansions of the metric (1.13) (1.14) we have (see [16, Lemma 9])∣∣∣Wδ,q + δ
2Vδ,q

∣∣∣
L

2n
n+2
g̃ (M)

= O(δ2),

∣∣∣∆g̃(Wδ,q + δ
2Vδ,q)

∣∣∣
L

2n
n+2
g̃ (M)

= O(δ2).

Similarly
I2 ≤ ε1O(δ2) ∥R∥g = O(δ2) ∥R∥g .

The proof of estimate for I3 is more delicate, and uses in a crucial way that γq solves (1.7). As shown
in [16, Lemma 9] we have indeed

I3 ≤ O(δ2) ∥R∥g

which completes the proof. □

Lemma 21. Given (ε1, ε2), for any pair (δ, q) there exists a positive constant C = C(δ, q) such that for
any φ ∈ K⊥δ,q it holds

∥L(φ)∥g ≥ C∥φ∥g.

This lemma is a standard tool in finite dimensional reduction, so we refer to [17, 18] for the proof.
Proving that N is a contraction it is also standard. In fact there exists η < 1 such that, for any

φ1, φ2 ∈ K⊥δ,q it holds

∥N(φ)∥g ≤ η∥φ∥g and ∥N(φ1) − N(φ2)∥g ≤ η∥φ1 − φ2∥g (3.8)

By Lemma 20, Lemma 21, and by (3.8) we get the last result of this subsection.

Proposition 22. Given (ε1, ε2), for any pair (δ, q) there exists a unique ϕ = ϕδ,q ∈ K⊥δ,q which solves
(3.4) such that

∥ϕ∥g = O(δ2 + ε2δ).

In addition the map q 7→ ϕ is C1.

Proof. Lemma 21 and (3.8) and by the properties of iα, there exists C > 0 such that∥∥∥∥L−1
(
N(ϕ) + R − Π⊥

{
i∗α

(
ε2β(Wδ,q + δVδ,q + ϕ)

)})∥∥∥∥
g

≤ C
(
(η∥ϕ∥g + ∥R∥g +

∥∥∥∥i∗α
(
ε2β(Wδ,q + δVδ,q + ϕ)

)∥∥∥∥
g

)
.
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Now, it is easy to estimate that∥∥∥∥i∗α
(
ε2β(Wδ,q + δVδ,q + ϕ)

)∥∥∥∥
g
≤ ε2

(∥∥∥Wδ,q + δVδ,q

∥∥∥
L

2(n−1)
n

g (∂M)
+ ∥ϕ∥g

)
≤ C

(
ε2δ + ε2 ∥ϕ∥g

)
. (3.9)

By Lemma 20 and by the previous estimates, for the map

T (ϕ̃) := L−1
(
N(ϕ̃) + R − Π⊥

{
i∗α

(
ε2β(Wδ,q + δVδ,q + ϕ)

)})
it holds

∥T (ϕ)∥g ≤ C
(
(η + ε2)∥ϕ∥g + ε2δ + δ

2
)
.

So, it is possible to choose ρ > 0 such that T is a contraction from the ball ∥ϕ∥g ≤ ρ(ε2δ + δ
2) in itself.

Hence, by the fixed point Theorem, we have the first claim. The second claim is proved by the implicit
function Theorem. □

3.2. The reduced functional

Once a solution of Problem (3.4) is found, it is possible to look for a critical point of
Jg

(
Wδ,q + δVδ,q + ϕ

)
, solving a finite dimensional problem which depends only on (δ, q).

Lemma 23. Assume n ≥ 7. It holds∣∣∣∣Jg

(
Wδ,q + δVδ,q + ϕ

)
− Jg

(
Wδ,q + δVδ,q

)∣∣∣∣ = o(1) ∥ϕ∥g

C0-uniformly for q ∈ ∂M.

Proof. We have, for some θ ∈ (0, 1)

Jg(Wδ,q + δVδ,q + ϕ) − Jg(Wδ,q + δVδ,q) = J′g(Wδ,q + δVδ,q)[ϕ]

+
1
2

J′′g (Wδ,q + δVδ,q + θϕ)[ϕ, ϕ]

=

∫
M

(
∇gWδ,q + δ∇gVδ,q

)
∇gϕ +

(
n − 2

4(n − 1)
Rg + ε1α

) (
Wδ,q + δVδ,q

)
ϕdµg

− (n − 2)
∫
∂M

((
Wδ,q + δVδ,q

)+) n
n−2
ϕdσg

+

∫
∂M
ε2β

(
Wδ,q + δVδ,q

)
ϕdσg +

1
2
∥ϕ∥2g

−
n
2

∫
∂M

((
Wδ,q + δVδ,q + θϕδ,q

)+) 2
n−2
ϕ2
δ,qdσg +

1
2

∫
∂M
ε2β|ϕ|

2dσg. (3.10)

All the terms but
∫

M
ε1α

(
Wδ,q + δVδ,q

)
ϕdµg have been estimated in [16, Lemma 12], so we summarize

only the key steps. As in Lemma 20, the most delicate term is the nonlinear term on the boundary. In
particular we have that
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∂M

[
(n − 2)

((
Wδ,q + δVδ,q

)+) n
n−2
−
∂

∂ν
Wδ,q

]
ϕdσg

=

∣∣∣∣∣∣(n − 2)
((

Wδ,q + δVδ,q

)+) n
n−2
−
∂

∂ν
Wδ,q

∣∣∣∣∣∣
L

2(n−1)
n (∂M)

∥ϕ∥g

= o(|δ log δ|)∥ϕ∥g = o(1)∥ϕ∥g.

The other terms in (3.10) are easier to estimate and lead to higher order terms.
At last, by Holder inequality we have∣∣∣∣∣∫

M
Wδ,qϕdµg

∣∣∣∣∣ ≤ C|Wδ,q|
L

2n
n+2
g

|ϕ|
L

2n
n−2
g

≤ Cδ2∥ϕ∥g

δ

∣∣∣∣∣∫
M

Vδ,qϕdµg

∣∣∣∣∣ ≤ Cδ|Vδ,q|L2
g
|ϕ|L2

g
≤ Cδ∥ϕ∥g.

so ∫
M
ε1α

(
Wδ,q + δVδ,q

)
ϕdµg = O(δ)∥ϕ∥g

and we are in position to prove the result. □

Lemma 24. Let n ≥ 7. It holds

Jg(Wδ,q + δVδ,q) = A + ε1δ
2α(q)B + ε2δβ(q)C + δ2φ(q) + o(ε1δ

2) + o(ε2δ) + o(δ2)

where

A =
(n − 2)(n − 3)

2(n − 1)2 ωn−2In
n−1 > 0;

B =
n − 2

(n − 1)(n − 4)
ωn−2In

n−1 > 0;

C =
n − 2
n − 1

ωn−2In
n−1 > 0;

φ(q) =
1
2

∫
Rn
+

γq∆γqdy −
(n − 6)(n − 2)ωn−1In

n−1

4(n − 1)2(n − 4)
∥π(q)∥2 ≤ 0.

Here In
n−1 :=

∫ ∞
0

sn

(1+s2)n−1 ds and π(q) is the trace free tensor of the second fundamental form.

Proof. The main estimates of this proof are proved in [16, Proposition 13], which we refer for to for a
detailed proof. Here, we limit ourselves to estimate the perturbation terms. We have

Jg(Wδ,q + δVδ,q) =
1
2

∫
M
|∇g(Wδ,q + δVδ,q)|2dµg +

n − 2
8(n − 1)

∫
M

Rg(Wδ,q + δVδ,q)2dµg

+
1
2
ε1

∫
M
α(Wδ,q + δVδ,q)2dµg

+
1
2
ε2

∫
∂M
β(Wδ,q + δVδ,q)2dσg

−
(n − 2)2

2(n − 1)

∫
∂M

(
Wδ,q + δVδ,q

) 2(n−1)
n−2

.
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We easily compute the terms involving ε1 and ε2 taking in account the expansion of the volume form
(1.13), getting

1
2
ε1

∫
M
α(Wδ,q + δVδ,q)2dµg =

1
2
ε1δ

2α(q)
∫
Rn

U(y)2dy + o(ε1δ
2)

and
1
2
ε2

∫
∂M
β(Wδ,q + δVδ,q)2dµg =

1
2
ε2δβ(q)

∫
Rn−1

U(ȳ, 0)2dȳ + o(ε2δ).

By direct computation, and by Remark 18 in [16] (see also [16, page 1332]) we have that
∫
Rn U(y)2dy =

2(n−2)
(n−1)(n−4)ωn−2In

n−1 and
∫
Rn−1 U(ȳ, 0)2dȳ = 2(n−2)

n−1 ωn−2In
n−1, getting the value of the positive constants B and

C.
For the remaining terms we refer to [16, Proposition 13] in which is proved that

1
2

∫
M
|∇g̃q(Wδ,q + δVδ,q)|2dµg +

n − 2
8(n − 1)

∫
M

Rg(Wδ,q + δVδ,q)2dµg

−
(n − 2)2

2(n − 1)

∫
∂M

(
Wδ,q + δVδ,q

) 2(n−1)
n−2 dσgq = A + δ2φ(q) + o(δ2).

We conclude by noticing that φ(q) ≤ 0 by (1.9). □

3.3. Proof of Theorem 2

At first we recall that, in the hypotheses of Theorem 2, we have that the function φ defined in
Lemma 24 is strictly negative on ∂M. Infact ∥π(q)∥2 is non zero by assumption, and

∫
Rn
+

γq∆γq is non
positive by (1.9). With this in mind, we are in position to prove the result.

Proof of Theorem 2. . We start with the first case, β > 0. We choose

ε1 = o(1)
δ = λε2

where λ ∈ R+. With this choice, by Lemma 23 and Proposition 22 we have that∣∣∣∣Jg

(
Wλε2,q + λε2Vλε2,q + ϕ

)
− Jg

(
Wλε2,q + λε2Vλε2,q

)∣∣∣∣ = o(ε2
2)

and that, by Lemma 24,

Jg

(
Wλε2,q + λε2Vλε2,q

)
= A + ε2

2

(
λβ(q)C + λ2φ(q)

)
+ o(ε2

2).

We recall a result which is a key tool in Ljapunov-Schmidt procedure, and which is proved, for
instance, in [16, Lemma 15]) and which relies on the estimates of Lemma 23.
Remark. Given (ε1, ε2), if (λ̄, q̄) ∈ (0,+∞) × ∂M is a critical point for the reduced functional
Iε1,ε2(λ, q) := Jg

(
Wλε2,q + λε2Vλε2,q + ϕ

)
, then the function Wλ̄ε2,q̄ + λ̄ε2Vλ̄ε2,q̄ + ϕ is a solution of (1.1).

To conclude the proof it lasts to find a pair (λ̄, q̄) which is a critical point for Iε1,ε2(λ, q).
In this first case we consider G(λ, q) := λβ(q)C + λ2φ(q). We have that β(q)C is strictly positive

on ∂M, by our assumptions, while, as recalled before, φ is strictly negative on ∂M. At this point there
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exists a compact set [a, b] ⊂ R+ such that the function G admits an absolute maximum in (a, b) × ∂M,
which also is the absolute maximum value of G on R+ × ∂M. This maximum is also C0-stable, in the
sense that, if (λ0, q0) is the maximum point for G, for any function f ∈ C1([a, b] × ∂M) with ∥ f ∥C0

sufficiently small, then the function G + f on [a, b] × ∂M admits a maximum point (λ̄, q̄) close to
(λ0, q0). By the C0 stability of this maximum point (λ0, q0), and by Lemma 24, given ε2 sufficiently
small (and ε1 = o(1)), there exists a pair

(
λε1,ε2 , qε1,ε2

)
which is a maximum point for Iε1,ε2(λ, q). This

implies, in light of the above Remark, that there exists a pair
(
λ̄ε1,ε2 , q̄ε1,ε2

)
such that Wλ̄ε1 ,ε2ε2,q̄ε1 ,ε2

+

λ̄ε1,ε2ε2Vλ̄ε1 ,ε2ε2,q̄ε1 ,ε2
+ ϕ is a solution of (1.1), and the proof for the case β > 0 is complete.

The proof in the second case is similar. In this case, by assumption, we have that Bα(q) + φ(q) > 0
on ∂M. Then we choose

ε1 = 1
δ = λε2

and we obtain that

Iε1,ε2(λ, q) = A + ε2
2

[
λβ(q)C + λ2 (α(q)B + φ(q))

]
+ o(ε2

2).

In this case we define the function G(λ, q) as

G(λ, q) := λβ(q)C + λ2 (α(q)B + φ(q)) .

and, by our assumptions, the coefficient of λ is strictly negative on ∂M while the coefficient of λ2 is
strictly positive on ∂M, so we can conclude the proof follows in a similar way. □
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