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Abstract: Advertising and sales promotion are two important specific marketing communications
tools. In this paper, nonlinear differential equation and single parameter sales promotion strategy are
introduced into an advertising model and investigated quantitatively. The existence and stability of
period-nT (n=1,2,4,8) solutions are investigated. Interestingly, both period doubling bifurcation and
inverse flip bifurcation occur at different parameter values in the same advertising model. The results
show that the system enters into chaos from stable state through flip bifurcation and enters into stable
state from chaos through inverse flip bifurcation. An effective control strategy, which suppresses flip
bifurcation and promotes inverse flip bifurcation, is proposed to eliminate chaos. These results have
some significant theoretical and practical value in related markets.
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1. Introduction

For firms, advertising is a form of promoting goods or providing services and disseminating goods
or service information to consumers or users through advertising media, such as newspaper, magazines,
television commercial, radio advertisement, outdoor advertising, direct mail, websites, text messages,
etc. [1]. As one of the indispensable means in enterprise competitive strategy, advertising’s role
in developing market, competing for share and creating economic benefits can not be ignored and
underestimated. In advertising research, qualitative analysis and quantitative analysis are two main
research methods [2]. Qualitative insights can aid empirical analysis in promising new directions, and
the gap between the qualitative specialists and the quantitative gurus really needs to be bridged for the
most beneficial research to be developed.

Advertising research has been growing and has been enriched in recent decades. Zhao and Ma [3]
discussed dynamics and implications on a cooperative advertising model. By using the theory of non-
linear dynamic system, the authors found four possible Nash equilibrium points and provide the con-
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ditions for their existence, analyzed the impacts of key parameters on the stability of the positive Nash
equilibrium point and prove that two kinds of bifurcation may occur when this positive Nash equi-
librium point becomes unstable. A differential game theory approach is suggested to seek equilibrium
trajectories of price and advertising over time. In paper [4], based on chance theory, the optimal control
for uncertain stochastic dynamic systems was considered and the principle of optimality is presented
by drawing on the dynamic programming method. As an application, an advertising problem is ana-
lyzed, the corresponding optimal pricing policies and advertising strategies are provided. Chenavaz,
Feichtinger and Hartl et al. [5] investigated the interplay between price, advertising, and quality in an
optimal control model. The obtained results generalize the condition of Dorfman-Steiner in a dynamic
context.

There are also many literatures on the models and methods of advertising research, such as artificial
neural network approach [6], tourism advertising effects model [7], advertising capital model with
analytical and numerical studies [8], etc.

In the past few decades, the dynamic advertising literature contains a large number of continuous
time dynamic optimization models and differential game models in different mathematical forms for
diverse advertising problems. Many classical models and their extensions are used to investigate adver-
tising problems, such as Nerlove-Arrow model [9], Vidale-Wolfe model[10], and so on. Most of these
continuous time differential game models are described by linear differential equations. Theoretical
analysis is easy in a linear differential advertising model, which is an ideal description of advertising
in reality.

As a pulse control strategy [11], sales promotion is a promotional mix variable primarily used
to bolster sales in the short run. Sales promotion can be targeted either at the consumer (consumer
sales promotion), the distribution channel members (trade promotion), or the sales staff (sales force
promotion). Typical examples of consumer sales promotion tools include contests and sweepstakes,
branded give-away merchandise, bonus-size packaging, limited-time discounts, rebates, coupons, free
trials, demonstrations, and point-accumulation systems.

Because it can increase the sales of products in a short time, sales promotion has been valued and
applied by the company’s managers. In recent years, a lot of theoretical research results on sales
promotion have been obtained. Previous studies mainly used the methods of data-analysis and quality
analysis to discuss the role of sales promotion. For example, from the perspective of empirical research,
paper [12] investigated whether various types of sales promotions together with hedonic shopping mo-
tivation (value shopping) and positive affect drive impulse buying, and further explored the moderation
impact of trait constructs viz deal proneness and impulsive buying tendency in impulse buying. By
using three years of super-market scanner data and sales promotions for pound cake, McColl et al. [13]
estimated cannibalization effects for two common price reductions, across large, medium and small su-
permarkets. Almendros [14] assessed which type of online promotional incentive is the most effective
at achieving purchase intention for airline tickets, depending on the user’s level of Internet experience
(characterized as novice or expert user).

At present, there are few quantitative research results on sales promotion. A linear advertising com-
petition model with sales promotion was constructed and investigated in paper [15]. It is difficult for
this sales promotion strategy, which contains two parameters, to ensure the change in sales volume is
positive. As mentioned above, most of advertising models are described by linear differential equa-
tions. To investigate the complex change process in advertising, nonlinear differential equations should
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be introduced into advertising models. Motivated by these facts, a nonlinear differential equation and
single parameter sales promotion strategy are introduced into an advertising model in this study. This
research focuses on the complex dynamics of this model and the effect of sales promotion on sales
level and profit.

The paper is organized as follows. In Section 2, we build an advertising model by using nonlinear
differential equation and single parameter sales promotion strategy. The existence and stability of
periodic solutions, and bifurcation of periodic solutions are investigated in Section 3. In Section 4,
control measures are taken to eliminate chaos by suppressing flip bifurcation and promoting inverse
flip bifurcation. Finally, some conclusions are drawn in section 5.

2. Model description

Vidale and Wolfe [10] built the following model to investigate the impact of advertising on sales of
firm’s product.

Ṡ (t) =
r
M

u(t)(M − S (t)) − λS (t), (1)

where S (t) is sales level at time t, M is the size of the potential market or saturation level, u(t) is
advertising expenditure at time t, r is response rate to advertising, λ is decay constant.

Bass [16] developed a growth model for the timing of initial purchase of new products, which is
given by the following nonlinear differential equation.

Ṡ (t) = (p + qS (t))(M − S (t)), (1∗)

where S (t) is the sales of one new product, p and q are positive parameters, referred to as innovation
and imitation parameter, respectively, and M is the fixed market potential of the product.

The Vidale and Wolfe model (1), which is built by using linear differential equations, simplifies
the change of product sales. The influence of advertising on sales is complex, and we consider using
nonlinear equation to describe the change of sales. In view of nonlinear differential equation (1*), the
advertising effect r

M u(t)(M − S (t)) is replaced by r
M u(t)S (t)(M − S (t)) in (1).

In some cases, it is difficult to estimate the size of the potential market or saturation level M. For
example, the size of the potential market or saturation level will change with the change of consumer
preferences and the development of emerging industries. The size of the potential market or saturation
level is not considered in this paper, and M − S (t) is replaced by S (t) in (1). We also assume that the
firm advertises at a constant level, that is u(t) = U. So the advertising effect r

M u(t)S (t)(M − S (t)) is
replaced by rUS (t)S (t) = γS 2(t) in (1), where γ = rU.

In order to try to discuss the complex process of product sales, the following nonlinear differential
equation is used in this paper.

dS (t)
dt
= −ρS (t) + γS 2(t), (2)

where S (t) is sales level at time t, ρ is decay constant, and γ is response rate to advertising.
System (2) can be rewritten as

dS (t)
dt
= −ρS (t)

1 − S (t)
ρ

γ

 .
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It’s seen that dS (t)
dt < 0 for S (t) < ρ

γ
while dS (t)

dt > 0 for S (t) > ρ

γ
. ρ

γ
is considered as the promotion

threshold. When the sales level S (t) is greater than ρ
γ
, the sales level will continue to increase and no

promotion strategy is considered. In the case of S (t) < ρ

γ
, the sales level decreases with the increase

of time t. So measures are discussed to improve sales of products under the condition S (t) < ρ
γ

in this
paper.

In view of the fact sales promotion is an incentive provided to consumers to motivate them to buy
immediately, sales promotion strategy is applied to improve sales here. In paper [15], the impulsive
promotion effect is ∆S (t) = S (t+) − S (t) = (b − cS (t))S (t), which contains two parameters b, c, and
cannot guarantee that value of ∆S (t) is always greater than 0. To avoid these shortcomings, we consider
the following single parameter sales promotion strategy.

∆S (t) = S (t+) − S (t) =
α

S (t)
, t = nT, (3)

where α is a promotion coefficient and a > 0, n = 1, 2, · · · , S (t+) = limτ→0+ S (t + τ). The measures
to promote sales are supposed to be taken at moments t = nT and the sales level S (t) turns from S (nT )
to S (nT+), where S (nT+) = S (nT ) + α

S (nT ) and α
S (nT ) is the increment of sales. It follows from (3) that

the increment ∆S (t) > 0 for S (t) > 0 and a > 0, and hence the single-parameter promotion strategy (3)
can guarantee that the increment ∆S (t) is always greater than 0.

When the product sales level of a firm is low, the firm will increase the promotion. The sales level
is S 1 and the increment is ∆S (t1) at time t = t1 while the sales level is S 2 and the increment is ∆S (t2) at
time t = t2, where S 1 = S (t1) and S 2 = S (t2). If the sales level S 2 is less than S 1, the firm will increase
the promotion at time t = t2 to make the increment ∆S (t2) larger than the increment ∆S (t1), which can
be realized through the single parameter sales promotion strategy (3). Figure 1(a) provides a schematic
illustration of this sales promotion strategy. It’s seen that αS 2

> α
S 1

for S 2 < S 1.
Now build the following nonlinear advertising model with single parameter sales promotion strat-

egy.  Ṡ = −ρS (t)
(
1 − S (t)

ρ
γ

)
, t , nT,

S (t+) = S (t) + α
S (t) , t = nT.

(4)

Figure 1(b) shows one solution to (4). The trajectory originating from the initial point (0, S (0)) reaches
the point (T, S (T )) at t = T , next jumps to the point (T, S (T+)) due to the effect of sales promotion,
and so on. Hence,

S (t) =
ρS (0)

γS (0) − (γS (0) − ρ) exp(ρt)
, 0 ≤ t ≤ T,

S (T+) = S (T ) +
α

S (T )
,

S (t) =
ρS (T+)

γS (T+) − (γS (T+) − ρ) exp(ρ(t − T ))
, T < t ≤ 2T.

3. Periodic solutions and bifurcation

Although product sales will change continuously, the company does not want this change to be dis-
orderly. Therefore, we discuss periodic change of firm’s product sales under sales promotion strategy
in this section.

Electronic Research Archive Volume 30, Issue 4, 1142–1157.



1146

S
0

α
 /

S

0

α/S
1

α/S
2

S
1

S
2

(a)

t

0 T 2T

S

0

S(0)

S(T)

S(T+)

S(2T)

S(2T+)

(b)

Figure 1. For system (4), (a) sketch of sales promotion strategy, (b) the solution from the
initial point (0, S(0)).

Suppose the solution of (4) arrives at the point (kT, S k) at moment t = kT , then jumps to point
(kT, S +k ) due to the effect of sales promotion, reaches the point ((k+1)T, S k+1) at moment t = (k+1)T ,
where S k = S (kT ), S +k = S (kT+) = S k +

α
S k

, S k+1 = S ((k + 1)T ). It follows from (4) that

S ((k + 1)T ) =
ρS (kT+)

γS (kT+) − (γS (kT+) − ρ) exp(ρT )
,

and a discrete map

S k+1 =
ρ(S k +

α
S k

)

γ(S k +
α
S k

) − (γ(S k +
α
S k

) − ρ) exp(ρT )
,

namely,

S k+1 =
ρ(S k +

α
S k

)

(1 − exp(ρT ))γ(S k +
α
S k

) + ρ exp(ρT )
. (5)

If S (kT ) = S ((k + 1)T ), then sales level S (t) will change periodically. For this to hold, there must
be a fixed point S 0 in discrete map (5), that is,

S 0 =
ρ(S 0 +

α
S 0

)

(1 − exp(ρT ))γ(S 0 +
α
S 0

) + ρ exp(ρT )
.

To avoid the tedious calculation, we set γ = 0.1 and

T =
1
ρ

ln
(
1 +
ρ

γ

)
. (6)

It follows that (1 − exp(ρT ))γ = −ρ. Hence, the discrete map (5) can be written as

S k+1 =

S k +
α

S k

1 + 10ρ − (S k +
α
S k

)
= f (α, S k). (7)

The fixed point S 0 of map (7) is the solution of the following equation.

S =
S + αS

1 + 10ρ − (S + αS )
,
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that is
S 3 − 10ρS 2 + aS + a = 0. (8)

Consider function h(S ) = S 3 − 10ρS 2 + aS + a. For S ∈ (−∞, 0), h′(S ) = 3S 2 − 20ρS + a > 0. Since
h(0) = α > 0 and lim

S→−∞
h(S ) = −∞, Eq (8) has a unique root for S ∈ (−∞, 0).

In Eq (8), the coefficients are a = 1, b = −10ρ, c = α, d = α. Now set

A = b2 − 3ac = 100ρ2 − 3α, B = bc − 9ad = −10ρα − 9α, C = c2 − 3bd = α2 + 30ρα.

The discriminant is

∆ = B2 − 4AC = α(12α2 + (−300ρ2 + 540ρ + 81)α − 12000ρ3).

It follows from

∆ = B2 − 4AC = α(12α2 + (−300ρ2 + 540ρ + 81)α − 12000ρ3) = 0,

that α1 = 0,

α2 =
100ρ2 − 180ρ − 27 −

√
(100ρ2 − 180ρ − 27)2 + 64000ρ3

8
< 0,

and

α3 =
100ρ2 − 180ρ − 27 +

√
(100ρ2 − 180ρ − 27)2 + 64000ρ3

8
> 0. (9)

Hence ∆ = B2 − 4AC < 0 for 0 < α < α3 and ∆ = B2 − 4AC > 0 for α > α3, where α3 is shown in (9).
For α > α3, the discriminant ∆ = B2 − 4AC > 0 and Eq (8) has one real root and two imaginary

roots. Together with the fact that Eq (8) has a unique root for S ∈ (−∞, 0), we obtain Eq (8) has no
positive real roots. So map (7) has no positive real fixed points for α > α3, and system (4) has no
period-T solutions. The results is given as follows.
Proposition 3.1. System (4) has no period-T solutions for α > α3, where α3 is shown in (9).

For 0 < α < α3, the discriminant ∆ = B2 − 4AC < 0 and Eq (8) has the following three different
real roots.

S 01 =
10ρ +

√
100ρ2 − 3α

(
cos

(
θ
3

)
+
√

3sin
(
θ
3

))
3

, (10)

S 02 =
10ρ +

√
100ρ2 − 3α

(
cos

(
θ
3

)
−
√

3sin
(
θ
3

))
3

, (11)

S 03 =
10ρ − 2

√
100ρ2 − 3αcos

(
θ
3

)
3

,

where θ = arccos

−2000ρ3 + 90ρ2α + 27α

2
√

(100ρ2 − 3α)3

.
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The root S 03 is negative while S 01 and S 02 are positive. Map (7) has two positive real fixed points
S 01 and S 02 for 0 < α < α3, and system (4) has the following two period-T solutions, which correspond
to fixed points S 01 and S 02.

S 1(t) =
ρ(S 02 +

α
S 02

)

γ(S 02 +
α

S 02
) − (γ(S 02 +

α
S 02

) − ρ) exp(ρ(t − kT ))
, kT < t ≤ (k + 1)T, (12)

S 2(t) =
ρ(S 03 +

α
S 03

)

γ(S 03 +
α

S 03
) − (γ(S 03 +

α
S 03

) − ρ) exp(ρ(t − kT ))
, kT < t ≤ (k + 1)T, (13)

where γ = 0.1 and T = 1
ρ

ln (1 + 10ρ).
The eigenvalue of the fixed point S 0i is

λi =
∂ f (α, S 0i)
∂S 0i

=
(1 − α

S 2
0i

)
(
1 + 10ρ − (S 0i +

α
S 0i

)
)
− (S 0i +

α
S 0i

)(−(1 − α
S 2

0i
))(

1 + 10ρ − (S 0i +
α

S 0i
)
)2

= 1 +
10ρS 2

0i − 2αS 0i − 3α

S 2
0i + α

, i = 1, 2. (14)

If the initial sales values are S 01+
α

S 01
and S 02+

α
S 02

, the sales level S (t) changes periodically according
to (12) and (13). The eigenvalue λi of the fixed point S 0i is used to judge the stability of the solution
S i(t). The following results are obtained.
Proposition 3.2. For 0 < α < α3, system (4) has two period-T solutions S i(t)(i = 1, 2), which are
shown in (12) and (13). The period-T solution S i(t) is stable for |λi| < 1 and unstable for |λi| > 1,
where λi is shown in (14).

Set ρ = 1.1, one can obtain α3 ≈ 25.7298 from (9). Map (7) has two fixed points, which are shown in
Figure 2(a), for α ∈ (0, 25.7298) and hence system (4) has two periodic solutions. The eigenvalues of
these two fixed points S 0i(i = 1, 2) are shown in Figure 2(b). For α ∈ (0, 25.7298), λ1 > 1 and the fixed
point S 01 is unstable, and hence the corresponding periodic solution S 1(t) is unstable. Since |λ2| < 1
for α ∈ (0, 0.6081) ∪ (21.3922, 25.7298) and |λ2| > 1 for α ∈ (0.6081, 21.3922), the corresponding
periodic solution S 2(t) of system (4) with ρ = 1.1 is unstable for α ∈ (0, 0.6081)∪ (21.3922, 25.7298)
and unstable for α ∈ (0.6081, 21.3922).

Now set α = 0.6, it follows from (10) and (11) that S 01 ≈ 10.9401, and S 02 ≈ 0.2660. Note that
S 01 +

α
S 01
= 10.9949 and S 02 +

α
S 02
= 2.5216, there exist the following two periodic solutions in system

(4) with ρ = 1.1 and α = 0.6.

S 1(t) =
11 ∗ 10.9949

10.9949 − (10.9949 − 11) exp(1.1(t − kT ))
, kT < t ≤ (k + 1)T,

S 2(t) =
11 ∗ 2.5216

2.5216 − (2.5216 − 11) exp(1.1(t − kT ))
, kT < t ≤ (k + 1)T,

where T = 1
ρ

ln (1 + 10ρ) = 2.2590. These two periodic solutions and their stability are shown in
Figure 3. With time increasing, the solution S (t) with the initial point (0, 10.9940) moves away from
the periodic solution S 1(t) and the solution S (t) with the initial point (0, 8.5) tends to the periodic
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Figure 2. For system (4) with ρ = 1.1, (a) two fixed points S 01 and S 02, (b) the eigenvalues
of fixed points S 01 and S 02.
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Figure 3. For system (4) with ρ = 1.1 and α = 0.6, (a) the periodic solution S 1(t) and
the solution S (t) with the initial point (0, 10.9940), (b) the periodic solution S 2(t) and the
solution S (t) with the initial point (0, 8.5).

solution S 2(t). So the periodic solution S 1(t) is unstable and S 2(t) is stable for system (4) with ρ = 1.1
and α = 0.6.

It’s seen from Figure 2(b) that the eigenvalue λ2 of the fixed point S 02 is equal to −1 at α = 0.6081
and α = 21.3922 for ρ = 1.1. An eigenvalue with −1 is associated with a flip bifurcation (or flip bi-
furcation). So α = 0.6081 and α = 21.3922 are candidates for flip bifurcation, and a stable period−2T
solution may occur in the system. Now use the following lemma [17] to discuss the stability and
direction of bifurcation of period−2T solutions in the case of α = 0.6081.
Lemma 3.1. Let fµ : R→ R be a one-parameter family of map such that fµ0 has a fixed point x0 with
eigenvalue −1. Assume the following conditions:
(C1) (∂ f

∂µ

∂2 f
∂x2 + 2 ∂

2 f
∂x∂µ ) , 0 at (x0, µ0);

(C2) g(x, µ) = 1
2 (∂

2 f
∂x2 )2 + 1

3 (∂
3 f
∂x3 ) , 0 at (x0, µ0).

Then, there is a smooth curve of fixed points of fµ passing through (x0, µ0), the stability of which
changes at (x0, µ0). There is also a smooth curve γ passing through (x0, µ0) so that γ\(x0, µ0) is a
union of hyperbolic period-2 orbits.

It follows from (11) and Figure 4(a) that S 02 = 0.2681 for α = 0.6081. One can calculate that
(∂ f (α, S k)

∂α

∂2 f (α, S k)
∂S 2

k
+ 2∂

2 f (α, S k)
∂S k∂α

) , 0 at (S 02, α) = (0.2681, 0.6081). In (C2) the sign of g(x0, µ0)
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Figure 4. For system (4) with ρ = 1.1 and α ∈ (0, 5), (a) the fixed point S 02 and its eigenvalue
λ2, (b) the function g(S k, α).

determines the stability and the direction of bifurcation of the orbits of period-2. If g(x0, µ0) is positive,
the orbits are stable; if g(x0, µ0) is negative they are unstable. In our case,

∂2 f (α, S k)
∂S 2

k

= 2(1 + 10ρ)
α

S 3
k
+ (1 − α

S 2
k
)2(

1 + 10ρ − (S k +
α
S k

)
)3 ,

∂3 f (α, S k)
∂S 3

k

= 2(1 + 10ρ)
(3 − 3α

S 2
k
)( α

S 3
k
+ (1 − α

S 2
k
)2) − ( 3α

S 4
k
+ 4α

S 3
k
− 4α2

S 5
k

)(1 + 10ρ − S k −
α
S k

)(
1 + 10ρ − (S k +

α
S k

)
)4 ,

and g(S k, α) = 1
2 (∂

2 f (α, S k)
∂S 2

k
)2 + 1

3
∂3 f (α, S k)
∂S 3

k
= 4.2326 > 0 at (S 02, α) = (0.2681, 0.6081).

Hence a flip bifurcation occurs at α = 0.6081 and system (4) has a stable period−2T solution for
α ∈ (0.6081, 0.6081 + ϵ), where ϵ > 0.

To get the expression of the period-2T solution S 3(t), consider the following quadratic iterative map
of (7).

S k+1 =

S k+
α

S k
1+10ρ−(S k+

α
S k

) +
α

S k+
α

S k
1+10ρ−(S k+

α
S k

)

1 + 10ρ −

 S k+
α

S k
1+10ρ−(S k+

α
S k

) +
α

S k+
α

S k
1+10ρ−(S k+

α
S k

)


= f 2(α, S k). (15)

Map (15) has 6 fixed points S 0i j, i = 1, 2, 3, j = 1, 2, which meet conditions f (α, S 0i1) = S 0i2 and
f (α, S 0i2) = S 0i1. Similar to the case of map (7), two fixed points, which marked as S 021 and S 022 here,
are stable for α ∈ (0.6081, 0.6081 + ϵ). Hence system (4) has the following stable period-2T solution.

S 3(t) =


ρ(S 021+

α
S 021

)

γ(S 021+
α

S 021
)−(γ(S 021+

α
S 021

)−ρ) exp(ρ(t−kT )) , kT < t ≤ (k + 1)T,
ρ(S 022+

α
S 022

)

γ(S 022+
α

S 022
)−(γ(S 022+

α
S 022

)−ρ) exp(ρ(t−(k+1)T )) , (k + 1)T < t ≤ (k + 2)T.
(16)
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Figure 5. For system (4) with ρ = 1.1, (a) the solution from the initial points (0, 9.1) for
α = 4, (b) bifurcation diagram for α ∈ (0, 25.7298).

Set α = 4, the solution from the initial points (0, 9.1) is shown in Figure 5(a), which tends to
a stable period-2T solution S 3(t). Figure 5(b) shows bifurcation of periodic solutions of system (4)
with ρ = 1.1, α ∈ (0, 25.7298), and the initial points (0, 10). A period-T solution S 2(t) is stable for
α ∈ (0, 0.6081) and a flip bifurcation occurs at α = 0.6081. A period-2T solution S 3(t) is bifurcated
from the the period-T solution S 2(t) through flip bifurcation at α = 0.6081. The period-2T solution
S 3(t) solution is stable for α ∈ (0.6081, 4.8096) in system (4) with ρ = 1.1.

It’s also seen from Figure 5(b) that an inverse flip bifurcation occurs at α = 21.392 in system (4)
with ρ = 1.1. There exists a stable period-2T solution for α ∈ (17.6824, 21.3922). A stable period-T
solution, which bifurcates from the stable period-2T solution through inverse flip bifurcation, is stable
for α ∈ (21.3922, 25.7298).

Now we change the value of ρ to discuss periodic solutions and their bifurcation in system (4). Set
ρ = 0.6, 0.8, 1.26 in system (4). The eigenvalues of the fixed point S 02 are shown in Figure 6(a). In
the case of ρ = 0.6, α3 = 6.8380 and 0 < λ2 < 1 for α ∈ (0, 6.8380), so the fixed point S 02 is stable
for α ∈ (0, 6.8380) (see Figure 6(b)) and hence system (4) has only one stable period-T solution for
ρ = 0.6.

In the case of ρ = 0.8, α3 = 12.9098, |λ2| < 1 for α ∈ (0, 1.2501) and α ∈ (8.001, 12.9098).
The bifurcation of fixed points is shown in Figure 6(c). The exist a stable period-T solution for α ∈
(0, 1.2501) ∪ (8.001, 12.9098) and a stable period-2T solution for α ∈ (1.2501, 8.001). Except for
stable period-T and period-2T solutions, other types of periodic solutions do not exist in system (4)
with ρ = 0.8.

In the case of ρ = 1.26, α3 = 34.3965 and |λ2| < 1 for α ∈ (0, 0.4841) ∪ (30.1510, 34.3965).
The bifurcation of fixed points is shown in Figure 6(d). A flip bifurcation occurs at α = 0.4810 and
an inverse flip bifurcation occurs at α = 30.1510. It’s seen that system (4) with ρ = 1.26 has a stable
period-4T solution for α = 5 and a period-8T solution for α = 25.2, which are shown in Figure 7.
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Figure 6. For system (4), (a) eigenvalue λ2 with ρ = 0.6, 0.8. 1.26, (b) the stable fixed
point S 02 with ρ = 0.6, (c) bifurcation diagram with ρ = 0.8, (d) bifurcation diagram with
ρ = 1.26.
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Figure 7. For system (4) with ρ = 1.26, (a) period-4T solution for α = 5, (b) period-8T
solution for α = 25.2.

4. Bifurcation control

In the above section, the existence of flip bifurcation is discussed. As it well known, one path to
chaos is the cascade of flip bifurcations. Figure 8(a) shows the cascade of flip bifurcations and the
positive Lyapunov exponent in system (4) with ρ = 1.1, which illustrate the existence of chaos. A
chaotic solution of system (4) with ρ = 1.1 and α = 10 is shown in Figure 8(b).
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Figure 8. For system (4) with ρ = 1.1, (a) bifurcation diagram and Lyapunov exponent for
α ∈ (0, 25.7298), (b) a chaotic solution for α = 10.

In the state of chaos, the product sales change disorderly and is out of control. To stabilize the
market, we should take measures to suppress bifurcation and eliminate chaos. Here, a small constant
is introduced into sales promotion strategy, that is,

∆S (t) = S (t+) − S (t) =
α

S (t)
+ β, t = nT, (17)

where β is a small increase in sales at promotion time t = nT . So the following bifurcation control
system is obtained.  Ṡ = −ρS (t)

(
1 − S (t)

ρ
γ

)
, t , nT,

S (t+) = S (t) + α
S (t) + β, t = nT.

(18)

Similar to the previous section, we obtain the following map under conditions γ = 0.1 and (1 −
exp(ρT ))γ = −ρ.

S k+1 =

S k +
α

S k
+ β

1 + 10ρ − (S k +
α
S k
+ β)

= f1(S k). (19)

Suppose the positive fixed point of (19) is S̄ 0i, the eigenvalue of the fixed point is

λ̄0i =
1 + β + S̄ 0 +

β

S̄ 0
−
α+2αβ

S̄ 2
0
− α

S̄ 3
0
− α

2

S̄ 4
0

(1 + β

S̄ 0
+ α

S̄ 2
0
)2

(20)

The fixed points of maps (7) and (19) are shown in Figure 9(a) for ρ = 1.1, ∆S (t) = α
S (t) , ∆S (t) =

α
S (t) + 0.8. Figure 9(b) shows that α∗1 < α

∗
3 < α

∗
4 < α

∗
2, where λ2(α∗1)) = λ2(α∗2)) = −1 and λ̄02(α∗3) =

λ̄02(α∗4) = −1. After taking control measures ∆S (t) = α
S (t) + 0.8 at t = n

ρ
ln (1 + 10ρ), the flip bifurcation

is suppressed from α = α∗1 to α = α∗3 while the inverse flip bifurcation occurs from α = α∗1 to α = α∗3 in
advance. So chaos in system (4) with ∆S (t) = α

S (t) may be eliminated.
The effects of bifurcation control on system (4) with ρ = 1.1 and ρ = 1.26 are shown in Figure 10.

Chaos in system (4) with ∆S (t) = α
S (t) are controlled into period-2T state for ρ = 1.1 (see Figure 10(a))

and into period-T, 2T, 4T states for ρ = 1.26 (see Figure 10(b)).
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Figure 9. For system with ρ = 1.1, ∆S (t) = α
S (t) , ∆S (t) = α

S (t) + 0.8, (a) fixed points, (b)
eigenvalues of fixed points S 02 and S̄ 02.
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Figure 10. Bifurcation diagrams with ∆S (t) = α
S (t) and ∆S (t) = α

S (t) + 0.8, (a) ρ = 1.1 , (b)
ρ = 1.26.
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Figure 11. Control measures ∆S (t) = α
S (t) + 0.8 are taken at t = nT (n ≥ 40,T = 2.2590) in

system (4) with ρ = 1.1 and α = 10, (a) time series of S n, (b) time series of S (t).

Figure 11 shows that control measures ∆S (t) = α
S (t) + 0.8 are taken at t = nT (n ≥ 40,T =

1
1.1 ln (1 + 10 ∗ 1.1) = 2.2590) in system (4) with ρ = 1.1 and α = 10. A chaotic solution slowly
evolves into a stable period-2T solution.

For system (4) with ρ = 1.26 and α = 25, suppose that control measures ∆S (t) = α
S (t) + 0.8 are
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taken at t = nT (n ≥ 40,T = 1
1.26 ln (1 + 10 ∗ 1.26)) = 2.0715. A chaotic solution of system (4) slowly

evolves into a stable period-T solution (Figure 12).
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Figure 12. Control measures ∆S (t) = α
S (t) + 0.8 are taken at t = nT (n ≥ 40,T = 2.0715) in

system (4) with ρ = 1.26 and α = 25, (a) time series of S n, (b) time series of S (t)
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Figure 13. The solution from the initial value S (0) = 11.61 under (a) promotion strategy
∆S (t) = 15

S (t) , (b) control strategy ∆S (t) = 15
S (t) + 0.8.

In the bifurcation diagram Figure 6(d) of system (4) with ρ = 1.26, there is a blank area for α ∈
(11.42, 18.91). The reason for this phenomenon is that the promotion strategy ∆S (t) = α

S (t) makes
sales level S (t) greater than the maximum ρ

γ
. So the promotion strategy ∆S (t) = α

S (t) is ineffective
for α ∈ (11.42, 18.91). It’s seen from Figure 10(b) that the control strategy ∆S (t) = α

S (t) + β can
not only control chaos, but also control sales level under the maximum value ρ

γ
= 12.6. The solution

from the initial value S (0) = 11.61 crosses the maximum line at t = 5T under promotion strategy
∆S (t) = α

S (t) for α = 15 (see Figure 13(a)). Figures 10(b) and 13(b) show that the solution from the
same initial value S (0) = 11.61 tends a stable period-4T solution and is always less than ρ

γ
under the

control strategy ∆S (t) = 15
S (t) + 0.8.

5. Conclusions

In this paper, single parameter sales promotion strategy is introduced into a nonlinear differential
advertising model. Theoretical analysis and numerical results show that the system possesses complex
dynamic behavior.
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The coexistence of multi periodic solutions, which include unstable and stable period-nT (n =
1,2,...) solutions, occurs in the system for parameter α satisfies some conditions. Interestingly, both
flip bifurcation and inverse flip bifurcation occur in nonlinear differential advertising model with sales
promotion. System (4) enters into chaos from stable state through flip bifurcation and enters into stable
state from chaos through inverse flip bifurcation. By suppressing flip bifurcation and promoting inverse
flip bifurcation, an effective control strategy is proposed to eliminate chaos. The parameter α plays an
important role in the complex dynamics of advertising model. According to theoretical analysis and
actual situation, firms determine the value of parameters α to develop sales promotion strategy and
avoid disorderly changes in sales volume.

The purpose of the proposed sales promotion strategy is to improve sales level and maximize firm’s
profit. The condition to make sales meet given target is obtained. Considering unit profit margin,
constant advertising expenditure, and unit promotion cost, the profit function is constructed. The
optimal sales promotion strategy is obtained and used to maximize firm’s profit.
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