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Abstract: In this paper, a reaction-diffusion Sporn-Seelig model subject to homogeneous Neumann
boundary condition in the one dimensional spatial open bounded domain is considered. Of our partic-
ular interests, we are concerned with diffusion-driven instability of both the positive constant equilib-
rium solution and the Hopf bifurcating spatially homogeneous periodic solutions. To strengthen our
analytical results, we also include some numerical simulations. These results allow for the clearer un-
derstanding the mechanisms of the spatiotemporal pattern formations of this chemical reaction model.
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1. Introduction

In 1952, A. Turing proposed a striking idea in his pioneering paper [1] that diffusion can destabilize
an otherwise stable homogeneous equilibrium solution of the reaction-diffusion equations and trigger
the emergence of new stable non-constant steady state solutions, which have non-uniform spatial pat-
terns, now usually called Turing patterns. Since then, Turing’s idea has been extensively used to model
the spatial patterns in a variety of areas, including biology, physics and chemistry. In chemistry, the
research of the spaito-temporal pattern formations has been a crucial issue. However, earlier results on
this aspect in this area mainly concentrated on the temporal oscillations of the chemical models. For
example, the well-known Belousov-Zhabontinskii chemical reaction was one of the earlier chemical
reactions to report the temporal oscillatory patterns. Since then, more and more chemical reaction
models have been proposed to exhibit temporal oscillatory patterns. In the course of the study of the
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oscillatory pattern in chemistry, Turing’s 1952 paper was noticed by chemists who found with surpris-
ing that the system of the reaction-diffusion equations can be used to model the oscillatory patterns
which can be observed by the solutions of the reaction diffusion equations; However, the Turing pat-
terns (argued in Turing’s 1952 paper) for the chemical reaction models have never been observed. Until
1990, D. Kepper and her collaborators [2] conducted a well-known CIMA chemical reaction observing
the Turing patterns. This is the first experimental evidence of Turing pattern formation in chemistry.
Since then, the spatiotemporal pattern formation (especially Turing pattern formation) in chemistry has
sprung up.

On the other hand, the diffusion could also destabilize an otherwise stable spatially homogeneous
periodic solution of the reaction-diffusion equations and then trigger the emergence of new irregular
spatiotemporal patterns. This is known as diffusion-driven instability of the periodic solutions. Nu-
merical simulations for the well-known Belousov-Zhabontinskii chemical reaction have shown that
under suitable conditions on the diffusion rates, the spatially homogeneous periodic solutions of the
reaction-diffusion equations do have the possibility to undergo diffusion-driven instability; In the past
40 years, diffusion-driven instability of the periodic solutions has been extensively studied. For exam-
ple, in [3], K. Maginu used the regular perturbation methods to study the diffusion-driven instability of
the spatially homogeneous periodic solution for the general reaction-diffusion equation on the entire
space; After that, in [4], S. Ruan used Maginu’s methods to study the diffusion-driven instability of
the periodic solutions of the diffusive Gierer-Meinhardt system; In [5], M. Kuwamura, H. Izuhara con-
sidered diffusion-driven instability of the periodic solutions for the system with particular Hamiltonian
structure; In [6], Y. Morita considered diffusion-driven instability of the periodic solutions for the par-
tial functional differential equations with time delay; Recently, by using Maginu’s idea, Yi [7] derived
a general formula in terms of the diffusion rates (as well as the cross-diffusion rates) to determine the
Hopf bifurcating spatially homogeneous periodic solutions for the general reaction-diffusion equations
with 2-components. The abstract results obtained in [7] can be used to study the diffusion-driven in-
stability of the Hopf bifurcating periodic solutions for all kinds of reaction-diffusion equations with
2-components.

In this paper, we are mainly concerned with the diffusive Sporns-Seelig model in the area of the
chemical reactions. The original Sporns-Seelig model (indeed the ODE version) was first proposed in
1986 to characterize the influences of both negative (repression) and positive (inductive) feedbacks on
the genetic regulatory mechanism of induction in the enzymatic chemical reaction [8]. The reaction
involves a substrate S reacting with an enzyme E to form a complex ES which in turned is converted
into an end-product P and the enzyme. Substrate S is supplied by a transport mechanism with auto-
catalysis characteristics obeying the logistic term. S and E react according to the following irreversible
mechanism:

S + E
k1
−−⇀↽−−
k−1

ES
k2
−→ E + P,

where S is depleted by reaction with the enzyme E, whose synthesis (forming ES with rate constant
k1) is induced by the action of S . Once ES is formed, it can not only produce E and S with reaction
rate constant k−1, but also can form E and P, with reaction rate k2, which is usually called the enzymes
catalytic constant. The end-product P is not interacting with enzymes (E and ES ) or substrate S and
is therefore eliminated in the analytical treatment. The enzyme E is then degraded or deactivated by
first-order kinetics with rate constant k0.
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By the law of mass action, the scheme of the aforementioned enzymatic reaction can be character-
ized by the following ordinary differential equations:

d[S ]
dτ = j3 + j2[S ] − k1[E][S ] + k−1[ES ],

d[E]
dτ = j1[S ] − k0[E] − k1[E][S ] + k−1[ES ] + k2[ES ],

d[ES ]
dτ = k1[E][S ] − k−1[ES ] − k2[ES ],

(1.1)

where [S ] = [S ](τ), [E] = [E](τ) and [ES ] = [ES ](τ) stand for the concentrations of the substrate S ,
the enzyme E and the complex ES at time τ, respectively.

Let [E]total := [E] + [ES ] be the total enzyme concentrations. Then, by (1.1), we have,

d[E]total

dτ
=

d[E]
dτ
+

d[ES ]
dτ

= j1[S ] − k0[E]. (1.2)

According to the Bodenstein hypothesis on the quasi-steady state for the complex [ES ], we can
assume that d[ES ]/dτ = 0. Thus, from (1.1), we have k1[E][S ]− k−1[ES ]− k2[ES ] = 0. This together
with [E]total := [E] + [ES ] indicates that

[ES ] =
k1[S ][E]total

k1[S ] + k−1 + k2
, [E] =

(k−1 + k2)[E]total

k1[S ] + k−1 + k2
. (1.3)

Substituting (1.3) into (1.1) and (1.2) , we have

d[S ]
dτ
= j3 + j2[S ] −

k1k2

k−1 + k2
[E]total[S ]

1
k1[S ]

k−1 + k2
+ 1
,

d[E]total

dτ
= j1[S ] − k0[E]total

1
k1[S ]

k−1 + k2
+ 1
.

Introducing new variables

u =
k1[S ]

k−1 + k2
, v =

k1[E]total

k−1 + k2
, t = k0τ, k =

j3k1

k0(k−1 + k2)
, ξ =

j2

k0
, m =

k2

k0
, θ =

j1

k0
,

we obtain
du
dt
= k + ξu −

muv
1 + u

,
dv
dt
= θu −

v
1 + u

. (1.4)

Adding the effect of spatial dispersal, we can obtain the following homogeneous diffusive reaction-
diffusion Sporns-Seelig model for the generic regulatory mechanism of induction

∂u
∂t
= d1uxx + k + ξu −

muv
1 + u

, (x, t) ∈ (0, ℓπ) × (0,∞),
∂v
∂t
= d2vxx + θu −

v
1 + u

, (x, t) ∈ (0, ℓπ) × (0,∞),

∂νu = ∂νv = 0, x = 0, ℓπ, t > 0,
u(x, 0) = u0(x) ≥ 0, v(x, 0) = v0(x) ≥ 0, x ∈ (0, ℓπ),

(1.5)
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where u and v stand for the re-scaled concentration of substrate and the enzyme at time t and position x.
d1 > 0 and d2 > 0 are the diffusion rates of u and v respectively; For the convenience of our discussions
(without loss of generality), we may assume that the spatial domain is (0, ℓπ), where ℓ > 0.

Although system (1.5) has been proposed, our knowledge on the dynamics of the system still re-
mains limited except that in [8] the authors showed the existence of the limit cycle for the kinetic
ODE system from the numerical point of view. In this paper, of our particular interests, we focus on
the diffusion-driven instability of two kinds of the solutions: one is the unique positive equilibrium
solution and the other is the Hopf bifurcating periodic solutions. For the diffusion-driven instability
analysis of the unique positive equilibrium solution, we use the linearized principle to deduce such in-
stability; while for diffusion-driven instability of the bifurcating periodic solutions, we use the abstract
results obtained in [7]. We choose the first component of the positive equilibrium solution, denoted
by λ, as the bifurcation parameter, and show that the corresponding ODE system will undergo a Hopf
bifurcation when the parameter λ crosses some critical value, denoted by λ0. In particular, by comput-
ing the first Lyapunov coefficient, we find that the corresponding Hopf bifurcating periodic solution
is always orbitally stable and the Hopf bifurcation is forward in the sense that the bifurcation occurs
when the parameter λ is slightly larger than λ0; Then, by using the abstract results in [7], we derive
the relationship between the diffusion rates d1 and d2, such that under this relationship, the stable pe-
riodic solution (with respect to the ODEs) will become unstable with respect to the reaction-diffusion
system (1.5).

We also include some numerical simulations to support our theoretical analysis. Our numerical sim-
ulations show that for fixed set of the system parameters, if the Hopf bifurcating spatially homogeneous
periodic solutions of the reaction-diffusion system undergo diffusion-driven instability, then the new
spatial patterns occur. In [1], A. Turing suggested that if the diffusion-driven instability of the constant
positive equilibrium solution occurs, then around this equilibrium solution, new non-constant positive
equilibrium solution will be generated; That is, diffusion-driven instability of the constant equilibrium
solution will be one of the main mechanism for the emergence of spatial patterns; Our results shows
that under certain conditions, diffusion-driven instability of the periodic solution can also generate new
non-constant positive equilibrium solution.

The remaining part of the paper is organized as follows. In section 2, we perform detailed stability
analysis and Hopf bifurcation analysis to the ODE system; In section 3, we consider diffusion-driven
instability of the positive constant equilibrium solution; In section 4, we study diffusion-driven instabil-
ity of the Hopf bifurcating periodic solutions; In section 5, we include some numerical simulations to
support our theoretical analysis; In section 6, we end up our discussions by drawing some conclusions.

2. Stability and Hopf bifurcation analysis of the kinetic ODEs

In this section, we consider the dynamics of the ODE system (1.4). For convenience, we copy (1.4)
here:

du
dt
= k + ξu −

muv
1 + u

,
dv
dt
= θu −

v
1 + u

. (2.1)

Clearly, system (2.1) has a unique positive steady state solution (λ, vλ), where λ is the unique pos-
itive root of mθu2 − ξu − k = 0 and vλ := θλ(λ + 1). We shall use λ as the bifurcation parameter (or
equivalently m) by fixing ξ, θ and k.
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The linearized operator of system (2.1) evaluated at (λ, vλ) is given by:

J(λ) :=
Å

a(λ) b(λ)
c(λ) d(λ)

ã
, (2.2)

where

a(λ) : =
ξλ2 − k
λ(1 + λ)

, b(λ) := −
ξλ + k
θλ(1 + λ)

, c(λ) := θ +
θλ

1 + λ
, d(λ) := −

1
1 + λ

. (2.3)

The characteristic equation of J(λ) is µ2 − µT (λ) + D(λ) = 0, where

T (λ) =
ξλ2 − λ − k
λ(λ + 1)

,D(λ) =
ξλ + 2k
λ(λ + 1)

. (2.4)

Clearly, the quadratic equation ξλ2 − λ − k = 0 will always have a unique positive root, denoted by
λ0. Then, we have the following results:

Theorem 2.1. 1. Let λ0 be the unique positive root of ξλ2 − λ − k = 0. Then, (λ, vλ) is locally
asymptotically stable with respect to the ODE system (2.1) if λ ∈ (0, λ0), while unstable if λ ∈
(λ0,∞).

2. System (2.1) undergoes a Hopf bifurcation around (λ, vλ) at λ = λ0. That is., there exists a s∗ > 0,
such that for s ∈ (0, s∗), there exists (λ(s),Z(s), u(·, s), v(·, s)) so that (u(·, s), v(·, s)) is a periodic

solution of (2.1) with minimum period Z(s) → 2π/
»

D(λ) and (λ(s), u(·, s), v(·, s)) → (λ, 0, 0)
as s → 0. Moreover, the bifurcating periodic solution is always locally asymptotically stable.
In particular, the Hopf bifurcation is forward in the sense that the bifurcating periodic solution
occurs when λ is slightly larger than λ0.

Proof. 1. For λ ∈ (0, λ0), we have T (λ) < 0, and for λ ∈ (λ0,∞), we have T (λ) > 0. On the other
hand, for all λ > 0, D(λ) > 0. This induces the local stability and instability of (λ, vλ). 2. At λ = λ0,
L(λ) has a pair of imaginary eigenvalues µ = ±i

√
D(λ0). Let µ(λ) := α(λ) ± iω(λ) be the eigenvalue of

µ2 − µT (λ) + D(λ) = 0 for λ close to λ0. Then, we have

α(λ) =
1
2

T (λ), ω(λ) =
1
2

√
4D(λ) − T 2(λ). (2.5)

In particular, a direct calculation shows that

α′(λ0) =
(ξ + 1)λ2

0 + 2kλ0 + k

2λ2
0(λ0 + 1)2

> 0. (2.6)

Then, from the Poincaré-Andronov-Hopf Bifurcation Theorem [9], system (2.1) has a Hopf bifur-
cation at (λ0, vλ0).

Next, we consider the direction of the Hopf bifurcation and the stability of bifurcating periodic
solutions, denoted by (up(t), vp(t)). To this end, we need to calculate the first Lyapunov coefficient. We
translate (λ, vλ) to (0, 0) by the translation û = u − λ and v̂ = v − vλ. If we still denote û and v̂ by u and
v, we can reduce system (2.1) to

u′ = k + ξλ + ξu −
m(u + λ)(v + vλ)

1 + u + λ
, v′ = θu + θλ −

v + vλ
1 + u + λ

. (2.7)
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Rewrite (2.7) in the following form:Å
u′

v′

ã
= J(λ)

Å
u
v

ã
+

Å
F1(u, v, λ)
G1(u, v, λ)

ã
, (2.8)

where J(λ) is defined in (2.2) and

F1(u, v, λ) :=
ξλ + k
λ(1 + λ)2 u2 −

ξλ + k
θλ2(1 + λ)2 uv −

ξλ + k
λ(1 + λ)3 u3 +

ξλ + k
θλ2(1 + λ)3 u2v + O(|u|4, |u|3|v|),

G1(u, v, λ) := −
θλ

(1 + λ)2 u2 +
1

(1 + λ)2 uv +
θλ

(1 + λ)3 u3 −
1

(1 + λ)3 u2v + O(|u|4, |u|3|v|).

Define a real 2-by-2 matrix

P(λ) :=
Å

1 0
N(λ) M(λ)

ã
,

where

N(λ) :=
θ(ξλ2 + λ − k)

2(ξλ + k)
,M(λ) :=

θλ(1 + λ)
√

4D(λ) − T 2(λ)
2(ξλ + k)

.

By using the linear transformation (u, v)T = P(λ)(x, y)T , we can reduce (2.8) into the following
equations Å

x′

y′

ã
=

Å
α(λ) −ω(λ)
ω(λ) α(λ)

ãÅ
x
y

ã
+

Å
F(x, y, λ)
G(x, y, λ)

ã
, (2.9)

where α(λ) and ω(λ) are defined in (2.5), and

F(x, y, λ) :=F1

Å
x,N(λ)x + M(λ)y, λ

ã
,

G(x, y, λ) := −
N(λ)
M(λ)

F1

Å
x,N(λ)x + M(λ)y, λ

ã
+

1
M(λ)

G1(x,N(λ)x + M(λ)y, λ).

Taylor expanding F(x, y, λ) at (x, y) = (0, 0), we have

F(x, y, λ) = c20x2 + c11xy + c21x2y + c30x3 + O(|x|4, |x|3|y|), (2.10)

where

c20 :=
k

λ2(1 + λ)
, c11 :=

−
√

D(λ)
λ(1 + λ)

, c21 :=
√

D(λ)
λ(1 + λ)2 , c30 :=

−k
λ2(1 + λ)2 .

Similarly, Taylor expanding G(x, y, λ) at (x, y) = (0, 0), we have

G(x, y, λ) = d20x2 + d11xy + d30x3 + d21x2y + O(|x|4, |x|3|y|), (2.11)

where

d20 :=
−k

λ2(1 + λ)
√

D(λ)
, d11 :=

1
λ(1 + λ)

, d21 :=
−1

λ(1 + λ)2 , d30 :=
k

λ2(1 + λ)2
√

D(λ)
.
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Following [9] (see, for example, page 90), we define

c1(λ0) :=
i

2ω(λ0)

Å
g20g11 − 2|g11|

2 −
1
3
|g02|

2
ã
+

g21

2
, (2.12)

where

g11 :=
1
4
(
Fxx + Fyy + i

(
Gxx +Gyy

))
,

g02 :=
1
4
(
Fxx − Fyy − 2Gxy + i

(
Gxx −Gyy + 2Fxy

))
,

g20 :=
1
4
(
Fxx − Fyy + 2Gxy + i

(
Gxx −Gyy − 2Fxy

))
,

g21 :=
1
8
(
Fxxx + Fxyy +Gxxy +Gyyy + i

(
Gxxx +Gxyy − Fxxy − Fyyy

))
,

(2.13)

where all the quantities are to be evaluated at (0, 0, λ0). Then, from (2.10) and (2.11), we have

Re(c1(λ0)) = −
(1 + k)λ3

0 + (4k2 + 3k)λ2
0 + (3k2 + k)λ0 + k2

8λ4
0(1 + λ0)2(ξλ0 + 2k)

< 0. (2.14)

Then, by [7, 9], the bifurcating periodic solutions are orbitally asymptotically stable. On the other
hand, by (2.6), we have α′(λ0) > 0. Thus, the Hopf bifurcation is forward in the sense that the
bifurcating periodic solution occurs when λ is slightly larger than λ0. We thus complete the proof. □

Remark 2.2. For convenience, we denote (u(·, s), v(·, s)) and Z(s) by (up(t), vp(t)) and P respectively.

3. Diffusion-driven instability of the constant equilibrium solution in the spatial system

In this section, we shall concentrate on the diffusion-driven instability of the the constant equilib-
rium solution (λ, vλ) with respect to the spatial system (1.5).

To begin with, we assume that ξλ2 − k > 0 (or equivalently λ >
√

k/ξ), so that the diffusive system
(1.5) is an activator-inhibitor system in the sense that the signs of the elements of the Jacobian matrix
J(λ), defined in (2.2), take in the following form:

J(λ) =
Å
+ −

+ −

ã
. (3.1)

By Theorem 2.1, (λ, vλ) is locally asymptotically stable with respect to the ODE system (2.1) if
λ ∈ (0, λ0), while unstable if λ ∈ (λ0,∞). In the following, we shall assume that

√
k/ξ < λ < λ0 so

that (λ, vλ) is stable in the diffusion-free activator-inhibitor system (2.1). Let 0 = µ0 < µ1 ≤ µ2 ≤ · · · be
the sequence of eigenvalues for the elliptic operator −∆ subject to the Neumann boundary condition on
(0, ℓπ), where each µi has multiplicity one. Let ϕi be the normalized eigenfunctions corresponding to µi.

Then, the set ϕi, i ≥ 0, forms a complete orthonormal basis in L2(0, ℓπ). Suppose that d1µ1 <
ξλ2 − k
λ(1 + λ)

holds. Then, we define iλ = iλ(λ, d1, (0, ℓπ)) to be the largest positive integer such that for i ≤ iλ, we

have d1µi <
ξλ2 − k
λ(1 + λ)

. Clearly, we have 1 ≤ iλ < +∞. In this case, we define

d2 = d2(λ, (0, ℓπ)) = min
1≤i≤iλ

{
d(i)

2

}
, where, d(i)

2 :=
d1λµi + ξλ + 2k

µi

Å
ξλ2 − k − d1λ(1 + λ)µi

ã . (3.2)
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Theorem 3.1. Let
√

k/ξ < λ < λ0 and d2 be defined in (3.2). Then, the following conclusions hold
true:

1. Suppose that d1µ1 ≥
ξλ2 − k
λ(1 + λ)

holds. Then, (λ, vλ) is locally asymptotically stable with respect to

the reaction-diffusion system (1.5).

2. Suppose that d1µ1 <
ξλ2 − k
λ(1 + λ)

holds. Then, (λ, vλ) is locally asymptotically stable with respect to

the reaction-diffusion system (1.5) if 0 < d2 < d2, while becomes Turing unstable if d2 > d2.

Proof. The linearized operator evaluated at (λ, vλ) for system (1.5) is given by

Ld2(λ) =
Å

d1∆ + a(λ) b(λ)
c(λ) d2∆ + d(λ)

ã
, (3.3)

where a(λ), b(λ), c(λ) and d(λ) are defined in (2.2). It follows from [11–13] that the eigenvalues of
Ld2(λ) are determined by the eigenvalues of the operator Ld2,i(λ) which is given by

Ld2,i(λ) =
Å
−d1µi + a(λ) b(λ)

c(λ) −d2µi + d(λ)

ã
, (3.4)

where i = 0, 1, 2, · · · . The characteristic equation of Ld2,i(λ) is given by

ρ2 + Ti(λ)ρ + Di(λ) = 0,

where

Ti(λ) = − (d1 + d2)µi +
ξλ2 − λ − k
λ(λ + 1)

,

Di(λ) =d1d2µ
2
i − (d1d(λ) + d2a(λ))µi + D(λ)

=d1d2µ
2
i −

Å
d2(ξλ2 − k)
λ(1 + λ)

−
d1

1 + λ

ã
µi +

ξλ + 2k
λ(λ + 1)

.

Since we assume that
√

k/ξ < λ < λ0, we have
ξλ2 − λ − k
λ(λ + 1)

< 0. Thus, for any i ≥ 0, we have

Ti(λ) < 0. Rewrite Di(λ) as

Di(λ) =d1d2µ
2
i −

Å
d2(ξλ2 − k)
λ(1 + λ)

−
d1

1 + λ

ã
µi +

ξλ + 2k
λ(λ + 1)

=d2µi

Å
d1µi −

ξλ2 − k
λ(1 + λ)

ã
+

d1µi

1 + λ
+
ξλ + 2k
λ(λ + 1)

.

Suppose that d1µ1 ≥
ξλ2 − k
λ(1 + λ)

holds. Then, for any i ≥ 1, we have Di(λ) > 0. Thus, all the

eigenvalues of the linearized operator have negative real parts. This implies that in this case, (λ, vλ) is
locally asymptotically stable with respect to the reaction-diffusion system (1.5).
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Suppose that d1µ1 <
ξλ2 − k
λ(1 + λ)

holds. Then, for 0 < d2 < d2, we have for any i ≥ 1, we have Di(λ) >

0. Again, all the eigenvalues of the linearized operator have negative real parts. This implies that in
this case, (λ, vλ) is locally asymptotically stable with respect to the reaction-diffusion system (1.5).
On the other hand, if d2 > d2, then we may assume that the minimum in (3.2) is attained by some
j ∈ [1, iλ]. Thus, for d2 > d( j)

2 , we have D j(λ) < 0. Thus, there exists at least an eigenvalue having
positive real parts. Hence, in this case, (λ, vλ) is unstable with respect to the reaction-diffusion system
(1.5); Moreover, by

√
k/ξ < λ < λ0, (λ, vλ) is locally asymptotically stable with respect to the ODE

system; Therefore, in this case, (λ, vλ) is Turing unstable. We complete the proof. □

Remark 3.2. In Theorem 3.1, we fix d1 > 0, and choose d2 as the bifurcation parameter and then define
the “critical”value d2, such that if 0 < d2 < d2, then (λ, vλ) is locally asymptotically stable with respect
to the reaction-diffusion system (1.5); while if d2 > d2, then (λ, vλ) is Turing unstable with respect to
the reaction-diffusion system (1.5). In fact, by rescaling the system parameters, we can also choose
the ratio d1/d2 or d2/d1 as the bifurcation parameter. We would like to mention that in a recent paper
by Jiang, Cao and Wang [10], the authors obtained sufficient and necessary conditions on diffusion-
driven instability of the positive constant equilibrium solution by choosing the diffusion ratio as the
bifurcation parameter. We refer interested readers to [10] for great details.

4. Diffusion-driven instability of periodic solutions in the spatial systems

To begin with, we shall first recall some preliminaries obtained by Yi in [7] on diffusion-driven
instability of the periodic solutions for general reaction-diffusion system on bounded spatial domain
subject to homogeneous Neumann boundary conditions.

Consider the following general reaction-diffusion equations with cross-diffusions and no-flux
boundary conditions

∂U
∂t
=E∆U + F(U), t > 0, x ∈ Ω1,

∂νU =0, t > 0, x ∈ ∂Ω1.
(4.1)

Here x = (x1, · · · , xn) ∈ Ω1 := {ℓy : y ∈ Ω0} which is star-shaped with respect to the origin, where
0 < ℓ < ∞ and Ω0 is a fixed open bounded domain in Rn (n ≥ 1) with sufficiently smooth boundary
∂Ω0, and

U(x, t) =

á
u1(x, t)
u2(x, t)
...

um(x, t)

ë
, F(U) =

á
f1(u1, · · · , um)
f2(u1, · · · , um)

...

fm(u1, · · · , um)

ë
, E :=

á
d11 d12 · · · d1m

d21 d22 · · · d2m
...

... · · ·
...

dm1 dm2 · · · dmm

ë
, (4.2)

where dii > 0 are the passive diffusion rates of the ui for i = 1, 2, · · · ,m with m ≥ 2; di j ∈ R, with i , j,
are the cross-diffusion rates between ui and u j; fi is assumed to be sufficiently smooth for i = 1, · · · ,m.
In particular, all the eigenvalues of E have positive real parts (to guarantee the so-called “normally
elliptic”condition).

Electronic Research Archive Volume 30, Issue 3, 813–829.



822

Suppose that the corresponding ODE system of system (4.1)

dU
dt
= F(U) (4.3)

has a stable periodic solution U = Up(t) with the minimum period P, i.e.,

dUp(t)
dt

= F(Up(t)),Up(t + P) = Up(t). (4.4)

Let Im be the m × m identity matrix. Then, the following perturbed ODEs

(Im + ϵE)
dU
dt
= F(U), (4.5)

has also a stable periodic solution, denoted by Up(ϵ, t) with minimum period P(ϵ), which is continu-
ously differentiable in ϵ for sufficiently small |ϵ |. We state the following results:

Lemma 4.1. ( [3, 7]) Suppose that the ODE system (4.3) has a stable periodic solution, denoted by
Up(t) with the minimum period P. Then, for sufficiently small |ϵ|, the perturbed system (4.6) will also
have a stable periodic solution, denoted by Up(t, ϵ) with the minimum period P(ϵ), a C1 function of the
perturbation parameter ϵ, such that as ϵ → 0, Up(t, ϵ)→ Up(t) and P(ϵ)→ P.

In [7], Yi obtained the following results:

Theorem 4.2. Assume that Ω1 = ℓΩ0 is star-shaped with respect to the origin. Let Up(t) be a stable
periodic solution of (4.3), and let P(ϵ) be the period of periodic solution Up(t, ϵ) of (4.5). Then Up(t)
is unstable with respect to (4.1) if P′(0) < 0 and ℓ is sufficiently large.

Now, we are going to use Theorem 4.2 to consider diffusion-driven instability of the Hopf bifurcat-
ing spatially homogeneous periodic solution (up(t), vp(t))T of system (1.5). Remember in the context of
Theorem 4.2, our problem is the special case when m = 2, Ω1 = (0, ℓπ), and there is no cross-diffusion.

According to Theorem 4.2, we need to consider the following perturbed planar systemÅ
I2 + ϵ

Å
d1 0
0 d2

ããÅ
u′

v′

ã
=

Ñ
k + ξu −

muv
1 + u

θu −
v

1 + u

é
, (4.6)

where |ϵ | is sufficiently small. By Theorem 3.3 of [7], if the aforementioned stable periodic solution of
the ODE system (2.1) is the Hopf bifurcating periodic solution, then P′(0) < 0 can be clearly expressed
in the language of the diffusion rates d1 and d2:

Lemma 4.3. ( [7]) Suppose that λ is fixed to be sufficiently close to λ0 so that (up(t), vp(t)) is a stable
periodic solution of system (2.1) bifurcating from (λ, vλ)T at λ = λ0, where λ0 is the Hopf bifurcation
value stated in Theorem 2.1. Then, we have

P′(0) =
√

a(λ0)d(λ0) − b(λ0)c(λ0)(d1 + d2)

+
Im(c1(λ0))
Re(c1(λ0))

Å
d1d(λ0) + d2a(λ0)

ã
+ o(|λ − λ0|),

(4.7)

where a(λ), b(λ), c(λ) and d(λ) are defined in (2.2), Re(c1(λ0)) and Im(c1(λ0)) are defined in (2.14) and
(4.13) respectively.
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Then, we have the following results on diffusion-driven instability of the periodic solution
(up(t), vp(t)) with respect to the reaction-diffusion system (1.5):

Theorem 4.4. Suppose that (up(t), vp(t)) is the stable periodic solution of system (2.1) bifurcating from
(λ0, vλ0) as stated in Theorem 2.1. Then, (up(t), vp(t)) undergoes diffusion-driven instability in system
(1.5) if ℓ is sufficiently large and d1ζ + d2δ < 0, where

ζ :=(2 + 16k + 14k2)λ5
0 + (−1 + 21k + 46k2 + 24k3)λ4

0 + (−1 + 10k + 54k2 + 46k3)λ3
0

+ (k + 25k2 + 33k3)λ2
0 + (5k2 + 14k3)λ0 + 3k3,

δ :=(4 + 2k − 2k2)λ5
0 + (7 + 21k + 32k2 + 24k3)λ4

0 + (1 + 20k + 60k2 + 62k3)λ3
0

+ (5k + 35k2 + 57k3)λ2
0 + (7k2 + 22k3)λ0 + 3k3.

(4.8)

Proof. By (4.7), for λ sufficiently close to λ0, it follows that the sign of P′(0) is mainly determined by
the first two terms of (4.7). We now calculate these first two terms of (4.7). Firstly, we have

√
a(λ0)d(λ0) − b(λ0)c(λ0) =

 
ξλ0 + 2k
λ2

0 + λ0
. (4.9)

Define

M1(λ0) :=η0λ
4
0 + η1λ

3
0 + η2λ

2
0 + η3λ0 + η4,

N1(λ0) :=3(1 + λ0)
Å

(1 + k)λ3
0 + (4k2 + 3k)λ2

0 + (3k2 + k)λ0 + k2
ã
,

(4.10)

where

η0 :=8k2 + 7k − 1, η1 = 7k2 − 4, η2 = −8k3 − 3k2 − 5k − 1,
η3 := − 12k3 − 5k2 − 2k, η4 = −4k3 − k2.

(4.11)

By (2.14), we have

Re(c1(λ0)) = −
(1 + k)λ3

0 + (4k2 + 3k)λ2
0 + (3k2 + k)λ0 + k2

8λ4
0(1 + λ0)2(ξλ0 + 2k)

. (4.12)

On the other hand, from (2.10) and (2.11), we have

Im(c1(λ0)) =
1
16

(
Gxxx +Gxyy − Fxxy − Fyyy

)
−

1
16ω(λ0)

((
Fxx + Fyy)2 + (Gxx +Gyy)2)

+
1

32ω(λ0))
(Fxx + Fyy)(Fxx − Fyy + 2Gxy)

+
1

32ω(λ0))
(Gxx +Gyy)(Gxx −Gyy − 2Fxy)

−
1

96ω(λ0)
(
(Fxx − Fyy − 2Gxy)2 + (Gxx −Gyy + 2Fxy)2)

=
η0λ

4
0 + η1λ

3
0 + η2λ

2
0 + η3λ0 + η4

24λ5
0(1 + λ0)3(2k + ξλ0)

 
ξλ0 + 2k
λ0(1 + λ0)

,

(4.13)
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where η0, η1, η2, η3 and η4 are defined in (4.11) respectively.

Then, we have

Im(c1(λ0))
Re(c1(λ0))

= −

 
λ0(1 + λ0)
ξλ0 + 2k

·
M1(λ0)
λ0N1(λ0)

, (4.14)

whereM1(λ0) and N1(λ0) are defined in (4.10) respectively.

After substituting (4.9), (4.12), (4.13) and (4.14) into (4.7), we find that, for λ sufficiently close to
λ0, P′(0) < 0 is equivalent to

d1ζ + d2δ

2ξλ0 − 1
< 0, (4.15)

where ζ and δ are defined by (4.8). Now, we argue that 2ξλ0 − 1 > 0. In fact, we note that λ0 satisfies
ξλ2

0 − λ0 − k = 0. By ξ
(

1
2ξ

)2
−
(

1
2ξ

)
− k < 0, we have 1

2ξ < λ0. Thus, we have 2ξλ0 − 1 > 0. So far, we
have proved that p′(0) < 0 is equivalent to d1ζ + d2δ < 0. Then, by Theorem 4.2 and Lemma 4.3, we
complete the proof. □

5. Numerical simulations

In this section, we shall include some numerical simulations to strengthen our analytical analysis.

5.1. Diffusion-driven instability for the positive constant equilibrium solution

We simulate existence/nonexistence of diffusion-driven instability for the positive constant equilib-
rium solution. We choose the system parameters in the following way:

k = 5, θ = 1, ξ =
3795

538756
, m =

40627825
145129013768

, Ω = (0, 500). (5.1)

Under (5.1), we have λ0 = 147. Then, by Theorem 2.1, the unique positive constant equilibrium
solution (λ, vλ) is locally asymptotically stable with respect to the ODEs system (1.4) for any λ ∈

(0, λ0), while unstable for λ ∈ (λ0,+∞). We now choose have λ =
734
5

. Then, (λ, vλ) is locally
asymptotically stable with respect to the ODEs system (1.4).

Case 1 (Diffusion-driven instability of the positive equilibrium solution fails): We choose d1 = d2 =

1, the initial values are chosen by: u0(x) = λ0 + 0.01 sin(0.02x), v0(x) = vλ0 + 0.01 cos(0.02x). In this
case, no diffusion-driven instability of (λ, vλ) could be found. That is, the equilbrium solution (λ, vλ) is
still stable with respect to the reaction-diffusion system (1.5). (See Figure 1)
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Figure 1. The case when d1 = d2 = 1, x ∈ ℓ(0, 1), where ℓ = 500, and t ∈ (0, 35000). Left:
u-component; Right: v-component. The equilibrium solution (λ, vλ) is still stable with re-
spect the reaction-diffusion equations. In this case, diffusion-driven instability of the positive
equilibrium solution does not occur.

Case 2 (Diffusion-driven instability of the positive equilibrium solution occurs): We choose d1 =

1, d2 = 54, the initial values are chosen by: u0(x) = λ0 + 0.01 sin(0.02x), v0(x) = vλ0 + 0.01 cos(0.02x).
Clearly, d1 and d2 are satisfy conditions in Theorem 3.1. In this case, diffusion-driven instability of
(λ, vλ) occurs and new irregular spatiotemporal patterns are observed found. (See Figure 2)

Figure 2. The case when d1 = 1, d2 = 54, x ∈ ℓ(0, 1), where ℓ = 500, and t ∈ (0, 35000).
Left: u-component; Right: v-component. In this case, diffusion-driven instability of the
positive equilibrium solution occurs.

5.2. Diffusion-driven instability of the Hopf bifurcating periodic solution

We simulate existence/nonexistence of diffusion-driven instability for the Hopf bifurcating periodic
solution. We choose the system parameters in the following way:

k =
22
5
, θ = 1, ξ =

12132
1734605

,m =
150699184

601770901205
,Ω = (0, 500). (5.2)
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Under (5.2), we have λ0 = 147. Choose λ = 147.25. Then, by Theorem 2.1, the ODEs system (1.4)
has a stable periodic solution (denoted by (up(t), vp(t))).

Case 1 (Diffusion-driven instability of the periodic solutions fails): We choose d1 = d2 = 1, the
initial values are chosen by: u0(x) = λ0+0.01 sin(0.02x), v0(x) = vλ0 +0.01 cos(0.02x). In this case, no
diffusion-driven instability of (up(t), vp(t)) could be found. That is, the periodic solution (up(t), vp(t))
is still stable with respect to the reaction-diffusion system (1.5). (See Figure 3)

Figure 3. The case when d1 = d2 = 1, x ∈ ℓ(0, 1), where ℓ = 500, and t ∈ (0, 35000).
Left: u-component; Right: v-component. The periodic solution (up(t), vp(t))T is still stable
with respect the reaction-diffusion equations. In this case, diffusion-driven instability of the
periodic solutions does not occur.

Case 2 (Diffusion-driven instability of the periodic solution occurs): We choose d1 = 1, d2 = 55,
the initial values are chosen by: u0(x) = λ0 + 0.01 sin(0.02x), v0(x) = vλ0 + 0.01 cos(0.02x). Clearly,
d1 and d2 are satisfy (3.12). In this case, diffusion-driven instability of (up(t), vp(t)) could be observed
and new irregular spatiotemporal patterns are found. (See Figure 4)

Figure 4. The case when d1 = 1, d2 = 55, x ∈ ℓ(0, 1), where ℓ = 500, and t ∈ (0, 35000).
Left: u-component; Right: v-component. In this case, diffusion-driven instability of the
periodic solutions occurs.
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6. Conclusions

In this paper, we consider a homogeneous diffusive Sporns-Seelig model for the generic regulatory
mechanism of induction subject to homogeneous Neumann boundary conditions. Of our particular
interests, we are concerned with the diffusion-driven instability of both the positive constant equi-
librium solution and the Hopf bifurcating spatially homogeneous periodic solutions. By using the
linearized principle and the abstract results obtained in [7], we are able to derive precise conditions on
the diffusion rates d1 and d2, such that under these conditions, both the stable positive constant equi-
librium solution and the stable periodic solution (with respect to the kinetic ODE system) can undergo
diffusion-driven instability in the reaction-diffusion system. Our numerical simulation shows that once
the solutions undergo diffusion-driven instability, then new irregular spatial patterns occur. This kind
of spatial patterns correspond to the existence of positive non-constant steady state solutions for the
reaction-diffusion system. This suggests that, for this particular kind of diffusive Sporns-Seelig model,
diffusion-driven instability of the two kinds of the solutions can be one of the mechanisms to gener-
ate new stable non-constant steady state solutions. To the best of our knowledge, our results on the
aforementioned aspects are new for this particular homogeneous diffusive Sporns-Seelig model.

As the chemical reaction might have time delays in the process of reaction, one might think to
include time delay into the diffusive Sporns-Seelig model. This reduce the original system to the
partial functional differential equations. It is well-known that varying time delay can induce temporal
oscillations. Now, a question arises naturally: if the kinetic Sporns-Seelig model with delay (functional
differential equations) has a stable periodic solution, then in what relationship between d1 and d2, the
stable periodic solution could become Turing unstable in the diffusive Sporns-Seelig model with delay
(partial functional differential equations)? This is our future attempt for this particular model.

Finally, we would like to mention that there are several related works in this field to our present
work, and we refer to interested readers to references [14–18].
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