
Electronic  
Research Archive

http://www.aimspress.com/journal/era

ERA, 30(4): 1158–1186.
DOI: 10.3934/era.2022062
Received: 08 January 2022
Revised: 21 February 2022
Accepted: 01 March 2022
Published: 14 March 2022

Research article

Greedy randomized and maximal weighted residual Kaczmarz methods
with oblique projection

Fang Wang, Weiguo Li*, Wendi Bao and Li Liu

China University of Petroleum, Qingdao 266580, China

* Correspondence: Email: liwg@upc.edu.cn.

Abstract: For solving large-scale consistent linear system, a greedy randomized Kaczmarz method
with oblique projection and a maximal weighted residual Kaczmarz method with oblique projection
are proposed. By using oblique projection, these two methods greatly reduce the number of iteration
steps and running time to find the minimum norm solution, especially when the rows of matrix are
highly linearly correlated. Theoretical proof and numerical results show that the greedy randomized
Kaczmarz method with oblique projection and the maximal weighted residual Kaczmarz method with
oblique projection are more effective than the greedy randomized Kaczmarz method and the maximal
weighted residual Kaczmarz method respectively.
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1. Introduction

Consider to solve a large-scale consistent linear system

Ax = b, (1.1)

where the matrix A∈ Rm×n, b ∈ Rm. One of the solutions of the system (1.1) is x∗ = A† b, which is the
least Euclidean norm solution. Especially, when the coefficient matrix A is full column rank, x∗ is the
unique solution of the system (1.1).

There are many researches on solving the system (1.1) through iterative methods, among which
the Kaczmarz method is a representative and efficient row-action method. The Kaczmarz method [1]
selects the rows of the matrix A by using the cyclic rule and in each iteration, the current iteration
point is orthogonally projected onto the corresponding hyperplane. In 1970, Gordon et al. [2] first
applied the Kaczmarz method, also known as algebraic reconstruction technique (ART), to the field of
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computed tomography (CT). In the development of CT field, representative methods include filtered-
back projection (FBP) method [3], ART and Maximum entropy method [4, 5], etc. However, if the
collected data are incomplete, the FBP method performs very poorly and the ART method is widely
used in this field [6, 7] due to its superior anti-interference performance, implicity and low storage
characteristics. Kaczmarz method is also widely applied in image reconstruction [8–11], distributed
computing [12] and signal processing [13]; and so on [14–17]. In 1971, Tanabe [18] analyzed the
theoretical convergence of the Kaczmarz method and obtained the conclusion that when initial vector
x (0) ∈ N(A), the Kaczmarz method converges to the minimum norm solution x∗ of the problem (1.1).
In recent years, Kang et al. [19, 20] obtained the theoretical convergence rate proof of the Kaczmarz
method.

Since the Kaczmarz method cycles through the rows of A, the performance may depend heavily
on the ordering of these rows. A poor ordering may result in a very slow convergence rate. Mc-
Cormick [21] proposed a maximal weighted residual Kaczmarz (MWRK) method and proved its con-
vergence. In recent work, a new theoretical convergence estimate was proposed for the MWRK method
in [22]. Strohmer and Vershynin [23] proposed a randomized Kaczmarz (RK) method which selects a
given row with proportional to the Euclidean norm of the rows of the coefficient matrix A and proved
its convergence. After the above work, research on the Kaczmarz-type methods was reignited re-
cently, see for example, the randomized block Kaczmarz-type methods [24–27], the greedy version of
Kaczmarz-type methods [28–32], the extended version of Kaczmarz-type methods [33–35] and many
others [36–41]. The related works of Kaczmarz also accelerated the development of column action
iterative methods represented by the coordinate descent (CD) method [42] ( see [43–50], etc.).

Recently, Bai and Wu [28] proposed a new randomized row index selection strategy, which is aimed
at grasping larger entries of the residual vector at each iteration and constructed a greedy randomized
Kaczmarz (GRK) method. They proved that the convergence of the GRK method is faster than that of
the RK method. In [38, 51], Popa gave the definition of oblique projection, which broke the limitation
of orthogonal projection. In [52], Lorenez and Rose et al. used oblique projection to construct random
Kaczmarz methods with mismatched adjoint (RKMA). Recently, Li and Wang et al. [53] proposed
a Kaczmarz method with oblique projection (KO). This method continuously projects the current it-
eration point to the intersection of two hyperplanes and can solve the problem that the rows of the
coefficient matrix A are highly linearly correlated as well as the algorithms proposed in [36, 54]. They
also proposed a uniform random version of KO method—random Kaczmarz method with oblique pro-
jection (RKO) and proved theoretically and numerically that KO method and RKO method are faster
than Kaczmarz method [1] and RK method [23] respectively. In this paper, we first briefly introduce
the oblique projection and give the relationship between the KO method and the CD method. Based on
the row index selection rules of two representative randomized and non-randomized Kaczmarz-type
methods—the GRK method and the MWRK method, we propose two new Kaczmarz-type methods
with oblique projection (KO-type)—the greedy randomized Kaczmarz method with oblique projection
(GRKO) and the maximal weighted residual Kaczmarz method with oblique projection (MWRKO)
respectively and prove their convergence theoretically and numerically. We emphasize the efficiency
of our proposed methods when the rows of the matrix A are highly linearly correlated and find that
Kaczmarz-type methods based on orthogonal projection performed poorly when applied to this kind
of matrices.

The organization of this paper is as follows. In Section 2, we introduce the KO-type method and
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Figure 1. Oblique projection in different directions.

give its two lemmas. In Section 3, we propose the GRKO method and MWRKO method naturally and
prove the convergence of the two methods. In Section 4, some numerical examples are provided to
illustrate the efficiency of our new methods. Finally, some brief concluding remarks are described in
Section 5.

In this paper, 〈·, ·〉 stands for the scalar product. ‖x‖ is the Euclidean norm of x ∈ Rn. For a given
matrix G = (gi j) ∈ Rm×n, gT

i , GT , G†, R(G), N(G), ‖G‖F and λmin(G), are used to denote the ith row,
the transpose, the Moore-Penrose pseudoinverse [55], the range space, the null space, the Frobenius
norm and the smallest nonzero eigenvalue of G respectively. PC(x) is the orthogonal projection of x
onto C , x̃ is any solution of the system (1.1). Let Ek denote the expected value conditonal on the first
k iterations, that is,

Ek[·] = E[·| j0, j1, · · · , jk−1],

where js (s = 0, 1, · · · , k− 1) is the column chosen at the sth iteration.

2. Kaczmarz-type method with oblique projection and its lemmas

In this chapter, we first briefly introduce the definition of oblique projection and analyze the rela-
tionship between CD method [42] and KO-type method [53]. Finally, we give two lemmas of KO-type
method, which provide a theoretical guarantee for the two oblique projection methods proposed in the
next chapter.

2.1. Relationship between coordinate descent method and Kaczmarz-type method with oblique
projection

The sets Hi = {x ∈ Rn | 〈ai, x〉= bi} (i = 1,2, · · · , m) are the hyperplanes which associated to the
ith equation of the system (1.1) . To project the current iteration point x (k) to one of the hyperplanes,
the oblique projection [38, 51] can be expressed as follows:

x (k+1) = Pd
Hi
(x (k)) = x (k) −

〈ai, x (k)〉 − bi

〈d, ai〉
d, (2.1)

where d ∈ Rn is a given direction. In Figure 1, x (k+1) is obtained by oblique projection of the current
iteration point x (k) to the hyperplane Hik+1

along the direction d1, i.e., x (k+1) = Pd1
Hik+1
(x (k)). y (k+1) is the
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iteration point obtained when the direction d2 = aik+1
, i.e., y (k+1) = P

aik+1
Hik+1
(x (k)). When the direction d =

ai (i = mod(k, m) + 1), it is the classic Kaczmarz method. However, when the hyperplanes are close
to linearly parallel, the Kaczmarz method based on orthogonal projection has a slow iteration speed.
In this paper, we use a iteration direction d3 = wik = aik+1

−
〈aik

,aik+1
〉

‖ai‖2
aik mentioned in [53], to make the

current iteration point approach to the intersection of two hyperplanes, i.e., z(k+1) = P
wik
Hik+1
(x (k)).

The framework of KO-type method is given as follows:

Algorithm 1 Kaczmarz-type method with oblique projection (KO-type)

Require: A∈ Rm×n, b ∈ Rm, x (0) ∈ Rn, K
1: For i = 1 : m, M(i) = ‖ai‖2

2: Choose i1 based on a certain selection rule

3: Compute x (1) = x (0) +
bi1−〈ai1 ,x (0)〉

M(i1)
ai1

4: for k = 1,2, · · · , K do
5: Choose ik+1 based on a certain selection rule
6: Compute Dik = 〈aik , aik+1

〉 and r(k)ik+1
= bik+1

− 〈aik+1
, x (k)〉

7: Compute wik = aik+1
−

Dik
M(ik)

aik and hik(= ‖wik‖
2) = M(ik+1)−

Dik
M(ik)

Dik

8: α
(k)
ik
=

r(k)ik+1
hik

and x (k+1) = x (k) +α(k)ik
wik

9: end for
10: Output x (K+1)

For KO-type method, the residual satisfies

r(k+1) = b− Ax (k+1)

= b− A

�

x (k) +α(k)ik
(aik+1

−
〈aik , aik+1

〉
||aik ||2

aik)

�

= r(k) −α(k)ik

�

Aaik+1
−
〈aik , aik+1

〉
||aik ||2

Aaik

�

.

(2.2)

In the next section, the certain selection rules in step 2 and step 5 of algorithm 1 will be given.
In order to get the relationship between the CD method and the KO-type method, we need to explain

the construction idea of the CD method [42]. Consider a linear system

Ãx = b, (2.3)

where the coefficient matrix Ã ∈ Rn×n is a positive semidefinite matrix and b ∈ Rn is a real m dimen-
sional vector. In this case, solving the system (2.3) is equivalent to the following strict convex quadratic
minimization problem

f (x) =
1
2

x T Ãx − bT x .

From [42], the next iteration point x (k+1) is the solution to min
t∈R

f (x (k) + td), i.e.,

x (k+1) = x (k) +
(b− Ãx (k))T d

dT Ãd
d, (2.4)
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where d is a nonzero direction and x (k) is a current iteration point.
Since the requirement that matrix Ã is positive semidefinite is not general, problem (2.3) is usually

transformed into the following two regularizing linear systems:

AT Ax = AT b, (2.5)

and
�

AAT y = b,
x = AT y,

(2.6)

where A ∈ Rm×n in (2.5) and (2.6) is an arbitrary matrix. Obviously, both AT A and AAT are positive
semidefinite matrices, so we can apply systems (2.5) and (2.6) to iteration (2.4).

One natural choice of a set of easily computable search directions is to choose d by successively
cycling through the set of canonical unit vectors {e1, · · · , en}, where ei ∈ Rn (i = 1, · · · , n). Applying
system (2.5) to iteration (2.4), we can get:

x (k+1) = x (k) +
〈r(k), Ai〉
||Ai||2

ei,

where i = mod(k, n) + 1, Ai is the i-th column of matrix A. This is the iterative formula of CD
method [42], also known as Gauss-Seidel method. When d = ei, where ei ∈ Rm (i = 1, · · · , m),
applying system (2.6) to iteration (2.4) , we can get:

x (k+1) = x (k) +
bi − aT

i x (k)

‖ai‖2
ai,

where i = mod(k, m) + 1. This is the iterative formula of Kaczmarz method [1].
Next, we will prove that the KO-type method is an iterative form in the new direction d = eik+1

−
〈aik+1

,aik
〉

||aik
||2 eik = eik+1

−
Dik

M(ik)
eik , where ei ∈ Rm (i = 1, · · · , m). Applying system (2.6) to iteration (2.4),

we get:

y (k+1) = y (k) +
(b− AAT y (k))T (eik+1

−
Dik

M(ik)
eik)








AT (eik+1
−

Dik
M(ik)

eik)









2 (eik+1
−

Dik

M(ik)
eik)

= y (k) +
(b− Ax (k))T (eik+1

−
Dik

M(ik)
eik)

hik

(eik+1
−

Dik

M(ik)
eik)

= y (k) +
r(k)ik+1
−

Dik
M(ik)

r(k)ik

hik

(eik+1
−

Dik

M(ik)
eik).

Multiply left by AT on both sides of the above equation, we get

x (k+1) = x (k) +
r(k)ik+1
−

Dik
M(ik)

r(k)ik

hik

wik
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1163

= x (k) +α(k)ik
wik −

Dik r(k)ik

M(ik)hik

wik , k = 1,2, · · · . (2.7)

Now we prove that r(k)ik
= 0. In fact,

r(k)ik
= bik − 〈aik , x (k)〉

= bik − 〈aik , x (k−1) +
r(k−1)

ik
−

Dik−1
M(ik−1)

r(k−1)
ik−1

hik−1

wik−1
〉

= r(k−1)
ik

− r(k−1)
ik

+
Dik−1

M(ik−1)
r(k−1)

ik−1

=
Dik−1

M(ik−1)
r(k−1)

ik−1
, k = 2, 3, · · · .

Therefore, the following formula holds:

r(k)ik
=

k−1
∏

s=1

Dis

M(is)
r(s)is

.

By the step 3 of Algorithm 1, r(1)i1
= 0, so

r(k)ik
= 0 (∀k > 0). (2.8)

Thus the iteration (2.7) becomes

x (k+1) = x (k) +α(k)ik
wik , k = 1, 2, · · · .

From the above deduction, we have confirmed our idea.
Remark 1. When d = eik+1

−
〈Aik+1

, Aik
〉

‖Aik
‖2 eik , where ei ∈ Rn (i = 1, · · · , n), applying system (2.5) to

iteration (2.4) , we can get the Gauss-Seidel method with oblique direction, see [56] for details.
Remark 2. Formally, iteration (2.1) is the same as RKMA method [52]. Algorithm 1 can be

regarded as a special case of vik = aik+1
−
〈aik

,aik+1
〉

‖ai‖2
aik in RKMA method. However, the oblique projection

vik in RKMA method is more defined in a way of mismatched adjoint, which is different from the
oblique projection concept proposed here, see [52] for details.

2.2. Theoretical guarantees of Kaczmarz-type method with oblique projection

In this section, we will give two very important lemmas of Algorithm 1 to serve the algorithms
mentioned in Chapter 3. The selection rules of row indices i1 in step 2 and ik+1 (k > 0) in step 5 of
Algorithm 1 do not affect the lemmas.

Lemma 2.1. For the Kaczmarz-type method with oblique projection, the residual satisfies the following
equations:

r(k)ik−1
= 0 (∀k > 1). (2.9)
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Proof. From the definition of the KO-type method, since k > 1,

x (k) = x (k−1) +α(k−1)
ik−1

wik−1
.

We get
(b− Ax (k))ik−1

= (b− Ax (k−1))ik−1
− (Aα(k−1)

ik−1
wik−1

)ik−1
,

that is,

r(k)ik−1
= r(k−1)

ik−1
−α(k−1)

ik−1
〈aik−1

, wik−1
〉

(i)
= α(k−1)

ik−1
〈aik−1

, aik −
〈aik−1

, aik〉
||aik−1

||2
aik−1
〉

= 0.

The equality (i) holds due to the Eq (2.8). Thus, the Eq (2.9) holds.

Lemma 2.2. The iteration sequence
�

x (k)
	∞

k=0
generated by the Kaczmarz-type method with oblique

projection, satisifies the following equations:

||x (k+1) − x̃ ||2 = ||x (k) − x̃ ||2 − ||x (k+1) − x (k)||2 (∀k ≥ 0), (2.10)

where x̃ is an arbitrary solution of the system (1.1). Especially, when PN(A)(x (0)) = PN(A)( x̃), x (k)− x̃ ∈
R(AT ).

Proof. For k = 0, the iteration in step 3 of Algorithm 1 is the classical Kaczmarz iteration, so we have

〈ai1 , x (1) − x̃〉= 〈ai1 , x (0) − x̃ +
bi1 − 〈ai1 , x (0)〉

M(i1)
ai1〉

= 〈ai1 , x (0)〉 − bi1 + 〈ai1 ,
bi1 − 〈ai1 , x (0)〉

M(i1)
ai1〉

= 0,

which shows that x (1) − x̃ is orthogonal to ai1 . Therefore, we know

(x (1) − x (0))T (x (1) − x̃) = 0.

It follows that

||x (1) − x̃ ||2 = ||x (0) − x̃ ||2 − ||x (1) − x (0)||2.

For k > 0, we have

〈wik , x (k+1) − x̃〉= 〈wik , x (k) − x̃ +α(k)ik
wik〉

= 〈aik+1
−

Dik

M(ik)
aik , x (k) − x̃〉+ 〈wik ,

r(k)ik+1

hik

wik〉
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(ii)
= −r(k)ik+1

+
Dik

M(ik)
r(k)ik
+ r(k)ik+1

(iii)
= 0.

The equality (ii) and equality (iii) hold due to hik = ‖wik‖
2 and the Eq (2.8) respectively. Thus we get

that x (k+1) − x̃ is orthogonal to wik . Therefore, we get that

(x (k+1) − x (k))T (x (k+1) − x̃) = 0.

It follows that

||x (k+1) − x̃ ||2 = ||x (k) − x̃ ||2 − ||x (k+1) − x (k)||2 (∀k > 0). (2.11)

Thus, from the above proof, the Eq (2.10) holds.
According to the iterative formula











x (1) = x (0) +
bi1 − 〈ai1 , x (0)〉

M(i1)
ai1 ,

x (k+1) = x (k) +α(k)ik
wik (∀k > 0),

we can get PN(A)(x (k)) = PN(A)(x (k−1)) = · · · = PN(A)(x (0)), and by the fact that PN(A)(x (0)) = PN(A)( x̃),
we can deduce that x (k) − x̃ ∈ R(AT ).

3. Greedy randomized and maximal weighted residual Kaczmarz methods with oblique
projection

In this section, we combine the oblique projection with the GRK method [28] and the MWRK
method [21] to obtain the GRKO method and the MWRKO method and prove their convergence. The-
oretical results show that the KO-type method can accelerate the convergence when there are suitable
row index selection strategies.

3.1. Greedy randomized Kaczmarz method with oblique projection

The core of the GRK method [28] is a new probability criterion, which can grasp the large items
of the residual vector in each iteration and randomly select the item with probability in proportion to
the retained residual norm. Theories and experiments prove that it can speed up convergence speed.
This paper uses the row index selection rule in combination with the Algorithm 1 to obtain the GRKO
method and the algorithm is as follows:
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Algorithm 2 Greedy randomized Kaczmarz method with oblique projection (GRKO)

Require: A∈ Rm×n, b ∈ Rm, x (0) ∈ Rn, K
1: For i = 1 : m, M(i) = ‖ai‖2

2: Uniformly randomly select select i1 and compute x (1) = x (0) +
bi1−〈ai1 ,x (0)〉

M(i1)
ai1

3: for k = 1,2, · · · , K − 1 do

4: Compute εk =
1
2

�

1
||b−Ax (k)||2 max

1≤ik+1≤m

n

|bik+1
−〈aik+1

,x (k)〉|2

||aik+1
||2

o

+ 1
||A||2F

�

5: Determine the index set of positive integers

Uk =

�

ik+1

�

�

�

�

|bik+1
− 〈aik+1

, x (k)〉|2 ≥ εk||b− Ax (k)||2||aik+1
||2
�

6: Compute the ith entry r̃(k)i of the vector r̃(k) according to

r̃(k)i =

¨

bi − 〈ai, x (k)〉, if i ∈ Uk

0 otherwise

7: Select ik+1 ∈ Uk with probability Pr(row= ik+1) =
|r̃(k)ik+1

|2

||r̃(k)||2
8: Compute Dik = 〈aik , aik+1

〉
9: Compute wik = aik+1

−
Dik

M(ik)
aik and

hik(= ‖wik‖
2) = M(ik+1)−

Dik

M(ik)
Dik

10: α
(k)
ik
=

r̃(k)ik+1
hik

�

=
r(k)ik+1
hik

�

and x (k+1) = x (k) +α(k)ik
wik

11: end for
12: Output x (K)

The convergence of the GRKO method is provided as follows.

Theorem 3.1. Consider the consistent linear system (1.1), where the coefficient matrix A ∈ Rm×n,
b ∈ Rm. Let x (0) ∈ Rn be an arbitrary initial approximation , x̃ is a solution of system (1.1) such that
PN(A)( x̃) = PN(A)(x (0)). Then the iteration sequence

�

x (k)
	∞

k=1
generated by the GRKO method obeys

E||x (k) − x̃ ||2 ≤
k−1
Π

s=0
ζs||x (0) − x̃ ||2. (3.1)

where ζ0 = 1− (λmin(AT A))
m||A||2F

, ζ1 = 1− 1
2(

1
γ1
||A||2F + 1)λmin(AT A)

∆·||A||2F
, ζk = 1− 1

2(
1
γ2
||A||2F + 1)λmin(AT A)

∆·||A||2F
(∀k > 1),

which

γ1 = max
1≤i≤m

m
∑

s=1
s,i

||as||2, (3.2)
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γ2 = max
1≤i, j≤m

i, j

m
∑

s=1
s,i, j

||as||2, (3.3)

∆= max
j,k

sin2〈a j, ak〉(∈ (0, 1]). (3.4)

In addition, if x (0) ∈ R(AT ), the sequence
�

x (k)
	∞

k=1
converges to the least-norm solution of the

system (1.1), i.e., lim
k→∞

x (k) = x∗ = A† b.

Proof. When k = 1, we can get

ε1||A||2F =
max

1≤i2≤m

n

|bi2−〈ai2 ,x (1)〉|2

||ai2 ||
2

o

2
m
∑

i2=1

||ai2 ||
2

||A||2F
.
|bi2−〈ai2 ,x (1)〉|2

||ai2 ||
2

+
1
2

(iv)
=

max
1≤i2≤m

n

|bi2−〈ai2 ,x (1)〉|2

||ai2 ||
2

o

2
m
∑

i2=1
i2,i1

||ai2 ||
2

||A||2F
.
|bi2−〈ai2 ,x (1)〉|2

||ai2 ||
2

+
1
2

≥
1
2













||A||2F
m
∑

i2=1
i2,i1

||ai2 ||2
+ 1













≥
1
2

�

1
γ1
||A||2F + 1

�

.

(3.5)

The equality (iv) holds due to the Eq (2.8).
When k > 1, we get

εk||A||2F =
max

1≤ik+1≤m

�

|bik+1
−〈aik+1

,x (k)〉|2

||aik+1
||2

�

2
m
∑

ik+1=1

||aik+1
||2

||A||2F
.
|bik+1

−〈aik+1
,x (k)〉|2

||aik+1
||2

+
1
2

(v)
=

max
1≤ik+1≤m

�

|bik+1
−〈aik+1

,x (k)〉|2

||aik+1
||2

�

2
m
∑

ik+1=1
ik+1,ik ,ik−1

||aik+1
||2

||A||2F
.
|bik+1

−〈aik+1
,x (k)〉|2

||aik+1
||2

+
1
2

(3.6)

≥
1
2













||A||2F
m
∑

ik+1=1
ik+1,ik ,ik−1

||aik+1
||2
+ 1












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≥
1
2

�

1
γ2
||A||2F + 1

�

.

The equality (v) holds due to the Eqs (2.8) and (2.9).
Under the GRKO method, Lemma 2.2 still holds, so we can take the full expectation on both sides

of the Eq (2.10) and get that for k = 0,

E||x (1) − x̃ ||2 = ||x (0) − x̃ ||2 − E||x (1) − x (0)||2

= ||x (0) − x̃ ||2 −
1
m

m
∑

i1=1

||
bi1 − 〈ai1 , x (0)〉

M(i1)
ai1 ||

2

(vi)
≤ ||x (0) − x̃ ||2 −

1
m
||b− Ax (0)||2

||A||2F
(vii)
≤
�

1−
λmin(AT A)

m||A||2F

�

||x (0) − x̃ ||2

= ζ0||x (0) − x̃ ||2,

(3.7)

and for k > 0,

Ek||x (k+1) − x̃ ||2 = ||x (k) − x̃ ||2 − Ek||x (k+1) − x (k)||2

= ||x (k) − x̃ ||2 −
∑

ik+1∈Uk

|bik+1
− 〈aik+1

, x (k)〉|2
∑

ik+1∈Uk

|bik+1
− 〈aik+1

, x (k)〉|2
.
|r(k)ik+1
|2

||wik ||2

(viii)
≤ ||x (k) − x̃ ||2 −

∑

ik+1∈Uk

|bik+1
− 〈aik+1

, x (k)〉|2
∑

ik+1∈Uk

|bik+1
− 〈aik+1

, x (k)〉|2
.
|r(k)ik+1
|2

∆ · ||aik+1
||2

(i x)
≤ ||x (k) − x̃ ||2 −

εk

∆
||b− Ax (k)||2

= ||x (k) − x̃ ||2 −
εk

∆
||A( x̃ − x (k))||2

(vii)
≤ (1−

εkλmin(AT A)
∆

)||x (k) − x̃ ||2.

(3.8)

The inequality (vi) of the Eq (3.7) is achieved with the use of the fact that |b1|
|a1|
+ |b2|
|a2|
≥ |b1|+|b2|
|a1|+|a2|

(if
|a1|> 0, |a2|> 0) and the inequality (viii) of the Eq (3.8) is achieved with the use of the fact that

||wik ||
2 = ||aik+1

||2 −
〈aik , aik+1

〉2

||aik ||2

= sin2〈aik , aik+1
〉||aik+1

||2

≤∆ · ||aik+1
||2,

(3.9)

and the inequality (i x) of the Eq (3.8) is achieved with the use of the definition ofUk which lead to

|bik+1
− 〈aik+1

, x (k)〉|2 ≥ εk||b− Ax (k)||2||aik+1
||2,∀ik+1 ∈ Uk.
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Here in the last inequalities (vii) of the Eqs (3.7) and (3.8), we have used the estimate ||Au||22 ≥
λmin(AT A)||u||2, which holds true for any u ∈ Cn belonging to the column space of AT . According to
the lemma 2.2, it holds.

By making use of the Eqs (3.5), (3.6) and (3.8), we get

E1||x (2) − x̃ ||2 ≤
�

1−
1
2
(

1
γ1
||A||2F + 1)

λmin(AT A)
∆ · ||A||2F

�

||x (1) − x̃ ||2

= ζ1||x (1) − x̃ ||2,

Ek||x (k+1) − x̃ ||2 ≤
�

1−
1
2
(

1
γ2
||A||2F + 1)

λmin(AT A)
∆ · ||A||2F

�

||x (k) − x̃ ||2

= ζk||x (k) − x̃ ||2 (∀k > 1).

Finally, by recursion and taking the full expectation, the inequality (3.1) holds.

Remark 3. In the GRKO method, hik is not zero. Suppose hik = 0, which means ∃λ > 0,
λaik = aik+1

. Due to the system is consistent, it holds 〈aik+1
, x∗〉= λ〈aik , x∗〉= λbik = bik+1

. According
to the Eq (2.8), it holds r(k)ik+1

= λr(k)ik
= 0. From step 5 of Algorithm 1, we can know that such index

ik+1 will not be selected.
Remark 4. Set ζ̃k = 1− 1

2(
1
γ1
||A||2F + 1)λmin(AT A)

||A||2F
(∀k > 0) and the convergence of GRK method

in [28] meets:
Ek‖x (k+1) − x∗‖2 ≤ ζ̃k‖x (k) − x∗‖2.

Obviously, ∀∆ ∈ (0, 1], ζ1 ≤ ζ̃1,ζk < ζ̃k (∀k > 1) is satisfied, so the convergence speed of GRKO
method is faster than GRK method.

Remark 5. In fact, in each iteration, the most computationally expensive part is computing the
residual r(k). If B = AAT is calculated before iteration, the GRK method [28] costs 7m + 2n + 2
flopping operations and the GRKO method costs 9m+ 3n+ 6 flopping opeartions, where the residual
r(k) is calculated according to Eq (2.2).

3.2. Maximal weighted residual Kaczmarz method with oblique projection

The selection strategy for the index ik used in the maximal weighted residual Kaczmarz (MWRK)
method [21] is: Set

ik = ar g max
i∈{1,2,··· ,m}

|aT
i x (k) − bi|
‖ai‖

.

Mccormick proved the exponential convergence of the MWRK method. In [22], a new convergence
conclusion of the MWRK method is given. We use its row index selection rule combined with KO-type
method to obtain MWRKO method and the algorithm is as follows:
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Algorithm 3 Maximal Weighted Residual Kaczmarz Method with Oblique Projection (MWRKO)

Require: A∈ Rm×n, b ∈ Rm, x (0) ∈ Rn, K
1: For i = 1 : m, M(i) = ‖ai‖2

2: Compute i1 = ar g max
i∈{1,2,··· ,m}

|aT
i x (0)−bi |
‖ai‖

and x (1) = x (0) +
bi1−〈ai1 ,x (0)〉

M(i1)
ai1

3: for k = 1,2, · · · , K do
4: Compute ik+1 = ar g max

i∈{1,2,··· ,m}

|aT
i x (k)−bi |
‖ai‖

5: Compute Dik = 〈aik , aik+1
〉 and r(k)ik+1

= bik+1
− 〈aik+1

, x (k)〉

6: Compute wik = aik+1
−

Dik
M(ik)

aik and hik(= ‖wik‖
2) = M(ik+1)−

Dik
M(ik)

Dik

7: α
(k)
ik
=

r(k)ik+1
hik

and x (k+1) = x (k) +α(k)ik
wik

8: end for
9: Output x (K+1)

The convergence of the MWRKO method is provided as follows.

Theorem 3.2. Consider the consistent linear system (1.1), where the coefficient matrix A ∈ Rm×n,
b ∈ Rm. Let x (0) ∈ Rn be an arbitrary initial approximation , x̃ is a solution of system (1.1) such that
PN(A)( x̃) = PN(A)(x (0)). Then the iteration sequence

�

x (k)
	∞

k=1
generated by the MWRKO method obeys

||x (k) − x̃ ||2 ≤
k−1
Π

s=0
ρs||x (0) − x̃ ||2, (3.10)

where ρ0 = 1 − λmin(AT A)
‖A‖2F

, ρ1 = 1 − λmin(AT A)
∆·γ1

, ρk = 1 − λmin(AT A)
∆·γ2

(∀k > 1), which γ1, γ2 and ∆ are
defined by Eqs (3.2), (3.3) and (3.4) respectively.

In addition, if x (0) ∈ R(AT ), the sequence
�

x (k)
	∞

k=1
converges to the least-norm solution of the

system (1.1), i.e., lim
k→∞

x (k) = x∗ = A† b.

Proof. Under the MWRKO method, Lemma 2.2 still holds. For k = 1, we have

‖x (1) − x̃‖2 = ‖x (0) − x̃‖2 − ‖x (1) − x (0)‖2

= ‖x (0) − x̃‖2 −
|bi1 − 〈ai1 , x (0)〉|2

M(i1)

= ‖x (0) − x̃‖2 −
|bi1 − 〈ai1 , x (0)〉|2

M(i1)
·

‖b− Ax (0)‖2

m
∑

i=1

|bi−〈ai ,x (0)〉|2
M(i) ·M(i)

≤ ‖x (0) − x̃‖2 −
‖A( x̃ − x (0))‖2

‖A‖2
F

(3.11)

(x)
≤ ‖x (0) − x̃‖2 −

λmin(AT A)
‖A‖2

F

‖x (0) − x̃‖2
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=

�

1−
λmin(AT A)
‖A‖2

F

�

‖x (0) − x∗‖2

= ρ0‖x (0) − x∗‖2.

For k = 1, we have

‖x (2) − x̃‖2 = ‖x (1) − x̃‖2 − ‖x (2) − x (1)‖2

= ‖x (1) − x̃‖2 −
|bi2 − 〈ai2 , x (1)〉|2

‖wi1‖2

(x i)
≤ |x (1) − x̃‖2 −

|bi2 − 〈ai2 , x (1)〉|2

∆ ·M(i2)
·

‖b− Ax (1)‖2

m
∑

i=1,i,i1

|bi−〈ai ,x (1)〉|2
M(i) ·M(i)

(3.12)

(x ii)
≤ ‖x (1) − x̃‖2 −

‖A( x̃ − x (1))‖2

∆ · γ1

(x)
≤ ‖x (1) − x̃‖2 −

λmin(AT A)
∆ · γ1

‖x (1) − x̃‖2

=

�

1−
λmin(AT A)
∆ · γ1

�

‖x (1) − x̃‖2

= ρ1‖x (1) − x̃‖2,

where the inequality (x i) can be obtained by using Eqs (3.9) and (2.8). For inequality (x ii), using the
row index selection rule of the MWRKO method, we get:

|bi2 − 〈ai2 , x (1)〉|2

∆ ·M(i2)
·

‖b− Ax (1)‖2

m
∑

i=1,i,i1

|bi−〈ai ,x (1)〉|2
M(i) ·M(i)

= max
i∈{1,2,··· ,m}

|bi − 〈ai, x (1)〉|2

∆ ·M(i)
·

‖b− Ax (1)‖2

m
∑

i=1,i,i1

|bi−〈ai ,x (1)〉|2
M(i) ·M(i)

(3.13)

≥
‖b− Ax (1)‖2

∆ ·
m
∑

i=1,i,i1

M(i)

≥
‖b− Ax (1)‖2

∆ · γ1
.
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For k > 1, we have

‖x (k+1) − x̃‖2 = ‖x (k) − x̃‖2 − ‖x (k+1) − x (k)‖2

= ‖x (k) − x̃‖2 −
|bik+1

− 〈aik+1
, x (k)〉|2

‖wik‖2

(x iii)
≤ ‖x (k) − x̃‖2 −

|bik+1
− 〈aik+1

, x (k)〉|2

∆ ·M(ik+1)
·

‖b− Ax (k)‖2

m
∑

i=1,i,ik ,ik−1

|bi−〈ai ,x (k)〉|2
M(i) ·M(i)

(x iv)
≤ ‖x (k) − x̃‖2 −

‖A( x̃ − x (k))‖2

∆ · γ2

(x)
≤ ‖x (k) − x̃‖2 −

λmin(AT A)
∆ · γ2

‖x (k) − x̃‖2

=

�

1−
λmin(AT A)
∆ · γ2

�

‖x (k) − x̃‖2

= ρk‖x (k) − x̃‖2,

(3.14)

where the inequality (x iii) can be obtained by using Eqs (3.9), (2.8) and (2.9). For the inequality
(x iv), it can be easily obtained by using a derivation similar to Eq (3.13). In the inequalities (x) of the
Eqs (3.11), (3.12) and (3.14), we have used the estimate

||Au||22 ≥ λmin(A
T A)||u||2,

which holds true for any u ∈ Cn belonging to the column space of AT . According to the lemma 2.2, it
holds.

From the Eqs (3.11), (3.12) and (3.14), the Eq (3.10) holds.

Remark 6. When multiple indicators ik+1 are met in Step 2 of Algorithm 2 in the iterative process,
we randomly select any one of them.

Remark 7. In the MWRKO method, the reason of hik , 0 is similar to Remark 3.

Remark 8. Set ρ̃0 = 1− λmin(AT A)
‖A‖2F

,ρ̃k = 1− λmin(AT A)
γ1

(∀k > 0), and the convergence of MWRK
method in [22] meets:

||x (k) − x∗||2 ≤
k−1
Π

s=0
ρ̃s||x (0) − x∗||2.

Obviously, ∀∆ ∈ (0,1], ρk < ρ̃k (∀k > 1), ρ1 ≤ ρ̃1 and ρ0 = ρ̃0 , so the convergence speed of
MWRKO method is faster than MWRK method. Note that ρ̃k < ζ̃k, ρk < ζk (∀k > 0,∀∆ ∈ (0, 1]),
that is VMWRK < VMWRKO, VGRK < VGRKO, VGRK < VMWRK , VGRKO < VMWRKO, where V represents the
convergence speed.

Remark 9. If B = AAT is calculated before iteration, the MWRK method costs 4m+ 2n flopping
operations and the MWRKO method costs 6m+ 3n+ 4 flopping opeartions, where the residual r(k) is
calculated according to Eq (2.2).
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4. Numerical experiments

In this section, some numerical examples are provided to illustrate the effectiveness of the greedy
randomized Kaczmarz (GRK) method, the greedy randomized Kaczmarz method with oblique projec-
tion (GRKO), the maximal weighted residual Kaczmarz method (MWRK) and the maximal weighted
residual Kaczmarz method (MWRKO) . All experiments are carried out using MATLAB (version
R2019b) on a personal laptop with 1.60 GHz central processing unit (Intel(R) Core(TM) i5-10210U
CPU), 8.00 GB memory and Windows operating system (64 bit Windows 10).

In our implementations, the right vector b = Ax∗ such that the exact solution x∗ ∈ Rn is a vector
generated by the rand function. Define the relative residual error (RRE) at the kth iteration as follows:

RRE=
‖b− Ax (k)‖2

‖b‖2
.

The initial point x (0) ∈ Rn is set to be a zero vector and the iterations are terminated once the relative
solution error satisfies RRE < ω or the number of iteration steps exceeds 100,000. If the number of
iteration steps exceeds 100,000, it is denoted as "-".

We will compare the numerical performance of these methods in terms of the number of iteration
steps (denoted as "IT") and the computing time in seconds (denoted as "CPU"). Here the CPU and
IT mean the arithmetical averages of the elapsed running times and the required iteration steps with
respect to 50 trials repeated runs of the corresponding method.

4.1. Experiments for random matrix collection in [0,1]

The random matrix collection in [0,1] is randomly generated by using the MATLAB function rand
and the numerical results are reported in Tables 1 and 2 and Figures 2 and 3. In this subsection, we let
ω= 0.5×10−8. According to the characteristics of the matrix generated by MATLAB function rand,
Tables 1 and 2 are the experiments for the overdetermined consistent linear systems, underdetermined
consistent linear systems respectively. Under the premise of convergence, all methods can find the
unique least Euclidean norm solution.

Table 1. IT and CPU of GRK, GRKO, MWRK and MWRKO for m × n matrices A with
n= 500 and different m when the consistent linear system is overdetermined.

m
IT CPU

GRK GRKO MWRK MWRKO GRK GRKO MWRK MWRKO
1000 12,072 2105 11,265 1913 1.2824 0.2099 0.7192 0.1089
2000 4726 1088 4292 898 1.4792 0.3413 1.1107 0.2157
3000 3362 897 3234 771 1.7550 0.5172 1.5711 0.3575
4000 2663 859 2517 668 1.9415 0.6396 1.6634 0.4807
5000 2398 826 2282 605 2.4134 0.8160 2.1528 0.5801
6000 2100 772 2018 586 2.6235 0.8912 2.0975 0.6486
7000 1970 752 1829 562 2.6019 1.0720 2.5441 0.7822
8000 1861 747 1703 555 3.1035 1.2421 2.4987 0.8390
9000 1750 747 1612 530 3.0223 1.3055 2.6148 0.8730
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Figure 2. (a) IT and (b) CPU versus m for four methods with matrices A∈ Rm×500 generated
by the rand fuction in the interval [0,1].

Table 2. IT and CPU of GRK, GRKO, MWRK and MWRKO for m × n matrices A with
n= 2000 and different m when the consistent linear system is underdetermined.

m
IT CPU

GRK GRKO MWRK MWRKO GRK GRKO MWRK MWRKO l
100 802 286 848 272 0.0496 0.0223 0.0258 0.0165
200 1968 523 1948 481 0.1648 0.0496 0.0831 0.0276
300 3104 759 3148 709 0.3982 0.1090 0.2404 0.0664
400 4586 1002 4612 930 1.0539 0.2594 0.8433 0.1920
500 6233 1250 6336 1215 1.9528 0.4409 1.6836 0.3576
600 8671 1576 8882 1497 3.6363 0.7493 3.1625 0.5957
700 11,895 2063 11,575 1879 5.8642 1.1078 5.0029 0.9087
800 14,758 2451 14,888 2394 8.4280 1.5350 7.7007 1.6405
900 18,223 3250 18,608 2945 12.0469 2.2750 10.9511 1.8884
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Figure 3. (a) IT and (b) CPU versus m for four methods with matrices A∈ Rm×2000 generated
by the rand fuction in the interval [0,1].
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From Table 1 and Figure 2, we can see that when the linear system is overdetermined, with the
increase of m, the IT of all methods decreases, but the CPU shows an increasing trend. Our new
methods—the GRKO method and the MWRKO method, perform better than the GRK method and the
MWRK method respectively in both iteration steps and running time. Among the four methods, the
MWRKO method performs best. From Table 2 and Figure 3, we can see that in the case of underde-
termined linear system, with the increase of m, the IT and CPU of all methods decrease.

In this group of experiments, whether it is an overdetermined or underdetermined linear system,
whether in terms of the IT or CPU, the GRKO method and the MWRKO method perform very well
compared with the GRK method and the MWRK method. These experimental phenomena are consis-
tent with the theoretical convergence conclusions we got.

4.2. Experiments for random matrix collection in [c, 1]

In this subsection, the entries of our coefficient matrix are randomly generated in the interval [c, 1].
This set of experiments was also done in [36] and [54] and pointed out that when the value of c is
close to 1, the rows of matrix A are more linearly correlated. Theorems 3.1 and 3.2 have shown
the effectiveness of the GRKO method and the MWRKO method in this case. In order to verify this
phenomenon, we construct several 1000×500 and 500×1000 matrices A, which entries is independent
identically distributed uniform random variables on some interval [c, 1]. Note that there is nothing
special about this interval and other intervals yield the same results when the interval length remains
the same. In the experiment of this subsection, we take ω= 0.5× 10−8.

Table 3. IT and CPU of GRK, GRKO, MWRK and MWRKO for matrices A ∈ R1000×500

generated by the rand function in the interval [c, 1].

c
IT CPU

GRK GRKO MWRK MWRKO GRK GRKO MWRK MWRKO
0.1 14,757 2036 14,594 1830 1.5811 0.2180 0.9419 0.0969
0.2 21,103 1840 20,717 1714 2.1684 0.2287 1.1828 0.1003
0.3 27,375 1708 26,986 1569 3.5926 0.1789 1.5865 0.1195
0.4 36,293 1708 35,595 1394 3.6751 0.1802 2.0682 0.0885
0.5 53,485 1428 52,853 1310 5.3642 0.1486 3.0024 0.0847
0.6 84,204 1353 81,647 1185 9.0879 0.1388 4.5468 0.0767
0.7 - 1227 - 1036 - 0.1298 - 0.0564
0.8 - 1080 - 926 - 0.1107 - 0.0580
0.9 - 715 - 583 - 0.0707 - 0.0324

From Table 3 and Figure 4, it can be seen that when the linear system is overdetermined, with
c getting closer to 1, the GRK method and the MWRK method have a significant increase in the
number of iterations and running time. When c increases to 0.7, the GRK method and the MWRK
method exceeds the maximum number of iterations. But the IT and CPU of the GRKO method and the
MWRKO method have decreasing trends. From Figure 5, we can get that the numerical experiment
of the coefficient matrix A in the underdetermined case has similar trends to the numerical experiment
in the overdetermined case in Figure 4. In this group of experiments, it can be observed that when the
rows of the matrix are more linearly correlated, the GRKO method and the MWRKO method can find
the least Euclidean norm solution more quickly than the GRK method and the MWRK method.
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Figure 4. (a) IT and (b) CPU versus c for four methods with matrices A∈ R1000×500 generated
by the rand fuction in the interval [c, 1].

Table 4. IT and CPU of GRK, GRKO, MWRK and MWRKO for matrices A ∈ R500×1000

generated by the rand function in the interval [c, 1].

c
IT CPU

GRK GRKO MWRK MWRKO GRK GRKO MWRK MWRKO
0.1 16,828 1968 16,913 1795 1.7612 0.2103 0.9353 0.1083
0.2 23,518 2003 23,234 1857 2.3037 0.2066 1.3119 0.1230
0.3 30,875 1661 31,017 1688 2.9310 0.1635 1.7373 0.0997
0.4 41,242 1511 40,986 1515 4.3004 0.1726 2.2899 0.1025
0.5 60,000 1399 59,750 1349 5.4754 0.1252 2.8920 0.0727
0.6 97,045 1270 95,969 1264 8.5229 0.1173 4.8380 0.0688
0.7 - 1082 - 1022 - 0.1168 - 0.0646
0.8 - 858 - 863 - 0.0960 - 0.0585
0.9 - 549 - 598 - 0.0582 - 0.0353
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Figure 5. (a) IT and (b) CPU versus c for four methods with matrices A∈ R500×1000 generated
by the rand fuction in the interval [c, 1].
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4.3. Experiments for sparse matrix

In this subsection, we will give three examples to illustrate the effectiveness of our new methods
applied to sparse matrix. The coefficient matrices A of these three examples are the practical problems
from [57] and the two test problems from [58].

Example 1. We solve the problem (1.1) with the coefficient matrix A∈ Rm×n chosen from the Univer-
sity of Florida sparse matrix collection [57]. the matrices are divorce, photogrammet r y , Ragusa18,
Trec8, St ranke94 and well1033. In Table 5, we list some properties of these matrices, where density
is defined as follows:

density=
number of nonzeros of m-by-n matrix

mn
.

In this group of experiments, we set ω = 0.5× 10−5. In order to solve Example 1, we list the IT,
CPU and historical convergence of the GRK, GRKO, MWRK and MWRKO methods in Figure 6 and
Table 6, respectively. It can be seen that IT and CPU of the MWRKO method are the least. Although
the GRKO method is not faster than the MWRK method for most of the experiments in Table 6, it is
always faster than the GRK method.

Example 2. We consider f ancurved tomo(N ,θ , P) test problem from the MATLAB package AIR
Tools [58], which generates sparse matrix A, an exact solution x∗ and b = Ax∗. We set N = 60,
θ = 0 : 0.5 : 179.5◦, P = 90, then resulting matrix is of size 32400× 3600. We test RRE every 10
iterations and run these four methods until RRE <ω is satisfied, where ω= 0.5× 10−5.

We first remove the rows of A where the entries are all 0 and perform row unitization processing
on A and b. We emphasize that this will not cause a change in x∗. In Figure 7, we give 60 × 60
images of the exact phantom and the approximate solutions obtained by the GRK, GRKO, MWRK,
MWRKO methods. In Figure 7, we can see that the GRK, GRKO , MWRK and MWRKO method
can all converge to the exact solution successfully. In the subgraph (f) of Figure 7, we can see that the
MWRKO method needs the least iterative steps and the GRKO method has less iterative steps than the
GRK method. It can be observed from Table 7 that the MWRKO method is the best in terms of IT and
CPU.

Example 3. We use an example from 2D seismic travel-time tomography reconstruction, implemented
in the function seismictomo(N , s, p) in the MATLAB package AIR Tools [58], which generates sparse
matrix A, an exact solution x∗ and b = Ax∗. We set N = 50, s = 150, p = 120, then resulting matrix
is of size 18000× 2500. We test RRE every 50 iterations and run these four methods until RRE < ω
is satisfied, where ω= 0.5× 10−6.

Table 5. The properties of different sparse matrices.
A divorce photogrammetry Ragusa18 Trec8 Stranke94 well1033
m × n 50 × 9 1388 × 390 23 × 23 23 × 84 10 × 10 1033 × 320
rank 9 390 15 23 10 320
cond(A) 19.3908 4.35e+8 3.48e+35 26.8949 51.7330 166.1333
density 50.00% 2.18% 12.10% 28.42% 90.00% 1.43%
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Figure 6. Convergence history of the four methods for sparse matrices. (a) divorce, (b)
photogrammetry, (c)Ragusa18, (d) Trec8, (e) Stranke94, (f) well1033.
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Table 6. IT and CPU of GRK, GRKO, MWRK and MWRKO for different sparse matrices.

A
IT CPU

GRK GRKO MWRK MWRKO GRK GRKO MWRK MWRKO
divorce 51 28 54 22 0.0053 0.0037 0.0017 0.0013
photogrammetry 85,938 48,933 90,480 27,084 9.9917 8.0424 3.9809 2.5026
Ragusa18 744 262 727 280 0.0577 0.0270 0.0121 0.0098
Trec8 465 152 538 139 0.0382 0.0168 0.0111 0.0062
Stranke94 1513 197 1453 181 0.1291 0.0187 0.0208 0.0082
well1033 22,924 9825 25,250 8655 2.4278 1.5112 0.8491 0.5827

Table 7. IT and CPU of GRK, GRKO, MWRK and MWRKO for f ancurved tomo problem.
method IT CPU
GRK 13,550 581.17
GRKO 12,750 538.82
MWRK 12,050 504.83
MWRKO 10,790 452.86

Table 8. IT and CPU of GRK, GRKO, MWRK and MWRKO for seismictomo problem.
method IT CPU
GRK 21,500 378.6629
GRKO 15,850 324.9338
MWRK 19,250 334.3446
MWRKO 14,400 262.1489

We first remove the rows of A where the entries are all 0 and perform row unitization processing
on A and b. In Figure 8, we give 50× 50 images of the exact phantom and the approximate solutions
obatined by the GRK, GRKO, MWRK, MWRKO methods. From the subgraph (f) of Figure 8 and
Table 8, we can see that the MWRKO method is the best in terms of IT and CPU.

4.4. Comparison experiments with other methods

In this subsection, we compare the classical methods—Landweber method [59] and generalized
minimum residual (GMRES) method [60] with our proposed methods—GRKO and MWRKO. The
iterative expression of Landweber is:

x (k+1) = x (k) +ηAT (b− Ax (k)),

where η is a real parameter satisfying 0 < η < 2
λmax (AT A) . For convenience, we take η = 2

‖A‖2F
(< 2

λmax (AT A)) in the following numerical experiments. There are also other new improvements to the
Landweber method. Interested readers can refer [61, 62] and the references therein.

For the GMRES method, we use the matlab function gmres(A, b, n, RRE∗, n), where RRE∗ =
||b−Ax (k)||
||b|| =

p
RRE and n is the dimension of matrix A. In this group of experiments, we take the

parameter ω = 0.5× 10−8 and sparse matrices A ∈ R600×600 are generated by the MATLAB function

Electronic Research Archive Volume 30, Issue 4, 1158–1186.



1181

sprand(600, 600, densi t y, 0.75) and then perform row unitization processing. Obviously, the biggest
computational cost of the GRKO method and the MWRKO method is the update of the residual r.
Therefore, we first calculate B = AAT and then calculate the residual r according to Eq (2.2), which
can improve CPU to a certain extent. Note that the calculation time of B is included in the CPU of the
GRKO method and the MWRKO method.
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Figure 8. Performance of the (a) exact phantom, (b) GRK, (c) GRKO, (d) MWRK, (e)
MWRKO methods for seismictomo test problem . (f) Convergence history of four
methods.
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Table 9. IT and CPU of MWRKO, GRKO, Landweber and GMRES for sparse matrices
A∈ R600×600 under different densities.

densi t y
IT CPU

MWRKO GRKO Landweber GMRES MWRKO GRKO Landweber GMRES
0.15 1423 1432 3177 600 0.1285 0.2557 0.4897 0.2522
0.3 1501 1518 3236 600 0.1808 0.3484 1.0245 0.2839
0.45 1546 1557 3221 600 0.2299 0.3708 3.3660 0.3239
0.6 1573 1593 3245 600 0.2633 0.4202 4.5986 0.3423
0.75 1581 1599 3236 600 0.2782 0.4282 5.7157 0.3671
0.9 1632 1652 3231 600 0.3132 0.4734 6.9041 0.4021

In Table 9, we compare IT and CPU of MWRKO, GRKO, Landweber and GMRES methods at
different densities. Obviously as density increases, the CPU increases for all methods. Among them,
the best CPU performance is still the MWRKO method, followed by the GMRES method.

5. Conclusions

Combined with the representative randomized and non-randomized row index selection strategies,
two Kaczamrz-type methods with oblique projection for solving large-scale consistent linear systems
are proposed, namely the GRKO method and the MWRKO method. The exponential convergences
of the GRKO method and the MWRKO method are deduced. Theoretical and experimental results
show that the convergence rates of the GRKO method and the MWRKO method are better than GRK
method and MWRK method respectively. Numerical experiments show the effectiveness of these two
methods, especially when the rows of the coefficient matrix A are highly linearly correlated.
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41. F. Schöpfer, D. A. Lorenz, Linear convergence of the randomized sparse Kaczmarz method, Math.
Program., 1 (2016), 1–28. https://doi.org/10.1007/s10107-017-1229-1

42. D. Leventhal, A. Lewis, Randomized methods for linear constraints: convergence rates and con-
ditioning, Math. Oper. Res., 35 (2010), 641–654. https://doi.org/10.1287/moor.1100.0456

43. Z. Z. Bai, W. T. Wu, On greedy randomized coordinate descent methods for solv-
ing large linear least-squares problems, Numer. Linear Algebra Appl., 26 (2019), 1–15.
https://doi.org/10.1002/nla.2237

44. K. W. Chang, C. J. Hsieh, C. J. Lin, Coordinate descent method for large-scale
l2-loss linear support vector machines, J. Mach. Learn. Res, 9 (2008), 1369–1398.
https://doi.org/10.5555/1390681.1442778

45. Z. Lu, L. Xiao, On the complexity analysis of randomized block-coordinate descent methods,
Math. Program., 152 (2015), 615–642. https://doi.org/10.1007/s10107-014-0800-2

46. I. Necoara, Y. Nesterov, F. Glineur, Random block coordinate descent methods for lin-
early constrained optimization over networks, J. Optim. Theory Appl., 173 (2017), 227–254.
https://doi.org/10.1007/s10957-016-1058-z

47. Y. Nesterov, S. Stich, Efficiency of the accelerated coordinate descent method on structured opti-
mization problems, SIAM J. Optim., 27 (2017), 110–123. https://doi.org/10.1137/16M1060182
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