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Abstract: Zero-stability is the basic property of numerical methods of ordinary differential equations
(ODEs). Little work on zero-stability is obtained for the waveform relaxation (WR) methods, although
it is an important numerical method of ODEs. In this paper we present a definition of zero-stability
of WR methods and prove that several classes of WR methods are zero-stable under the Lipschitz
conditions. Also, some numerical examples are given to outline the effectiveness of the developed
results.
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1. Introduction

Waveform relaxation (WR) is an iterative method for systems of ordinary differential equations
(ODEs). It is introduced for the first time by Lelarasmee et al. [1] for the time domain analysis of
large-scale nonlinear dynamical systems. A lot of studies have been done on WR methods and most
of them focus on convergence (see [2-9]). Zero-stability is the basic property of numerical methods
of ODEs [10]. However, to our best knowledge, so far there exists little work on zero-stability of WR
methods.

We first of all propose two examples to show the fact that tiny perturbation may lead to huge change
of WR approximation solutions, at the same time, to confirm that it is necessary to study zero-stability
of WR methods. For this, it is enough to consider a simple method, and suppose only the initial value
has tiny perturbations.

Example 1. Consider the WR method

(k+1) (k+1) k+1 k+1 k
v — A+ a)x Y+ axt = —(1 - (e + 1) (1.1)

X n+1 n
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of solving numerically the initial value problem
x(t) = =2x(t),t € [0, T]; x(0) = xo,
which is gotten by applying the two step method
Xppo — (1 + @)xpy1 + ax, = =2(1 — a)hx,
that is consistent for any « and zero-stable for —1 < @ < 1 to the iterative scheme

40y = —x* V(@) = ().

Suppose that
N i1s a positive integer and h = %, (1.2)
X0 =xp,n=0,1,--+ ,N,x = x0,k =0, 1,--- (1.3)
and
D = D Y a0y k= 0,1, (1.4)
We can get the approximate solution {xP n=0,1,--- ,NL,k=0,1,---} by using Eqs (1.1)—(1.4).

Suppose that tiny perturbations denoted by ¢ lead to the 1n1t1a1 values become
O =x+6n=0,1,-- N3 =x+8k=0,1,--- (1.5)

and the resulting perturbed solution of Eq (1.1) is denoted by {X, (z9). Let 6 = 1 for simplicity and denote
E,k) (k) with e(k) Then we have

(k+1)
n+2

(k+l)

e —(I+ae,,’ + ae(k“) =-(1- a/)h(e;k“) + eﬁ,k))

(n—Ol--- N-2,k=0,1,--), (1.6)
el = 1,6 = (1 - 2mef* (k= 0,1,---),e? = 1(n=0,1,--- ,N).

By virtue of Eq (1.6) the following numerical results are obtained.

Table 1. Results obtained by (1.6) with @ = 0.5.

N 10 100 250 500 750 1000
ey 0.10621 0.1319 0.13343 0.13388 0.13402 0.13409
<N1°> 0.10621 0.13238 0.13422 0.13478 0.13497 0.13506
e[ 0.10621 0.13238 0.13422 0.13478 0.13497 0.13506

The data in Tables 1 and 2 show that errors of the approximate solution of Eq (1.1) brought by
perturbations of initial values are controllable for @ = 0.5, but they are unbounded for @ = 2 when A
tends to zero.

In this numerical examples, taking 6 = 1 instead of tiny perturbations seem to be unreasonable. The
(k)

main reason for this is that we are usually interested in the ratio - instead of ¢ itself. In fact we have
also performed some other experiments using smaller ¢, in which the similar ratios are obtained for
different ¢.
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Table 2. Results obtained by (1.6) with o = 2.

N 10 100 250 500 1000
ey 268.74 6.2863e+028 3.7892e+073 3.4922¢+148 5.7695e¢+298
e 268.74 6.2867e+028 3.7897e+073 3.4927e+148 5.7704e+298

e 268.74  6.2867e+028 3.7897e+073 3.4927e+148 5.7704e+298

Example 2. Consider the one-step WR method

n+1

x(k+1) — xglkn) + h(SOO(xﬁlk“))l'OOl + 500(xf1k))]'00]),n =0,1,---, g,
h (1.7)

xg‘”) =0; x¥ =0, forall n,

where 2/h is an integer. Suppose that the initial value O becomes ¢ by the influence of perturbations
and the solution xﬁl") becomes fcﬁ,k) by the influence of ¢, which satisfies

2
(k1) _ (k1) ~(k+1)1.001 ~(k)\1.001 _ 4
X, =X, +h(50()(xn ) + 500(x,,”) ),n—O,l, " (1.8)

xékﬂ) =§; ¥ =6, forall n.

Clearly the numerical solution generated by Eq (1.7) is the constant zero and Eq (1.8) can be re-
garded as the WR method of solving the following initial value problem

x(t) = 1000(x(£))" ", € [0, 2]; x(0) = 6. (1.9)
1
It is easy to derive that 7y = 0001 is the blow-up time of the solution of Eq (1.9) and 7y € [0, 2]
whenever 6 > 107!, Consequently, sup x(f) = +oo for any 6 > 107!, If the “2” in Eqs (1.8) and
O<1<2

(1.9) 1s replaced by ) — &, where € > 0 is small enough, then Eq (1.8) converges to Eq (1.9), that is,

lim  sup |5cflk) — x(nh)| =0,
h—0,k— o0 105
0<n<0*

see [4]. Thus
lim sup |)?flk)| = +o0, for any ¢ > 107301,

—0,k— o0 OSnS%

that is, the change of the solution of Eq (1.8) brought by the tiny change of initial values is unbounded
as h tends to zero.

The above two examples show that tiny perturbations can lead to huge change of WR approximation
solutions, although the methods used in the examples are too simple to be practically useful.

A numerical method is said to be zero-stable if the change of its solution brought by the tiny pertur-
bations is controllable when 4 tends to zero (see [10]). In this paper we will explore what conditions
guarantee the zero-stability of WR methods.
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2. Preliminary

Consider the initial problem
(1) = f(t, x(0), 1 € [0, T1; x(0) = xo(x(r) € RY).
Taking the splitting function F(z, x, x) = f(¢, x) we can construct the iterative scheme

V@) = Fa, XV, x0@),1 € [0, T,k = 0,1, 5

2.1
xO@) = xo, x*D(0) = xo.
Using one-step methods with variable step-size to discrete Eq (2.1) one arrives at
k+1 ket 1 D) k1) R (k). ket
XD = XD 4 @ (2, By, XD XD 0By xé D= %, (2.2)
N-1 O _ _
wheren =0,1,--- ,N-1,k=0,1,---, > h, =T and x,’ = x, for all n. Applying a class of multi-step
n=0
methods with fixed step-size to Eq (2.1) we get
(k+1) _ _(k+1 (k+1)  (k+1 (k+1) (k) k (k)
Xogl — -x;(1 = + h\P(tm h’ Xoel > x;(fl i ), Tt xn—p s Xpilo x; )’ Tt xn—p), (23)

wheren =p,p+1,--- , N-1,k=0,1,---, h = T/N, the initial values except xﬁlo)(n =0,1,---,N)and
xg‘)(k =0,1,---) are generated by a suitable one-step method. Here we take the initial values as

a0 =c® n=0,1,---,pk=0,1,---(c = xy, if n-k =0). (2.4)

n

A classical example of Eq (2.3) is Admas-type linear multi-step methods:

p+1
(k+1) _ _(k+1) (k+1) (k) _
x,H_] =X, +hZﬁjF(th—j,an_j,xn+1_j)’n—P,p+1"" 9N_19
j=0

where g;,j = 0,1,---,p + 1 are constants. The linear multi-step methods use generally the fixed
step-size and therefore we only consider the Eq (2.3) with the fixed step-size.
Let ;x® denote the component of x® satisfying

2 = ()" ) ()
where ;x® € R4, x® € R? and d, +d, + -+ + d,, = d. The Eq (2.1) can be rewritten as

AED = By, xD, g D L xEEDa0x® ),

’

withi =1,2,--- ,m, that is, the large Eq (2.1) is divided into m subsystems. When taking

Fi(t’ o ') = .fl(t7 l'x(k)7 R i—l'x(k), i'x(k+1)7 i+1x(k)’ Y m'x(k))7l = 172’ e ,m

one arrives at Guass-Jacobi WR method used frequently in actual computation, which consists of m
independent subsystems and is hence parallel in nature(see [2, 6,9]). In Eq (2.2) the unique mesh

Electronic Research Archive Volume 30, Issue 3, 1126-1141.



1130

0=ty <t <--- <ty =T is applied to all subsystems. However the subsystems of Gauss-Jocobi WR
methods are independent and may have distinct behaviors, and consequently it is better to use different
meshes for the subsystems with different behaviors. Applying the mesh

O=ito< i1 <---<ity,=T, ihj= itjy1—itj,j=0,1,--- ,N; = 1

to ith subsystem yields the following multi-rate WR method

i n+1 n+l °

1 YOt s PGt PG, P, (2.5)
ixl(1k+1)’ i+1y(k)( itn)’ ) my(k)(ltl’l)) N = Oa 1’ e 7Ni - 1,

k1 k41
D _ix;kﬂ) + ihn (Di(itn, ity YO Cite)s s etV P Citer), XD

where i = 1,2,--- ,m,k = 0,1,---. Here the initial values -x(k”) = X (0) = ;xo for all k and n,
T

(1xoT, WXL, e, mxoT) = X and y(k)(t) is the interpolation function satlsfymg Jy( )( i) = x(k) for

n=01,---,N;.

Because of the presence of errors in actual computing, it is necessary to consider the following
perturbed systems of Eqs (2.2), (2.3) and (2.5) generated by the perturbations (6P n=0,1,--- Nk =

0, 1’ e }
~(k+1) — ~(k+1) +h q)(tn,h ~(k+1) )~C(k+1) ~(k) (k)) +h 5(k+1)

Xoil ns X, s Xy s Xpr 1 n+l 2
n=0,1,--- ,N—1; (2.6)
~</<+1) = xp + 5(k+1) ~(0) =X + 5(0)(71 =0,1,---,N),
kD) _ ~(1<+1) Skt 1) okt D) Fk+1)
n+1 = +hlP(tn,h X el ,-xn 5 ,xn—p s
PONEY () ~(k) (k+1) :
A CIPPT np)+h5n+1,n—p,p+1,...,N—1, (2.7)

)”cff‘“) = cg‘“) + 6§Ik+l),n =0,1,---,p, xﬁlo) =Xy + 65,0)(11 =0,1,---,N),

and
i~,(i+11) = D 4o, (Di(itna s (T Citas1)s -+ o 130Gt lii'fll),
w30ty s WP Cta), TP, 7P,
D3OG, IOG) + 6, (2.8)
n=0,1,--- ,N;,—1;
iigkn) = X +i5£)k+l), FO = o+ 60 = 0,1, Ny,

where i = 1,2,---,m and §*“(¢) is the interpolation function satisfying §“(;t,) = ;& for n =
07 17”' 7Nj9j:Oa17”' ,m

Definition 2.1. ( Page 32 of [10]) Let {5(k) =0,1,---,N,k = 0,1,---} be any perturbation of
Eq (2.2) or Eq (2.3) and Eq (2.4), and let {Scﬁlk),n =0,1,---,N,k = 0,1,---} be the solution of the
resulting perturbed system Eq (2.6) or Eq (2.7). Then if there exist constants C and A such that, for all
h € (0, hpl(h = max h, for Eq (2.2))

max ||x(k> ﬁlk)ll < Ce,
0<k,0<n<N
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whenever

max ||5£lk)|| <e,
0<k.0<n<N

we say that the Eq (2.2) or Eqs (2.3) and Eq (2.4) is zero-stable.
Here and hereafter || - || denotes any norm defined in R¢.

Definition 2.2. Let {(;6",i=1,2,--- ,mn=0,1,--- ,N,k =0, 1,---} be any perturbation of Eq (2.5),
and let {ﬁﬁ,’”, i=12,---,mn=0,1,--- ,N,k=0,1,---} be the solution of the resulting perturbed Eq
(2.8). Then if there exist constants 4, and C; depended on k such that

max max [ — x| < Ce
1<i<m 0<n<N;
O<i<k

for all 4 = max max ;h, € (0, hy], whenever
1<i<m 0<n<N;

max max ||,~5§Zl)|| <eg,
1<i<m 0<n<N;
0<i<k

we say that the Eq (2.5) is weakly zero-stable.

The following several lemmas are useful for studying zero-stability of the WR methods mentioned
above.

Lemma 2.3. Let a,b and T be nonnegative constants, and N be a positive integer. Suppose that the
sets {h, >0,n=0,1,--- ,N -1} and {u, >0,n=0,1,---, N} satisfy

Up1 < (1 +ah,)u, +bh,,n=0,1,--- ,N—1. (2.9)

Then

b
max u, < eTuy+ -7 - 1)
0<n<N a

N-1
provided that ), h, =T.
n=0

Proof. By using Eq (2.9) repeatedly we have

U1 <(1 +ah,)(1 +ah,_y)--- (1 + aho)uy
+ (1 + ah,)(1 + ah,_y)--- (1 + ahy)bhy,
+(1+ ahn)(l + ahn_l) (1 + al’lz)bl’ll
+---+ (1 + ah,)bh,_, + bh,,
where n = 0,1,--- ,N — 1. Letty = 0,¢,,; = t, + h,,n = 0,1,--- ,N — 1, then ty = T. Noting that
1 + x < e* for x > 0 we can derive easily from above inequality
Ups Sea(tm—to)uo + ea(t””_tl)b(tl _ fo) + ea(tn+1—t2)b(t2 _ tl)
+ e+ ea(ln+l_tn)b(tn _ tn—l) + ea(tn+l_[;1+])b(tn+l _ tn)
<™ ug + &b (e (1 — to) + -+ + €ty — 1)

+oe ke Nty — tyo1)
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forn=0,1,---,N — 1. This together with monotonicity of the function e™ imply

T
_ _ b
Uy < e T0y, + e“be e dt = eTuy + — (e“T - 1)

to a

foralln=0,1,--- ,N—1. O
Lemma 2.4. Let a,b,c,d and T be nonnegative constants, N be a positive integer and h,,n =

0,1,---,N — 1, be positive real numbers.
Suppose that the sequence of positive numbers (e®>0n=01,--Nk=0,1,---} satisfies

D < (1 + ah,)e™™V + bh,e + chye® +dh,,n=0,1,---N - 1. (2.10)
Then f 0<h h, < !
en for an = max —
Y 0<n<N—1 ' 2¢
" d .
max  e® < 2@ max {max e®, max ¢} + ——(2@POT _ 1) (2.11)
0<k,0<n<N " o<k 0 "o0<n<N " at+b+c
N-1
provided that ), h, =T.
n=0
Proof. By Eq (2.10) we have
(k+1) (k+1) (k) (k)
nolgkx e, <(l+ah,) rglsa]gc e, +bh, rglsakx e,’ +ch, nolgkx e, ., +dh, (2.12)

forn = 0,1,--- ,N —1. Let € = max eﬁ,o) and u, = max{maxeg,k),s},n =0,1,---,N. Clearly
0<n<N 0<k
max {ngakx e 8} = u,. Hence we can get by Eq (2.12)
<

Upe1 < (1 +ahyu, + bh,u, + ch,u,., + dh,
< 1+ ah, + bh, N dh,

Up ,

N 1-ch, 1-ch,

n=0,1,---,N-1.

1
Suppose that 0 < h < e Consequently, < 2 and the above inequality thus yield
c

1-ch,

Upe1 < (1 +2(a+ b+ oh)u, +2dh,,n=0,1,--- ,N—1.

This together with Lemma 2.3 yield

max u, < 62(a+b+c)Tuo + L(eﬂﬁbﬂﬁ _ 1)
0nsN " T a+b+c
Thus Eq (2.11) holds true. The proof is complete. O
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Lemma 2.5. Leta;,bj(j=0,1,---,p),c,dand T be nonnegative constants. Let N be a positive integer
and h = T/N. Suppose that the sequence of positive numbers {eﬁlk) >0n=0,1,---Nk=0,1,---}
satisfies

kD < plktD +hZ ajel) +bie )+ chel +dhn=p.p+1,- N-1. (2.13)

n+1 n+l

1
Then forany 0 < h < —
2c

d
max e® <Xt Tgy —

( (ez(A+c)T _ 1) ,
0<k,p+1<n<N A+c

where € = max{max eﬁl), max e,, } A= Z(a, +b)).
0<n<N 0<k,0<n<p

Proof. Note that ¢! < & for all n < p and all k > 0. By using Eq (2.13) repeatedly we have

<k+1> <(1+ch+--+ (ch(1 + Ah)e + (ch)*'e

(2.14)
+(1 +ch+---+(ch)")dh,k:0,1,---

dh
and 8, = —— we can derive from Eq (2.14)

1 1+ Ah
Let 0 < h < —. With the notation ¢, = —oh

2c 1-ch

;il <ape+Ppk=0,1,---.

Noting that € < a,& + B, and therefore e( ) < ape + By foralln < p + 1 and all £ > 0 we thus have
by repeating the above process

e, < an(ans +By) + B = (@n)’e + Bu(l + @), k = 0,1,

Consequently, we get

e < (@)"e + Bl + ay + (@) + -+ + (@)™ ),k =0,1,--

hold true form = 1,2,--- , N — p. Note that o, > 1. Thus
eV < (an)Ve + Bl + ap + ()’ + -+ + (@) ™)
fork=0,1,---,n=0,1,---,N. This together with 0 < ch < 1/2 yield
(ap)" -

1
b <(a)e + ————p,
an — 1

<(1+2(A+ o) e+ —— o ((1 +2(A+ )" - 1)
<g2A+oT

e4 — (2Aa+aT _ 1)

A+c(
fork=0,1,---,n=0,1,---,N. The proof is complete. m]
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3. Main results

Theorem 3.1. Suppose that there exist constants Ly,L,,Ls and Ly such that

D(t, h, x1, X2, X3, X4) — P, B, Y1, y2,¥3, ya)ll < Z Lillx; — yill (3.1)

i=1
for any real numbers t,h € R, x;,y; € R?,i = 1,2,3,4. Then the WR Eq (2.2) is zero-stable.

Proof. Let s(k) = ||”(k) x,(f)ll and for any & > 0O the perturbations in Eq (2.6) {6,(1k),k =0,1,---,n =

0,1,---,N} satisfies . %ax . ||5§,k)|| < &. Then by virtue of Eqgs (2.2) and (2.6) and the condition (3.1)
<k,0<n<

we have

n+]

forn=0,1,--- ,N—-1,k=0,1,--- and

n+1

gktb < s(k“) + h, (Lls(k“) +L, s(k“) + L s(k) + L48,(1k)) + h,e (3.2)

<k+1><gk 0,1,---,6%V <en=0,1,--- ,N. (3.3)
Let h, < ! Th ! < 2. We therefore derive from Eq (3.2)
c n _—. en ———— . c ercrore derive rrom .
2L, 1 —hL, d
e < (14 2k, (Ly + L)e®™V + 2k, L3 | + 2h,Lie® + 2h,e (3.4)

forn=0,1,--- ,N-1,k=0,1,---. Consequently, by Eqa (3.3), (3.4) and Lemma 2.4 we have

Sﬁlk) < eHlitlatlatlaT o o € (64(L1+L2+L3+L4)T _ 1)
Li+L,+ 15+ Ly
1
forany k=0,1,--- ,n=0,1,--- ,Nif 0 < h < min . The proof is therefore complete. O
2L1 4L3
Theorem 3.2. Suppose that there exist constants L;,i = 1,2,--- ,2p + 4 such that
2p+4
”lP(ta h’ X1, X2yt 0"y x2p+4) - lP(t7 ha yl’yZa e ’y2p+4)|| < Z Li”xi - yl” (35)

for any real numbers t,h € R, x;,y; € R i=1,2,---, 2p + 4. Then the WR Eq (2.3) and Eq (2.4) is
zero-stable.

Proof. Let & denote ||z — x%|| and the perturbations {6,k = 0,1,--- ,n =0, 1,--- , N} in Eq (2.7)
satisfy jJmax 6% < &, where & is any positive number. Then by virtue of Eqgs (2.3), (2.4), (2.7) and
<k,0<n<

the condition (3.5) we have

(k+1) <8(k+l) +h(L 8(k+1) +L 8(k+1) + - +Lp+28(k+1)

+1 n=p
+ Lp+3s + Lp+48(k) -+ L2p+4s ») + he, (3.6)
p,p+1,--- ,N—-1,
e <en=01,-,pe¥<en=0.1,---,N,
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1 1
where k =0,1,---. Leth < L Consequently, Tl < 2. We therefore derive from Eq (3.6)
1 - 1

gD <(1+2h(Ly + Ly)elf™ + 2h(Lsel™) + -+ + Lp+28(k+l) + Lyael)
+ Lp+4sn) +--- L2p+48 »)+ 2he,n=p,p+1,--- ,N—1, (3.7)

asz'l)SS,n:O,l,""P’ e <en=0,1,---,N

forn=0,1,--- ,N-1,k=0,1,---. By Eq (3.7) and Lemma 2.5 we have

85’1() < eMLitlottlopi)T o € (64(L1+L2+---+L2,,+4)T _ 1)
L +L2+"'+L2P+4

1
forany k=0,1,--- ,n=0,1,--- N1f0<h<m1n{

T 4L,,+3} The proof is complete. O

Theorem 3.3. For Egs (2.5) and (2.8) let ® = (@], @3, --- , )" satisfy the Lipschitz condition: there
exist constants Ly and L, such that

2
1D, b, x1, %2) = ©(t B,y )l < Y Lillxi = yill, for any x1, x5, 31,y2 € RY, (3.8)
i=1

and the interpolation functions jj)(k)(t) and jy(k)(t) satisfy that

~(k k ~(k 1N
sup ”jy( &) - Pl < C max || ;70— xP|Li=1,2,--,m, (3.9)
0<i<T O<n<N;

where C is the positive constant. Then the multi-rate Eq (2.5) is weakly zero-stable.

Proof. Define ||x||, = max X1l 1xll, = Z |lix]| for x = ((xT, ,xT, -, . xDT € RY, where ;x € R%,i =
i=1

1,2, ,m,di +dy + - + d, = d. Itis easy to prove that || - ||, and || - ||, are the norm. Consequently,
there exist constants C; and C, such that

Cillxlla < llxll < Calx]l, for any x € R”. (3.10)
Eqgs (3.8) and (3.10) thus yield

CIH(I)(ta ha X1, XZ) - (I)(t’ h’ yl’yZ)Ha < ||(I)(t’ h’ X1, Xz) - (D(ta h9 ylay2)||
2 2 2 m
< > Ll =yl < ) LiCallxy = yills = ) LiCa Y llx; = 35
=1 =1 =1 i=1
for any xi, X2, y1,y» € R? and therefore

1Di(2, B, x1, x2) = cD(rhyl,yz)||<ZL Zulx, il (3.11)
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ix%|| we can derive from Egs (2.5), (2.8), (3.9) and (3.11)

With the notation e(k) = |I;%, 7 _
L,C,C
(k+11) <D 4, max ¢® +--- + max ,_je (k)+,-e(k+11)
Cnr C] 0<j<N 0<j<N; J n+
L,C,C
+ max ,+1e()+ -+ max mej.k))+ ihn max 165.)
0<j<N; 0<j<N; 1 \osjzn (3.12)
+--+ max . e()+ %D 4+ max z+1€(k)+ -+ + max me(."))
0<j<N; 0<j<N; 0<j<N; — J
(k+1)
+ i lli6, |l

C LC,C 1 L,C,C
Let 4 = max max i, < m Consequently, ;i, ! 12 <=<1-h, 1C2 which together

1<i<m 0<n<N;
with Eq (3.12) imply that
S (k+1) ”

k+1 k+1
Ez++1) S(l + aih”) iel(1+ )+ a Orgix le +2” 6n+1
(3.13)

i€

I
m
<(1+ah; e(k+1)+(az max ;¢* +2 max max || 5(k+])||)

0<jeN; | 1<i<m 0< j<N;

2(Ly + L), C
2+ 1)CC By using Eq (3.13) with & = 0 and Lemma 2.3 we get

with a =
C
1 m
1 1
i) <em el +—(" —1)|a » max % +2 max max ||; 6( e
a — 0<j<N; ' J 1<i<m 0<j<N;
1=
Thus
m
(1) M L0 (1)
max max ;e,’ < ajmax|max e, max ;e, , max max |; 0 I
1<i<m 0<n<N; 1<i<m : 0<j<N; J 1<z<m 0<j<N;
=

1
with a; = e + —(e“" = 1)(a + 2). Similarly, using the above inequality, Eq (3.13) with k = 1 and

Lemma 2.3 we have

m
0 I
max max ;e? <a, max | max eé) max ;¢”, max max ||; 6() I
1<i<m 0<n<N; 1<i<m 0<j<N; 7/ " l<i<m0<j<N;
1<i<2 i=1 1<i<2

2
with a, = e + (T — 1)(ma; + =). Repeating the above process yields that for any k there exists the

constant a; such that

max max || ;& — x|
1<i<m 0<n<N;
O<i<k

<a; max | max |, o, Z max || 5O, max max || SO
1<i<m 0<n<N;

O<l<k 0<I<k

9N’i: 1’29... ’m

}. The proof is therefore complete. O

for any mesh {;¢,,n =0,1,---
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Remark 1. In the above discussions we assume that the perturbation at one step is 6®h, which depends
on step-size h. This assumption is necessary for the proof of the theorems mentioned above. However
it seems to be more reasonable to regard 6%, a small number, as the perturbation, if the step-size is very
small. In this case the tiny perturbation at each step may bring out the huge change of the numerical
solution. We will explore these in next section by some computer experiments.

Remark 2. Note that the convergence property of the WR methods is not be used in the proof of
Theorem 3.1-3.3. Hence, a divergent WR method may be zero-stable. In other words, zero-stability
does not imply convergence.

4. Numerical experiments

In this section some numerical experiments are performed to verify the theorems obtained in Section

3.
Consider the equation
T, I O
X =Ax=| 1 T, I |xte]l0,1],x(0) = xo, 4.1)
0 I T;
=20 1
15 1 _21 t. 5%5 . . . . .
where x € R”, T; = € R and [ is the identity matrix. The special case of
1 =2

such system has been examined by Burrage [11], which is obtained by discretizing the heat equation
in two variables.

T,
LetA; = T> and A, = A — A;. First, choose the following WR methods of solving the
T3
Eq (4.1):
(i)Euler method with variable step-size
XD = D g (A + AxP),n=0,1,-- \N-1Lk=0,1,---,
KD = xg for all k, x¥ = xo for all n.

(i1)Two step methods with fixed step-size

h
k+1) _ _(k+1 k+1 k) (k+1) (k)
D = b 5 341280 + AP — (A + 400 )]
n=12,--- ,N-1,k=0,1,---,
xg‘”) = xo for all k, x'” = x, for all n,
where x(lk“) is obtained by a suitable one-step method. Here let

h2
x(1k+1) = Xy + hAxy + 5A2x0.
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(iii)Multi-rate Jacobi methods based on Euler method

(k+1) _ x(k+1)+ T (T G N (O (k))
- 1

iXpt1 X1 Tt Xt X

n=0,1,--- ,N;—1,pi=12,3.

XD = O = ixg, 0x® = 42 = (0,0,0,0,0)" for all k and n

Second, assume the initial values and the approximation solution at each calculation step have

tiny perturbations as in Eqs (2.6)—(2.8) and let 65" = A = §- (1, 1,---, )T e R¥®6% = A, = 6 -

(1,1,1,1, DT e R, ,(f) denote the resulting perturbed solution and uﬁ,k) denote X N(k) - xﬁ,k), which yields

u D =y 4 (AW + Au®) + hAn = 0,1, N = 1,k=0,1,--,

n+1

(4.2)
™ = Aforall k,u’ = A for all n,
ulhD = ulh 4 = [3(A u D+ AgulP) — (Al + A )| + gA,
n=12- ,N-1k=01,--, (4.3)

h2
ul™ = A ultY = (1 + hA + 5 —A?)A, for all k,u® = A for all n,

and
D = D 4 op, (T D u® +Ap),
n=0,1,---,Ni—1,4i=1,2,3. (4.4)
D = = A, u® = u® =(0,0,0,0,0)T, Yk, Yn

Lastly, reach a reasonable conclusion by analysing data generated by Eqs (4.2)—(4.4).

We choose A, Ay, A, and 6,(1k) as above to guarantee that u,(f) increase with k£ and » that is the worst
case of error propagation.

In our experiments the step-sizes 4, in Eq (4.2) and ;h, in Eq (4.4) are taken as

h, = min {10A, max {0.14, |&,|h}}

and

ih, = min{10°7, max{10™2h, 10" |&,|h}},

where h > 0, {&),&,- -} 1s a sequence of independent and identically distributed random variables
satisfying & ~ N(O, 1).

The data in Tables 3, 5 and 7 show clearly the errors resulted by the perturbations 4,A(hA/2) in
Eq (4.2) (Eq (4.3) are controllable as k and n tend to infinity which support the theorems developed in
Section 3). However the data in Table 4 and 6 show that the errors increase with k and 1/4 when the
perturbations /,A(hA/2) are replaced by the constant perturbation A(A/2).
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Table 3. The computing results of Eq (4.2) with 6 = 0.0001 (& = max max u,(f)).

0<i<k 0<n<N
h 0.1 0.001
k 5 10 10 15
g 3.1483e-04 3.1483e-04 3.1605e-04 3.1605e-04
h 0.00001
k 10 15
g 3.1606e-04 3.1606e-04

Table 4. The computing results of Eq (4.2) with 6 = 0.0001 (¢ = max max uﬁ,l)) for the case

of replacing perturbation 4, A with the constant perturbation A. Pt
h 0.1 0.001 0.00001
k 5 10 10 15 10 15
g 0.0018 0.0018 0.1824 0.1824 17.6723 17.6723
h 0.000001
k 10 15
g 176.8079 176.8079

Table 5. The computing results of Eq (4.3) with 6 = 0.0001 (& = (r)r<11a<)l§ Orgg)](\l uﬁ,l)).

h 0.1 0.001
k 10 15 10 15
g 3.1568e-04 3.1568e-04 3.1606e-04 3.1606e-04
h 0.00001
k 10 15
g 3.1606e-04 3.1606e-04

Table 6. The computing results of Eq (4.3) with 6 = 0.0001 (¢ = max max uﬁ,l)) for the case

0<i<k 0<n<N

of replacing perturbation hA/2 with A/2.
h 0.1 0.001 0.00001
k 10 15 10 15 10 15
g 0.1782 0.1782 0.1435 0.1435 14.1724 14.1724
h 0.000001
k 10 15
g 141.7252 141.7252
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Table 7. The computing results of Eq (4.4) with 6 = 0.0001 (& = max max u,(f)).

0<i<k 0<n<N
h 0.1 0.001
k 5 10 10 15
g 3.1085e-04 3.1085e-04 3.1567e-04 3.1567e-04
h 0.00001
k 10 15
g 3.1606e-04 3.1606e-04

5. Further work

It is well known that a linear multi-step method with fixed step-size is convergent if, and only if, it is
both consistent and zero-stable. In this paper we only present the sufficient conditions of zero-stability
for some special methods. We will explore the relationship between convergence and zero-stability for
WR methods based on general linear multi-step methods in the future. Moreover, we shall apply our
methods to the numerical study of some inverse problems [12—14].
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