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Abstract: In this paper, based on the accelerated over relaxation (AOR) iteration method, a general-
ization of the AOR iteration method is presented to solve the absolute value equations (AVE), which is
called the GAOR method. The convergence conditions of the GAOR method are obtained. Numerical
experiments are presented in order to verify the feasibility of the GAOR method.
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1. Introduction

In this paper, based on the AOR iteration method, we consider the numerical solution of the absolute
value equations (AVE)

Ax − |x| = b, (1.1)

where A ∈ Rn×n, b ∈ Rn and |x| denotes all the components of the vector x ∈ Rn by absolute value.
If ‘|x|’ is replaced by ‘B|x|’ in (1.1), then the general AVE is obtained, see [1, 2]. Nowadays, many
optimization problems including linear programming, convex quadratic programming and linear com-
plementarity problem [3–5] can be formulated as the AVE (1.1) such that the AVE (1.1) has been
attracted considerable attention.

To efficiently solve the AVE (1.1), in recent years, a great deal of effort has been committed to
develop iteration methods. For example, in [6], Mangasarian presented a generalized Newton method
for solving the AVE (1.1) and simply described below

x(k+1) = (A − D(x(k)))−1b, k = 0, 1, . . . , (1.2)

where D(x(k)) is a diagonal matrix of the form D(x(k)) = diag(sign(x(k))). One can see [7–10] and find
other versions of the generalized Newton method. Clearly, using the generalized Newton method to
solve the AVE (1.1), the inverse of the matrix A − D(x(k)) should be computed. Noting that the matrix
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A − D(x(k)) is changed with the iteration index k, the computation cost of the generalized Newton
method may be highly expensive. To remain the iteration matrix unchanged, the following Picard
iteration method was considered in [11]

x(k+1) = A−1(|x(k)| + b), k = 0, 1, . . . . (1.3)

When the matrix A in (1.3) is ill-conditioned, in each iteration of the Picard method, we have to deal
with this ill-conditioned linear system. To overcome the inverse of the matrix A, by making use of the
Hermitian and skew-Hermitian splitting (HSS) of the matrix A in [12], Zhu et al. in [13] presented the
nonlinear HSS-like method and discussed the convergence property of the nonlinear HSS-like method.
Other versions of the nonlinear HSS-like method, one can see [14–16] for more details. In addition,
in [17], the classical AOR iteration method has been expanded to solve the AVE. Other relative works
are [18–24].

Recently, based on the methodology of the Gauss-Seidel method, together with the matrix splitting
A = D − L − U of matrix A, where D = diag(A), L and U are strictly lower and upper triangular
matrices obtained from −A, respectively, in [25], the generalized Gauss-Seidel (GGS) iteration method
was proposed and adopted to solve the AVE (1.1), which is of form

(D − L)x(k+1) − |x(k+1)| = U |x(k)| + b, k = 0, 1, . . . . (1.4)

Numerical experiments showed the efficiency of the GGS method.
In this paper, inspired by the work in [25], based on the AOR iteration method, a generalization of

the AOR iteration method (GAOR) is presented to solve the AVE (1.1) and its convergence conditions
are discussed in detail. By making use of some numerical experiments, we present the effectiveness of
the GAOR method.

The remainder of the paper is organized as follows: Section 2 goes over some preparatory knowl-
edge. Section 3 presents the GAOR iteration method and its convergence conditions. Section 4 reports
some numerical results to show the efficiency of the GAOR method. Finally, Section 5 draws some
conclusions.

2. Preparatory knowledge

Let C = (ci j) ∈ Rn×n. ‘diag(C)’ denotes the diagonal part of matrix C. For A = (ai j), B = (bi j) ∈
Rn×n, we call A ≥ B if ai j ≥ bi j for i, j = 1, 2, . . . , n. Matrix A is called non-negative if A ≥ 0; further,
A − B ≥ 0 if and only if A ≥ B. These definitions carry immediately over to vectors by identifying
them with n × 1 matrices. Matrix A = (ai j) ∈ Rn×n is called a Z-matrix if ai j ≤ 0 for i , j; an L-matrix
if A is a Z-matrix and aii > 0 for i = 1, . . . , n; an M-matrix if A is a Z-matrix and A−1 ≥ 0; and an
H-matrix if its comparison matrix 〈A〉 = (〈a〉i j) ∈ Rn×n is an M-matrix, where

〈a〉i j =

 |ai j| for i = j,

−|ai j| for i , j,
i, j = 1, 2, . . . , n.

If A is an M-matrix and B is a Z-matrix, then A ≤ B implies that B is an M-matrix [26]. A matrix A is
irreducible if the directed graph associated to A is strongly connected [27].
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Let A = M − N. It is called a matrix splitting of A if det(M) , 0; called regular if M−1 ≥ 0 and
N ≥ 0; an M-splitting of A if M is an M-matrix and N ≥ 0. Evidently, if A = M − N is an M-splitting
and A is a nonsingular M-matrix, then ρ(M−1N) < 1, where ρ(·) denotes the spectral radius of the
matrix.

Lemma 2.1. [28] Let A be an H-matrix. Then |A−1| ≤ 〈A〉−1.

Lemma 2.2. [29] Let x, y ∈ Rn. Then ‖|x| − |y|‖2 ≤ ‖x − y‖2.

3. GAOR iteration method

In this section, the generalized AOR (GAOR) method is introduced to solve the AVE (1.1). For this
purpose, we split A into

A =
1
ω

(M − N), (3.1)

with
M = Ω + D − rL and N = Ω + (1 − ω)D + (ω − r)L + ωU,

where Ω is a positive diagonal matrix, ω and r are real parameters with ω , 0, D = diag(A), L and
U are the previously mentioned. Based on the matrix splitting (3.1), the AVE (1.1) is rewritten as the
fixed-point equations

1
ω

(Ω + D − rL)x − |x| =
1
ω

[Ω + (1 − ω)D + (ω − r)L + ωU]x + b

or
(Ω + D − rL)x − ω|x| = [Ω + (1 − ω)D + (ω − r)L + ωU]x + ωb, (3.2)

then for k = 0, 1, . . ., we can define the GAOR method for solving (1.1) below

(Ω + D − rL)x(k+1) − ω|x(k+1)| = [Ω + (1 − ω)D + (ω − r)L + ωU]x(k) + ωb. (3.3)

Lemma 3.1. Let α > β > 0. Then αx − β|x| = b with b ∈ R has only one solution in R. If b ≥ 0, then
the solution is x = b

α−β
, otherwise x = b

α+β
.

Proof. The results in Lemma 3.1 are valid, whose proof is omitted here.
Next, based on Lemma 3.1, we present Algorithm 1 to solve each step of the GAOR iteration method

(3.3) when all the diagonal entries of the matrix Ω + D are greater than ω.
Algorithm 1:
For k=0,1,. . . , until convergence, do

Set s = ωb1, x(0)
i = 0.

For i = 1, 2, . . . , n, do
If s ≥ 0, then
x(k+1)

i := s
aii+ωii−ω

;
Else
x(k+1)

i := s
aii+ωii+ω

;
Endif
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set

s :=ωbi + (ωii + (1 − ω)aii)x(k)
i − (ω − r)

i−1∑
j=1

ai jx
(k)
j − ω

n∑
j=i+1

ai jx
(k)
j

− r
i−1∑
j=1

ai jx
(k+1)
j .

Enddo
Enddo

Theorem 3.1. Let Ω be a positive diagonal matrix and all singular values of the matrix Ω + D − rL
exceed ω with ω, r > 0. If

‖I − ω(Ω + D − rL)−1A‖2 < 1 − ω‖(Ω + D − rL)−1‖2, (3.4)

then the GAOR method (3.3) converges to the unique solution of the AVE (1.1) for an arbitrary initial
guess x(0) ∈ Rn.

Proof. Since all singular values of the matrix Ω + D − rL exceed ω with ω, r > 0,

ω‖(Ω + D − rL)−1‖2 = ωσmax((Ω + D − rL)−1) =
ω

σmin(Ω + D − rL)
< 1.

Let x∗ be a solution of the AVE (1.1). Then from (3.2) we have

(Ω + D − rL)x∗ − ω|x∗| = [Ω + (1 − ω)D + (ω − r)L + ωU]x∗ + ωb. (3.5)

After subtracting (3.3) from (3.5), we obtain

(Ω + D − rL)(x(k+1) − x∗) =ω(|x(k+1)| − |x∗|) + (Ω + (1 − ω)D
+ (ω − r)L + ωU)(x(k) − x∗),

which is equal to

x(k+1) − x∗ =(Ω + D − rL)−1[ω(|x(k+1)| − |x∗|) + (Ω + (1 − ω)D
+ (ω − r)L + ωU)(x(k) − x∗)].

Taking 2-norm in the latter equation yields

‖x(k+1) − x∗‖2 =‖(Ω + D − rL)−1[ω(|x(k+1)| − |x∗|) + (Ω + (1 − ω)D
+ (ω − r)L + ωU)(x(k) − x∗)]‖2
≤ω‖(Ω + D − rL)−1(|x(k+1)| − |x∗|)‖2 + ‖(Ω + D − rL)−1

(Ω + (1 − ω)D + (ω − r)L + ωU)(x(k) − x∗)‖2
≤ω‖(Ω + D − rL)−1‖2‖|x(k+1)| − |x∗|‖2 + ‖(Ω + D − rL)−1

(Ω + (1 − ω)D + (ω − r)L + ωU)‖2‖x(k) − x∗‖2
≤ω‖(Ω + D − rL)−1‖2‖x(k+1) − x∗‖2 + ‖(Ω + D − rL)−1

Electronic Research Archive Volume 30, Issue 3, 1062–1074.



1066

(Ω + (1 − ω)D + (ω − r)L + ωU)‖2‖x(k) − x∗‖2
=ω‖(Ω + D − rL)−1‖2‖x(k+1) − x∗‖2

+ ‖I − ω(Ω + D − rL)−1A‖2‖x(k) − x∗‖2.

Further,

‖x(k+1) − x∗‖2 ≤
‖I − ω(Ω + D − rL)−1A‖2
1 − ω‖(Ω + D − rL)−1‖2

‖x(k) − x∗‖2.

To show the uniqueness of the solution, let y∗ be another solution of the AVE (1.1). Then, from Eq
(3.2) we have

(Ω + D − rL)y∗ − ω|y∗| = [Ω + (1 − ω)D + (ω − r)L + ωU]y∗ + ωb. (3.6)

After subtracting (3.6) from (3.5), similar to the above discussion, we obtain

‖y∗ − x∗‖2 ≤
‖I − ω(Ω + D − rL)−1A‖2
1 − ω‖(Ω + D − rL)−1‖2

‖y∗ − x∗‖2

< ‖y∗ − x∗‖2,

which is contradiction. Therefore, y∗ = x∗. This completes the proof.
When w = r in (3.3), the GAOR method reduces to the GSOR method. Its convergence theory is

given in Corollary 3.1.

Corollary 3.1. Let Ω be a positive diagonal matrix and all singular values of the matrix Ω + D − ωL
exceed ω with ω > 0. If

‖I − ω(Ω + D − ωL)−1A‖2 < 1 − ω‖(Ω + D − ωL)−1‖2, (3.7)

then the GSOR method (3.3) converges to the unique solution of the AVE (1.1) for an arbitrary initial
guess x(0) ∈ Rn.

Further, in Corollary 3.1, if ω = 1, then the convergence theory of GGS is obtained and described
in Corollary 3.2.

Corollary 3.2. Let Ω be a positive diagonal matrix and all singular values of the matrix Ω + D − L
exceed 1. If

‖I − (Ω + D − L)−1A‖2 < 1 − ‖(Ω + D − L)−1‖2, (3.8)

then the GGS method (3.3) converges to the unique solution of the AVE (1.1) for an arbitrary initial
guess x(0) ∈ Rn.

Remark 3.1. In Corollary 3.2, if Ω is a zero matrix, then the results of Corollary 3.2 are similar to
Theorem 3 in [25]. In fact, if we use ‘all singular values of the matrix D − L exceed 1’ instead of
‘Let the diagonal entries of A be greater than one and the matrix D − L − I be strictly row diagonally
dominant’ in Theorem 3 in [25], then Theorem 3 in [25] holds as well.

It is not difficult to find that the above theoretical results including Theorem 3.1, Corollary 3.1 and
Corollary 3.2 are a litter too general and not easy to verify. To overcome these negative factors, an
effective approach is to limit the type of matrix A. Next, we restrict our attention to this situation where
A is an H-matrix with positive diagonals. For A being an H-matrix with positive diagonals, a simple
convergence condition for the GAOR method (3.3) can be obtained, see Theorem 3.2.
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Theorem 3.2. Let A be an H-matrix with positive diagonals and the positive diagonal matrix Ω ≥ ωI.
If ω and r satisfy

0 < r ≤ ω ≤ 1, (3.9)

then the GAOR method (3.3) converges to the unique solution of (1.1) for an arbitrary initial guess
x(0) ∈ Rn.

Proof. Since A is an H-matrix with positive diagonals, we have

〈A〉 = |D| − |L| − |U |.

Further,
〈A〉 ≤ 〈D − L〉 ≤ 〈D − rL〉.

It follows that matrix Ω + D − rL is an H-matrix with positive diagonals. It holds that

|(Ω + D − rL)−1| < 〈Ω + D − rL〉−1.

From the proof of Theorem 3.1, we get

x(k+1) − x∗ =(Ω + D − rL)−1[ω(|x(k+1)| − |x∗|) + (Ω + (1 − ω)D
+ (ω − r)L + ωU)(x(k) − x∗)].

Further,

|x(k+1) − x∗| =|(Ω + D − rL)−1[ω(|x(k+1)| − |x∗|) + (Ω + (1 − ω)D
+ (ω − r)L + ωU)(x(k) − x∗)]|
≤ω|(Ω + D − rL)−1| · ||x(k+1)| − |x∗|| + |(Ω + D − rL)−1|

|Ω + (1 − ω)D + (ω − r)L + ωU ||x(k) − x∗|

≤ω〈Ω + D − rL〉−1|x(k+1) − x∗| + 〈Ω + D − rL〉−1

|Ω + (1 − ω)D + (ω − r)L + ωU ||x(k) − x∗|. (3.10)

Since the matrix Ω + D − rL is an H-matrix with positive diagonals, the matrix 〈Ω + D − rL〉 is an
M-matrix and 〈Ω + D − rL〉−1 > 0. Noting that Ω ≥ ωI, it is easy to obtain that

ρ(ω〈Ω + D − rL〉−1) = max
ω

aii + ωii
< 1,

where aii + ωii denotes the diagonal elements of matrix Ω + D. Hence, from (3.10), we get

|x(k+1) − x∗| ≤(I − ω〈Ω + D − rL〉−1)−1〈Ω + D − rL〉−1

|Ω + (1 − ω)D + (ω − r)L + ωU ||x(k) − x∗|

=(〈Ω + D − rL〉 − ωI)−1|Ω + (1 − ω)D + (ω − r)L + ωU ||x(k) − x∗|.

Let
M̄ = 〈Ω + D − rL〉, N̄ = ωI + |Ω + (1 − ω)D + (ω − r)L + ωU | and Ā = M̄ − N̄.

Evidently, the GAOR method (3.3) converges to the unique solution of the AVE (1.1) if ρ(M̄−1N̄) < 1.
Noting that Ā is an M-matrix, matrix M̄ is an M-matrix and N̄ ≥ 0. Then, Ā = M̄− N̄ is an M-splitting.
Therefore, ρ(M̄−1N̄) < 1.

From Theorem 3.2, the convergence conditions of the corresponding GSOR and GGS methods for
A being an H-matrix with positive diagonals are obtained, which are omitted.
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4. Numerical experiments

In this section, we give some numerical experiments to assess the efficiency of the GAOR method
for solving the AVE (1.1). We compare GAOR with AOR in [17] from two aspects: the number
of iterations (denoted as IT) and the CPU time in seconds (denoted as CPU). Meanwhile, we also
investigate the generalized Newton method, the nonlinear HSS-like method [13] and the Picard-HSS
method [14]. The starting iterate is zero vector, all iterations are terminated once the relative residual
error satisfies

‖Ax(k) − |x(k)| − b‖2
‖b‖2

≤ 10−6

or if the number of the prescribed iteration kmax = 500 is exceeded. All the tests are performed in
MATLAB R2016B.
Example 4.1. ( [25,30]) Let m be a prescribed positive integer and n = m2. Consider the AVE (1.1), in
which A ∈ Rn×n is given by A = M̂ + µI, where

M̂ = tridiag(−I, S ,−I) =



S −I 0 · · · 0 0
−I S −I · · · 0 0
0 −I S · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · S −I
0 0 0 · · · −I S


∈ Rn×n

with

S = tridiag(−1, 4,−1) =



4 −1 0 · · · 0 0
−1 4 −1 · · · 0 0
0 −1 4 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 4 −1
0 0 0 · · · −1 4


∈ Rm×m,

and b = Ax∗ − |x∗| with x∗ = (−1, 1,−1, 1, . . . ,−1, 1)T ∈ Rn.
Example 4.1 can be induced by using the finite difference to discretize the flow of water through a

porous dam under the equidistant grid [30].
Example 4.2. ( [31]) Let m be a prescribed positive integer and n = m2. Consider the AVE (1.1), in
which A ∈ Rn×n is given by A = M̂ + µI, where

M̂ = tridiag(−1.5I, S ,−0.5I) =



S −0.5I 0 · · · 0 0
−1.5I S −0.5I · · · 0 0

0 −1.5I S · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · S −0.5I
0 0 0 · · · −1.5I S


∈ Rn×n
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with

S = tridiag(−1.5, 4,−0.5) =



4 −0.5 0 · · · 0 0
−1.5 4 −0.5 · · · 0 0

0 −1.5 4 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 4 −0.5
0 0 0 · · · −1.5 4


∈ Rm×m,

and b = Ax∗ − |x∗| with x∗ = (−1, 1,−1, 1, . . . ,−1, 1)T ∈ Rn.

Table 1. IT and CPU for Example 4.1 with ω = 0.9 and Ω = 0.1I.

r 0.9 0.5 0.1

n = 322
GAOR

IT 20 23 27
CPU 0.3092 0.3764 0.4366

AOR
IT 25 30 35
CPU 0.0065 0.0083 0.0095

n = 642
GAOR

IT 20 23 27
CPU 4.0596 4.6910 5.4559

AOR
IT 26 30 35
CPU 0.0122 0.0150 0.0163

n = 1282
GAOR

IT 20 24 27
CPU 58.8267 70.3705 79.2503

AOR
IT 26 30 35
CPU 0.0474 0.0551 0.0719

Table 2. IT and CPU for Example 4.1 with ω = 0.9 with Ω = 0.5I.

r 0.9 0.5 0.1

n = 322
GAOR

IT 23 26 30
CPU 0.4073 0.4193 0.5326

AOR
IT 25 30 35
CPU 0.0038 0.0096 0.0098

n = 642
GAOR

IT 23 27 31
CPU 4.6584 5.4570 6.2490

AOR
IT 26 30 35
CPU 0.0113 0.0132 0.0150

n = 1282
GAOR

IT 23 27 31
CPU 67.7754 79.5942 93.9553

AOR
IT 26 30 35
CPU 0.0400 0.0546 0.0738
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Table 3. IT and CPU for Example 4.2 with ω = 0.9 with Ω = 0.1I.

r 0.9 0.5 0.1

n = 322
GAOR

IT 15 20 25
CPU 0.2489 0.3082 0.4191

AOR
IT 20 26 33
CPU 0.0021 0.0040 0.0046

n = 642
GAOR

IT 15 21 26
CPU 3.1600 4.3562 5.3924

AOR
IT 20 27 34
CPU 0.0080 0.0114 0.0207

n = 1282
GAOR

IT 15 21 27
CPU 46.3959 68.4617 79.7561

AOR
IT 20 27 34
CPU 0.0330 0.0689 0.1058

Table 4. IT and CPU for Example 4.2 with ω = 0.9 with Ω = 0.5I.

r 0.9 0.5 0.1

n = 322
GAOR

IT 17 23 29
CPU 0.3110 0.3740 0.4757

AOR
IT 20 26 33
CPU 0.0021 0.0031 0.0060

n = 642
GAOR

IT 18 24 30
CPU 3.6997 4.8956 6.0457

AOR
IT 20 27 34
CPU 0.0081 0.0114 0.0164

n = 1282
GAOR

IT 18 24 30
CPU 52.7953 70.6259 97.6267

AOR
IT 20 27 34
CPU 0.0332 0.0523 0.0686

To fairly compare the GAOR method with the AOR method, we choose the same parameters to test
the GAOR method and the AOR method. Under this consideration, in Tables 1–4, for Examples 4.1
and 4.2 with µ = 2, Ω = 0.1I and Ω = 0.5I, we list some iteration results to illustrate the convergence
behaviors of the GAOR and AOR methods for the different problem sizes of n. We observe that the
GAOR and AOR methods can calculate a satisfactory approximation to the solution of the AVE. Fixing
ω and n with r increasing, the iteration steps of the GAOR and AOR methods descend. Fixing ω and
r with n increasing, the iteration steps of the GAOR and AOR methods may be hardly sensitive to
change. Further, we find that the GAOR method requires less iteration steps than the AOR method,
but the GAOR method requires more CPU times than the AOR method. The time-consuming of the
GAOR method is due to the code only edited by all the components of the matrix. To make the AOR
method more competitive, an effective approach is to optimize the edited code, which is an interesting
work in the future.
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Table 5. Numerical results of GN for Example 4.1.

n 322 642 1282

IT 3 3 3
CPU 0.2344 4.5520 235.1104

Table 6. Numerical results of GN for Example 4.2.

n 322 642 1282

IT 2 3 3
CPU 0.5260 8.2994 508.0766

Tables 5 and 6 list the numerical results of the generalized Newton method, where ‘GN’ denote the
generalized Newton method. Comparing the GAOR method, the AOR method with the generalized
Newton method, the generalized Newton method require the least iteration steps, but it also takes the
most time. Among three methods, the computational efficiency of the generalized Newton method is
worst.

Table 7. IT and CPU for Example 4.2 with Ω = 0.5I.

ω 1 0.9 0.8

n = 322
GSOR

IT 13 17 23
CPU 0.2578 0.3110 0.4375

NHSS
IT 112 346 −

CPU 0.4957 1.5667 −

PHSS
IT 12(240) 26(520) −

CPU 0.9727 2.2767 −

n = 642
GSOR

IT 13 18 24
CPU 3.0469 3.6997 5.2188

NHSS
IT 170 471 −

CPU 3.3429 9.0310 −

PHSS
IT 20(400) − −

CPU 2.8327 − −

n = 1282
GSOR

IT 13 18 24
CPU 40.0088 52.7953 78.6563

NHSS
IT 286 − −

CPU 36.3121 − −

PHSS
IT 30(600) − −

CPU 54.0620 − −

Finally, we compare the GAOR method with the nonlinear HSS-like method and the Picard-HSS
method under the same parameter, see Table 7. The explanation is that the nonlinear HSS-like method
and the Picard-HSS method only contain a parameter, here, we consider the GAOR method with ω = r,
i.e., the GSOR method. When the Picard-HSS method is applied, the stopping criterion for its inner
iterations is adopted in [13]. In Table 7, ‘GSOR’, ‘NHSS’ and ‘PHSS’, respectively, denote the GSOR
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method, the nonlinear HSS-like method and the Picard-HSS method, ‘−’ denotes that the iteration
steps exceed 500, and ‘·(·)’ denotes the outer (inner) iteration steps. From Table 7, the numerical
results show that the GSOR method is more effective than the nonlinear HSS-like method and the
Picard-HSS method.

Overall, based on the numerical results, the GAOR method displays the good performance when
the above presented five testing methods are applied to solve the absolute value equations.

5. Conclusions

In this paper, we have designed a generalization AOR (GAOR) method to solve the absolute value
equations. Some convergence properties for the proposed GAOR method are gained. Numerical ex-
periments have been reported to verify the efficiency of the proposed method.
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