
Electronic
Research Archive

http://www.aimspress.com/journal/era

ERA, 30(2): 755–779.
DOI: 10.3934/era.2022040
Received: 20 December 2021
Revised: 11 February 2022
Accepted: 20 February 2022
Published: 28 February 2022

Research article

A two-step randomized Gauss-Seidel method for solving large-scale linear
least squares problems

Yimou Liao1, Tianxiu Lu1,2,*and Feng Yin1

1 School of Mathematics and Statistics, Sichuan University of Science and Engineering, Zigong
643000, China

2 Key Laboratory of Higher Education of Sichuan Province for Enterprise Informationalization and
Internet of Things, Bridge Non-destruction Detecting and Engineering Computing Key Laboratory,
Zigong 643000, China

* Correspondence: Email: lubeeltx@163.com.

Abstract: A two-step randomized Gauss-Seidel (TRGS) method is presented for large linear least
squares problem with tall and narrow coefficient matrix. The TRGS method projects the approximate
solution onto the solution space by given two random columns and is proved to be convergent when
the coefficient matrix is of full rank. Several numerical examples show the effectiveness of the TRGS
method among all methods compared.

Keywords: linear least-squares problem; two-step iterative method; convergence property;
Gauss-Seidel

1. Introduction

We consider the approximate solutions of a large linear least squares problem

min
x∈Rn
‖b − Ax‖22 , (1.1)

where A ∈ Rm×n, m > n, is of full clolumn rank. A and b ∈ Rm are known, x ∈ Rn is unknown
to be determined. Under the condition that the linear system is consistent or inconsistent, people
are interested in finding the unique least squares solution x∗ = A†b, where A† is the Moore-Penrose
pseudoinverse of the matrix A (A† = (AT A)−1AT , where AT denotes the transpose of the matrix A).
See also references [1–6]. As we know, the least squares problem arises widely in many fields such
as tomography [7–9], protein structure [10], machine learning [11], biological feature selection [12],
and so on [13–15]. For solving (1.1), there are many direct methods, such as QR decomposition and

http://http://www.aimspress.com/journal/era
http://dx.doi.org/10.3934/era.2022040

756

singular value decomposition (SVD) [1, 16]. However, for large-scale system matrices, these methods
are too expensive because they consume a lot of memory space. So, some iterative methods are applied
to solve large-scale linear least squares problems.

As one of the famous iterative algorithms, the Gauss-Seidel method [17] selects a coordinate dk and
a step αk = arg min

α∈R
f (xk + αdk) in each iteration. When αk = AT

jk
(b − Axk)/

∥∥∥A jk

∥∥∥2

2
and dk = e jk are

accurately given, it generates the following iterative process:

xk+1 = xk +
AT

jk
(b − Axk)

‖A jk‖
2
2

e jk , k = 0, 1, 2, · · · , (1.2)

where jk = (k mod n) + 1, (·)T represents the transpose of a matrix or a vector, and e jk represents
the coordinate column vector, whose jk-th entry is 1 and zero otherwise. Inspired by the random-
ized Kaczmarz (RK) linear convergence characteristics of Strohmer and Vershynin [18], Leventhal and
Lewis [19] obtained a randomized Gauss-Seidel (RGS) method, which is also known as randomized
coordinate descent (RCD) method to solve (1.1). The RGS selects the update column index jk accord-
ing to the appropriate probability. Theoretical analysis shows that RGS converges linearly to the unique
least squares solution x∗ = A†b. Many variants of RGS are receiving extensive attention recently due
to its good performance. For example, the versions of block [20, 21], random greedy [22–24]. Other
versions, see literatures [4, 17, 25, 26] and reference therein.

In 2018, Wu [27] obtained a randomized block Gauss-Seidel (RBGS) method, which can signifi-
cantly improve the convergence speed. However, the good column pavings for the RBGS is difficult
to find when the column norms of the coefficient matrix fluctuate in a large range. In this paper, we
propose a two-step randomimzed Gauss-Seidel method (TRGS), which does not need any columns
pavings. The convergence of the TRGS algorithm is proved for (1.1) with the coefficient matrix of full
rank.

This paper is organized as follows. In Section 2, some symbols and a lemma related to RGS are
introduced. The convergence of RGS2 is analyzed. In Section 3, a convergent upper bound of TRGS
is obtained theoretically. Several numerical experiments are reported to verify the feasibility of our
proposed algorithms in Section 4. The conclusions of this paper are given in Section 5 and the proof
of Theorem 2 is shown in appendix.

2. The simplified two-step randomized Gauss-Seidel method

We first introduce the notations and definitions as follows. For the matrix Q ∈ Rm×n, Qi represents
the ith column of the Q, λmax(QT Q) and λmin(QT Q) represent the maximum and minimum positive
eigenvalues of the QT Q, respectively, (·)T represents the transpose of a matrix or a vector, the Qτk

represents a submatrix of the Q (where τk is a set of column indexes), ‖Q‖2 and ‖Q‖F represent the
spectral norm and Frobenius norm of the Q, respectively, and R(Q) is the image space of matrix Q.
For a vector p ∈ Rn or p ∈ Rm, pi is the ith component of p. For constant c ∈ R, [c] refers to the
set consising of all positive integers not exceeding c. For the matrix in (1.1), assuming that every
two columns are independent and identically distributed, the correlation coefficient parameters of the
matrix A are defined as follows

δ = min
s,t

|AT
s At|

‖As‖2‖At‖2
and ∆ = max

s,t

|AT
s At|

‖As‖2‖At‖2
, s, t ∈ {1, 2, · · · , n}.

Electronic Research Archive Volume 30, Issue 2, 755–779.

757

Then, we have 0 ≤ δ ≤ ∆ < 1.
The randomized Gauss-Seidel method proposed by Leventhal and Lewis [19] consists of two parts.

The RGS determines a column index jk according to the probability Pr(column = jk) =
‖A jk ‖

2
2

‖A‖2F
and then

updates xk+1 by (1.2).
The following results in [19] summarized an upper bound for the error of the solution in expectation

on the convergence of RGS algorithm.

Lemma 1. Assume the least squares problems (1.1) has tall and narrow coefficient matrix A ∈ Rm×n

with full rank. Let x∗ = A†b be a solution of (1.1). Given an initial guess x0 ∈ R
n, then the sequence

{xk}
∞
0 generated by RGS algorithm converges linearly to the x∗ in expectation. Moreover, it satisfies

E‖xk − x∗‖2AT A ≤

(
1 −

λmin(AT A)
‖A‖2F

)k

‖x0 − x∗‖2AT A, k = 1, 2, · · · .

Algorithm 1 RGS2 method
Input: A ∈ Rm×n, b ∈ Rm and x0 = 0 ∈ Rn

Output: the approximation solution xk of (1.1)
1. for k = 0, 1, . . . do until termination criterion is satisfied
2. Set rk = b − Axk and sk = AT rk.
3. Select jk1 and jk2 with probability by (2.1).
4. Compute s

jk1
k = AT

jk1
rk.

5. Update

yk = xk +
s

jk1
k

‖A jk1
‖22

e jk1
and xk+1 = yk +

AT
jk2

(b−Ayk)

‖A jk2
‖22

e jk2
.

6. end for

Now, we propose a simplified two-step randomized Gauss-Seidel method (RGS2) to solve (1.1).
Algorithm 1 lists the RGS2 method, which mainly consists of two stages. The first stage is to select
two different working columns by

Pr(column = jk1) =
‖A jk1
‖22

‖A‖2F
, Pr(column = jk2) =

‖A jk2
‖22

‖A‖2F − ‖A jk1
‖22

, (2.1)

where jk1 ∈ {1, 2, · · · , n}, jk2 ∈ {1, 2, · · · , n}/{ jk1}. The second stage is to use (1.2) twice to update xk.
If the coefficient matrix A in (1.1) is tall and narrow with full column rank, the following result

gives the convergence of the RGS2 algorithm.

Theorem 1. Assume the least squares problem (1.1) has tall and full-rank coefficient matrix A ∈ Rm×n.
Let x∗ = A†b be a solution of (1.1). Given an initial guess x0 ∈ R

n, then the iterative sequence {xk}
∞
0

generated by RGS2 algorithm converges linearly to the x∗ in expectation. Moreover, it satisfies

Ek‖A(x̂k+1 − x∗)‖22 ≤
[
(1 −

λmin(AT A)
τmax

)(1 −
λmin(AT A)
‖A‖2F

)
]
· ‖A(xk − x∗)‖22

and

E‖xk − x∗‖2AT A ≤

[
(1 −

λmin(AT A)
τmax

)(1 −
λmin(AT A)
‖A‖2F

)
]k

· ‖x0 − x∗‖2AT A, (2.2)

Electronic Research Archive Volume 30, Issue 2, 755–779.

758

where τmax = ‖A‖2F −min
p∈[n]
‖Ap‖

2
2.

Proof. Let ŷk and x̂k+1 be the first and the second iterative solutions of xk obtained by single-step
continuous execution of Algorithm 1, respectively. The update process is divided into two steps as
follows

ŷk = xk +
AT

jk1
(b − Axk)

‖A jk1
‖22

e jk1
and x̂k+1 = ŷk +

AT
jk2

(b − Aŷk)

‖A jk2
‖22

e jk2
.

Let P jki
= Im −

A jki
AT

jki
‖A jki

‖22
satisfy P2

jki
= P jki

, PT
jki

= P jki
, where i = 1, 2. Then, P jki

is the projection matrix,

and

A(x̂k+1 − x∗) = A(ŷk − x∗) +
A jk2

AT
jk2

(b − Aŷk)

‖A jk2
‖22

= (Im −
A jk2

AT
jk2

‖A jk2
‖22

)A(ŷk − x∗)

= (Im −
A jk2

AT
jk2

‖A jk2
‖22

)(Im −
A jk1

AT
jk1

‖A jk1
‖22

)A(xk − x∗)

= P jk2
P jk1

A(xk − x∗),

where the second equality follows from the normal equation AT Ax∗ = AT b, whose jk2-th equation gives
AT

jk2
b = AT

jk2
Ax∗. Taking the expectation on the equality above, and by the expectation conditional upon

jk1 (we fix the choice of jk1 and averagever the random index jk2), one can get

Ek‖A(x̂k+1 − x∗)‖22 = Ek‖P jk2
P jk1

A(xk − x∗)‖22 = Ek
[
(A(xk − x∗))T P jk1

P jk2
P jk1

A(xk − x∗)
]

=

n∑
jk1 =1

‖A jk1
‖22

‖A‖2F

n∑
jk2

=1,

jk2
, jk1

‖A jk2
‖22

‖A‖2F − ‖A jk1
‖22

(A(xk − x∗))T P jk1
P jk2

P jk1
A(xk − x∗)

=

n∑
jk1 =1

‖A jk1
‖22

‖A‖2F
(A(xk − x∗))T P jk1

(
Im −

AAT − A jk1
AT

jk1

‖A‖2F − ‖A jk1
‖22

)
P jk1

A(xk − x∗)

=

n∑
jk1 =1

‖A jk1
‖22

‖A‖2F
(A(xk − x∗))T P jk1

(
Im −

AAT

‖A‖2F − ‖A jk1
‖22

)
P jk1

A(xk − x∗),

in which the last equation holds because

A jk1
AT

jk1

‖A‖2F − ‖A jk1
‖22

P jk1
=

A jk1
AT

jk1

‖A‖2F − ‖A jk1
‖22

(
Im −

A jk1
AT

jk1

‖A jk1
‖22

)
=

A jk1
AT

jk1

‖A‖2F − ‖A jk1
‖22

−
A jk1

(AT
jk1

A jk1
)AT

jk1

(‖A‖2F − ‖A jk1
‖22)‖A jk1

‖22

= 0.

Note that
‖AT u‖22 ≥ λmin(AT A)‖u‖22 and τmax = max

p∈[n]
{‖A‖2F − ‖Ap‖

2
2},

then ‖Im −
AAT

‖A‖2F−‖A jk1
‖22
‖2 ≤ 1 − λmin(AT A)

τmax
and

Ek‖A(x̂k+1 − x∗)‖22 ≤ (1 −
λmin(AT A)
τmax

)
n∑

jk1 =1

‖A jk1
‖22

‖A‖2F
(A(xk − x∗))T (Im −

A jk1
AT

jk1

‖A‖2F
) · A(xk − x∗)

Electronic Research Archive Volume 30, Issue 2, 755–779.

759

≤ (1 −
λmin(AT A)
τmax

)(1 −
λmin(AT A)
‖A‖2F

)‖A(xk − x∗)‖22.

Therefore,

Ek‖x̂k+1 − x∗‖2AT A ≤ (1 −
λmin(AT A)
τmax

)(1 −
λmin(AT A)
‖A‖2F

)‖xk − x∗‖2AT A. (2.3)

(2.2) is obtained from the recurrence relation of (2.3) and the full expectation formula. This completed
the proof.

3. Two-step randomized Gauss-Seidel method

The minimum positive eigenvalue of λmin(AT A) will become very small if the matrix A has high
correlation parameters [28]. A weak bound of the convergence in Theorem 1 will appear. Under this
condition, the angle of the unit coordinate direction as the search direction for two consecutive stages
may be too small, which is the main reason for the slow convergence of RGS. Inspired by the work
of Needell [28] and Wu [29], we iteratively update the solution by continuously seeking two more
extensive directions, that is, determine the column pairs (r, s) in advance. So a two-step randomized
Gauss-Seidel algorithm is obtained. In a two-step randomized algorithm, which mainly consists of
three steps as follows: First, we randomly select the two columns r, s ∈ [n] according to the probability
criterion, then estimate the optimal parameter λopt for the first iteration with yk = xk + λopt

AT
r rk

‖Ar‖
2
2
er, and

finally perform the second iteration to update the iterative solution by xk+1 = yk +
AT

s (b−Ayk)
‖As‖

2
2

es.
We consider the convergence of the TRGS algorithm. We first need the following result presented

in [28].

Lemma 2. For any ε ∈ R, φ, ψ ∈ Rm , the minimizer of ‖εφ + ψ‖22 is εopt = −
<φ,ψ>

‖φ‖22
.

Now, we note that

Ayk = Axk + λk
ArAT

r rk

‖Ar‖
2
2

and Axk+1 = Ayk +
AsAT

s (b − Ayk)
‖As‖

2
2

,

then

Axk+1 = Axk + λk
ArAT

r rk

‖Ar‖
2
2

+

AsAT
s

(
b −

(
Axk + λk

ArAT
r rk

‖Ar‖
2
2

))
‖As‖

2
2

= λk

[(
Ar

‖Ar‖2
−
µkAs

‖As‖2

)
AT

r rk

‖Ar‖2

]
+ Axk +

AsAT
s rk

‖As‖
2
2

, (3.1)

where µk =
(Ar)T (As)
‖Ar‖2‖As‖2

. Obviously,

‖Axk+1 − b‖22 =

∥∥∥∥∥λk

[(Ar

‖Ar‖2
−
µkAs

‖As‖2

) AT
r rk

‖Ar‖2

]
+ Axk − b +

AsAT
s rk

‖As‖
2
2

∥∥∥∥∥2

2
.

Electronic Research Archive Volume 30, Issue 2, 755–779.

760

The selection of optimal parameter λopt aims to minimize ‖Axk+1 − b‖22. By Lemma 2, one can get
the optimal value of λk, that is,

λopt = −

(
AT

r
‖Ar‖2
−

µkAT
s

‖As‖2

)(
Axk − b +

AsAT
s rk

‖As‖
2
2

)
AT

r rk
‖Ar‖2
‖

Ar
‖Ar‖2
−

µkAs
‖As‖2
‖22

.

Substituting λopt into (3.1), we obtain

Axk+1 =

(AT
r b
‖Ar‖2
− µk

AT
s b
‖As‖2

‖
Ar
‖Ar‖2
− µk

As
‖As‖2
‖22

)(Ar

‖Ar‖2
− µk

As

‖As‖2

)
−

((AT
r

‖Ar‖2
− µk

AT
s

‖As‖2

)
(Axk +

AsAT
s rk

‖As‖
2
2

)

‖
Ar
‖Ar‖2
− µk

As
‖As‖2
‖22

)(Ar

‖Ar‖2
− µk

As

‖As‖2

)
+ Axk +

AsAT
s rk

‖As‖
2
2

.

So,

xk+1 =

(AT
r b
‖Ar‖2
− µk

AT
s b
‖As‖2

‖
Ar
‖Ar‖2
− µk

As
‖As‖2
‖22

)(er

‖Ar‖2
− µk

es

‖As‖2

)
−

((AT
r

‖Ar‖2
− µk

AT
s

‖As‖2
)(A(xk +

AT
s rk

‖As‖
2
2
es))

‖
Ar
‖Ar‖2
− µk

As
‖As‖2
‖22

)(er

‖Ar‖2
− µk

es

‖As‖2

)
+ xk +

AT
s rk

‖As‖
2
2

es.

Set r = jk1 and s = jk2 with the optimal parameter λopt, this process can be described as

yk = xk +
AT

jk2
(b − Axk)

‖A jk2
‖22

e jk2
and xk+1 = yk +

(
βk − uT

k Ayk

‖uk‖
2
2

)
vk, (3.2)

where

µk =
(A jk1

)T (A jk2
)

‖A jk1
‖2‖A jk2

‖2
and βk =

AT
jk1

b

‖A jk1
‖2
− µk

AT
jk2

b

‖A jk2
‖2
,

uk =
A jk1

‖A jk1
‖2
− µk

A jk2

‖A jk2
‖2

and vk =
e jk1

‖A jk1
‖2
− µk

e jk2

‖A jk2
‖2
.

In order to simplify the computation, we rewrite the iterative process in Algorithm 2.
The following Lemmas 3 and 4 will be used to prove the convergence of TRGS algorithm.

Lemma 3. For the column vector uk defined above, ‖uk‖
2
2 = 1 − µ2

k .

Proof. By the definition of µk in (3.1) and uk in (3.2), one can obtain that

‖uk‖
2
2 = uT

k uk = (
AT

jk1

‖A jk1
‖2
− µk

AT
jk2

‖A jk2
‖2

)(
A jk1

‖A jk1
‖2
− µk

A jk2

‖A jk2
‖2

)

= 1 − 2µ2
k + µ2

k = 1 − µ2
k .

Electronic Research Archive Volume 30, Issue 2, 755–779.

761

Algorithm 2 TRGS method
Input: A ∈ Rm×n, b ∈ Rm andx0 ∈ R

n

Output: the approximation solution xk of (1.1)
1. for k = 0, 1, . . . do until termination criterion is satisfied
2. Set rk = b − Axk

3. Select jk1 and jk2 with probability by (2.1)
4. Compute

µk =
AT

jk1
A jk2

‖A jk1
‖2‖A jk2

‖2
, rk1 =

AT
jk1

rk

‖A jk1
‖2

and rk2 =
AT

jk2
rk

‖A jk2
‖2

5. Updata
xk+1 = xk +

rk1−µkrk2
(1−|µk |2)‖A jk1

‖2
e jk1

+
rk2−µkrk1

(1−|µk |2)‖A jk2
‖2

e jk2

6. end for

Lemma 4. Define αs,t and βs,t as

αs,t =
µ2

k

‖uk‖2
=

|AT
s At |

2

‖As‖
2
2‖At‖

2
2√

1 − |AT
s At |2

‖As‖
2
2‖At‖

2
2

and βs,t =
µk

‖uk‖2
=

AT
s At

‖As‖2‖At‖2√
1 − |AT

s At |2

‖As‖
2
2‖At‖

2
2

,

then, the existence of γ ∈ R subject to (|αs,t| − |βs,t|)2 ≥ γ.

Proof. It is known that δ = min
s,t

|AT
s At |

‖As‖2‖At‖2
and ∆ = max

s,t

|AT
s At |

‖As‖2‖At‖2
, Then,

(|αs,t| − |βs,t|)2 =

|AT
s At |

2

‖As‖
2
2‖At‖

2
2
(|AT

s At |

‖As‖2‖At‖2
− 1)2

(1 − |AT
s At |

‖As‖2‖At‖2
)(1 +

|AT
s At |

‖As‖2‖At‖2
)
≥ min

{
δ2(1−δ)

1+δ
, ∆2(1−∆)

1+∆

}
= γ.

When the coefficient matrix A in (1.1) is tall and narrow with full column rank, the following result
gives the convergence of the TRGS algorithm.

Theorem 2. Assume that the tall and narrow coefficient matrix A ∈ Rm×n has full column rank. Let
x∗ = A†b be a solution of (1.1). Given an initial guess x0 ∈ R

n, then the sequence {xk}
∞
0 generated by

TRGS algorithm converges linearly to the x∗ in expectation. Moreover, it satisfies

Ek‖xk+1 − x∗‖2AT A ≤

[
(1 −

λmin(AT A)
τmax

)(1 −
λmin(AT A)
‖A‖2F

) −
λmin(AT A)γτmin

‖A‖2Fτmax

]
· ‖xk − x∗‖2AT A

and

E‖xk − x∗‖2AT A ≤

[
(1 −

λmin(AT A)
τmax

)(1 −
λmin(AT A)
‖A‖2F

) −
λmin(AT A)γτmin

‖A‖2Fτmax

]k

· ‖x0 − x∗‖2AT A,

where τmax = max
p∈[n]
{‖A‖2F − ‖Ap‖

2
2} , τmin = min

q∈[n]
{‖A‖2F − ‖Aq‖

2
2} and γ = min

{
δ2(1−δ)

1+δ
, ∆2(1−∆)

1+∆

}
.

Proof. See Appendix 1.

Electronic Research Archive Volume 30, Issue 2, 755–779.

762

Remark 1. We remark that the upper bound of the convergence of RGS method from Lemma 1 is

ΨRGS = 1 −
λmin(AT A)
‖A‖2F

.

From Theorem 1, we remark the upper bound of the convergence of RGS2 method is

ΨRGS2 =

(
1 −

λmin(AT A)
τmax

)(
1 −

λmin(AT A)
‖A‖2F

)
.

By Theorem 2, we can obtain an upper bound of the convergence of TRGS method

ΨTRGS =

(
1 −

λmin(AT A)
τmax

)(
1 −

λmin(AT A)
‖A‖2F

)
−
λmin(AT A)γτmin

‖A‖2Fτmax
.

At each iteration, the TRGS method uses two columns of the matrix, while RGS utilizes only
one. To be fair, we compare the upper bound on the convergence factor of one iteration of the TRGS
method with that of two iterations, instead of one iteration, of the RGS method. Note that 0 ≤ γ < 1
and τmax ≤ ‖A‖2F , we have 0 ≤ γτmin/τmax < 1 then ΨTRGS ≤ ΨRGS 2 ≤ Ψ2

RGS < ΨRGS . Especially, when
the column correlation coefficient δ or ∆ = 0, then γ = 0. The RGS2 and TRGS methods have the
same convergence factor in the upper bound.

Remark 2. If ‖A j‖
2
2, j = 1, · · · , n, are precomputed, we discuss the computational cost of RGS, RGS2

and TRGS in each iteration step. The RGS costs 2m + 2n + 1 flopping operations (flops), the RGS2
method needs 4m + 4n + 2 flops, while the TRGS method requires 6m + 4n + 11 flops.

4. Numerical examples

In this section, we give several examples to show the efficiency of our TRGS method. We compare
TRGS with RGS2 and RGS. In addition, randomized Kaczmarz (RK) in [18], randomized extended
Kaczmarz (REK) in [2], partially randomized extended Kaczmarz (PREK) in [30], generalized two-
subspace randomized Kaczmarz (GTRK) and two-subspace randomized extended Kaczmarz (TREK)
in [29] , as other iterative methods, are considered for solving consistent or inconsistent linear systems.
All experiments are carried out with the Matlab 2020b on a computer with 3.00 GHz processing unit
and 16 GB RAM.

We measure the efficiency of TRGS and other methods by the relative solution error

RSE :=
‖xk − x∗‖22
‖x∗‖22

.

The initial vector is set as x0 = (0, 0, · · · , 0)T for all methods. When the set maximum number of
iterations kmax = 106 or RSE < 10−6, we terminate the iteration process of each method. The ‘-’ means
that the number of iteration steps of the algorithm reaches kmax.

Example 4.1 In this example, for conherent matrix A ∈ R2000×100 in least-squares problem (1.1).
The entries of the A are the independent identically distributed uniform random variables in the interval
(t, 1), where the t ∈ [0, 1]. We remark the average column correlation index as follows

µ̄k =
2

n2 + n

n∑
q=1;q>p

|AT
p Aq|

‖Ap‖2‖Aq‖2
, p, q ∈ {1, 2, · · · , n}.

Electronic Research Archive Volume 30, Issue 2, 755–779.

763

When t increases from 0 to 1, the change of the µ̄k with t and the relationship between ΨRGS,Ψ2
RGS,

ΨRGS2 and ΨTRGS versus t are plotted in Figure 1.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.988

0.99

0.992

0.994

0.996

0.998

1

0.48 0.485 0.49 0.495

0.9933

0.99335

0.9934

0.99345

Figure 1. Relationship between t and µ̄k (left). Comparison of ΨRGS, Ψ2
RGS,ΨRGS2 and ΨTRGS

with t (right).

As can be seen from Figure 1, the left subfigure shows that as t approaches 1, the average column
correlation index µ̄k is highly correlated. From the right subfigure, the convergence upper bound of
RGS2 and TRGS are always lower than RGS, and further we find that the theoretical upper bound of
convergence of the TRGS will not exceed the RGS2.

Example 4.2 We use the RGS2 and TRGS methods to test the consistent least squares problem
(1.1) with different size and compare them with the RK, RGS and the GTRK methods. The size of A
is m × n with m = 103 ∗ k (k = 1, 2, · · · , 5) and n = 50. The entries of the matrix A are the independent
identically distributed uniform random variables in the interval (t, 1). The vector b = Ax∗, where x∗ is
generated randomly with the MATLAB function randn.

Table 1. IT, CPU of all methods for the consistent system with n = 50 and different m.

name t m × n 1000 × 50 2000 × 50 3000 × 50 4000 × 50 5000 × 50
0.1 Cond(A) 18.90 17.69 16.83 16.94 16.50

RK
IT 2742 2532 2461 2274 2282
CPU(s) 6.233e-02 8.149e-02 1.041e-01 1.650e-01 1.938e-01

RGS
IT 2765 2252 2538 2259 2399
CPU(s) 6.663e-02 7.995e-02 1.170e-01 1.297e-01 1.574e-01

RGS2
IT 1390 1132 1083 1201 1087
CPU(s) 6.309e-02 7.624e-02 9.961e-02 1.351e-01 1.406e-01

GTRK
IT 625 587 577 568 567
CPU(s) 2.931e-02 4.188e-02 5.464e-02 8.949e-02 1.063e-01

TRGS
IT 483 539 533 486 466
CPU(s) 1.809e-02 2.678e-02 3.354e-02 3.921e-02 4.725e-02

Electronic Research Archive Volume 30, Issue 2, 755–779.

764

In Tables 1–3, we list the IT and the CPU(s) for the RK, RGS, RGS2, GTRK, and TRGS methods
with t = 0.1, 0.5 and 0.8, and the Euclidean condition number Cond(A) of the matrix is reported in
each table. Figure 2 shows the plots of m versus IT (left), and m versus CPU (right) of Algorithm 2
applied to solve (1.1) with different coefficient matrix A listed in Tables 1–3, respectively.

Table 2. IT, CPU of all methods for the consistent system with n = 50 and different m.

name t m × n 1000 × 50 2000 × 50 3000 × 50 4000 × 50 5000 × 50
0.5 Cond(A) 47.91 43.13 41.39 41.19 40.64

RK
IT 13796 11153 11488 10563 10431
CPU(s) 3.017e-01 3.586e-01 5.073e-01 7.467e-01 9.254e-01

RGS
IT 14074 11362 11162 10375 10714
CPU(s) 3.292e-01 3.956e-01 5.033e-01 5.988e-01 7.219e-01

RGS2
IT 6791 5733 5622 5474 5337
CPU(s) 3.050e-01 3.880e-01 5.036e-01 6.234e-01 7.082e-01

GTRK
IT 726 611 703 713 687
CPU(s) 3.501e-02 4.567e-02 7.049e-02 1.151e-01 1.303e-01

TRGS
IT 636 592 677 611 642
CPU(s) 2.53e-02 2.939e-02 4.328e-02 4.938e-02 6.810e-02

Table 3. IT, CPU of all methods for m-by-n consistent system with n = 50 and different m.

name t m × n 1000 × 50 2000 × 50 3000 × 50 4000 × 50 5000 × 50
0.8 Cond(A) 141.61 128.37 124.61 122.65 121.99

RK
IT 100928 96807 87951 90652 89026
CPU(s) 2.187e+00 3.089e+00 3.992e+00 6.870e+00 7.643e+00

RGS
IT 116846 103915 89490 89978 87764
CPU(s) 2.690e+00 3.755e+00 4.087e+00 5.181e+00 5.902e+00

RGS2
IT 60650 50882 46398 44669 44784
CPU(s) 2.654e+00 3.428e+00 4.155e+00 5.091e+00 5.922e+00

GTRK
IT 738 717 697 736 709
CPU(s) 3.463e-02 5.124e-02 6.969e-02 1.203e-01 1.356e-01

TRGS
IT 696 665 658 658 683
CPU(s) 2.585e-02 3.253e-02 4.066e-02 5.334e-02 8.527e-02

From Tables 1–3, we can see that the TRGS method is better than other algorithms based on IT and
CPU(s). We find that GTRK and TRGS are basically stable in both IT and CPU(s), while RK, RGS
and RGS2 methods need more iterations and CPU time.

From Figure 2, it is not difficult to see that the curve of TRGS is much lower than that of RGS2 in
terms of the IT and the CPU(s). In addition, RGS2 is sensitive to t, while TRGS is not affected by it. For

Electronic Research Archive Volume 30, Issue 2, 755–779.

765

example, in Figure 2, fix m = 3000, when t = 0.1, 0.5 and 0.8, the IT of TRGS are basically steady
at the level about 107, while the IT of RGS2 are steady at the level 108, 1010 and 1012, respectively.
Similar results also appear in the CPU(s).

1000 1500 2000 2500 3000 3500 4000 4500 5000

m

6

7

8

9

10

11

12

13

lo
g 10

(I
T

)

1000 1500 2000 2500 3000 3500 4000 4500 5000

m

-3

-2

-1

0

1

2

3

4

lo
g 10

(C
P

U
)

Figure 2. Pictures of log10(IT) (left) and log10(CPU) (right) versus for RGS2 and TRGS for
consistent system when n = 100. RGS2 for t = 0.1:“- * -”, RGS2 for t = 0.5: “- o -”, RGS2
for t = 0.8:“−�−”, TRGS for t = 0.1: “-”, TRGS for t = 0.5: “- -” and TRGS for t = 0.8:
“·-·-·”.

Table 4. IT, CPU of all methods for the inconsistent system with n = 100 and different m.

name t m × n 1000 × 100 2000 × 100 3000 × 100 4000 × 100 5000 × 100
0.1 Cond(A) 30.04 30.00 25.73 24.98 24.74

REK
IT 8246 7360 6383 6319 6135
CPU(s) 3.954e-01 5.279e-01 6.529e-01 1.080e-01 1.579e-01

RGS
IT 6676 5821 5306 4710 4705
CPU(s) 2.334e-01 3.305e-01 4.174e-01 5.378e-01 8.937e-01

PREK
IT - - - 904195 857303
CPU(s) - - - 1.385e+02 2.075e+02

RGS2
IT 3268 2914 2581 2383 2187
CPU(s) 2.224e-01 3.257e-01 3.954e-01 5.237e-01 7.610e-01

TREK
IT 1641 1534 1439 1401 1486
CPU(s) 1.120e-01 1.410e-01 1.662e-01 2.582e-01 3.536e-01

TRGS
IT 1402 1253 1201 1148 1118
CPU(s) 6.810e-02 8.920e-02 1.176e-01 1.738e-01 2.846e-01

Electronic Research Archive Volume 30, Issue 2, 755–779.

766

Table 5. IT, CPU of all methods for the inconsistent system with n = 100 and different m.

name t m × n 1000 × 100 2000 × 100 3000 × 100 4000 × 100 5000 × 100
0.5 Cond(A) 74.36 66.12 63.36 60.93 60.49

REK
IT 45941 33128 31918 33464 29270
CPU(s) 2.207e+00 2.187e+00 2.993e+00 5.266e+00 7.963e+00

RGS
IT 38943 24655 23342 24497 22516
CPU(s) 1.346e+00 1.332e+00 1.761e+00 2.605e+00 4.211e+00

PREK
IT - - - - -
CPU(s) - - - - -

RGS2
IT 18370 12110 11231 12188 11255
CPU(s) 1.230e+00 1.272e+00 1.668e+00 2.567e+00 3.854e+00

TREK
IT 1896 1636 1714 1677 1617
CPU(s) 1.282e-01 1.501e-01 2.360e-01 2.885e-01 4.155e-01

TRGS
IT 1607 1367 1381 1217 1396
CPU(s) 7.700e-02 1.022e-01 1.370e-01 1.647e-01 3.837e-01

Table 6. IT, CPU of all methods for the inconsistent system with n = 100 and different m.

name t m × n 1000 × 100 2000 × 100 3000 × 100 4000 × 100 5000 × 100
0.8 Cond(A) 223.66 197.26 188.00 183.47 178.91

REK
IT 405922 302370 277601 298566 268318
CPU(s) 1.818e+01 2.056e+01 2.700e+01 5.005e+01 7.072e+01

RGS
IT 283262 226035 203500 208911 196200
CPU(s) 9.472e+00 1.211e+01 1.571e+01 2.304e+01 3.554e+01

PREK
IT - - - - -
CPU(s) - - - - -

RGS2
IT 144031 111424 103317 103665 100780
CPU(s) 9.268e+00 1.187e+01 1.565e+01 2.218e+01 3.378e+01

TREK
IT 1888 1684 1613 1830 1804
CPU(s) 1.206e-01 1.477e-01 1.874e-01 3.337e-01 4.297e-01

TRGS
IT 1725 1341 1207 1462 1340
CPU(s) 8.063e-02 9.848e-02 1.122e-01 2.184e-01 3.487e-01

Example 4.3 In this example, we apply the RGS2 and TRGS methods to solve the inconsistent least
squares problem (1.1) and compare them with the REK, RGS, PREK and TREK methods. The entries
of the matrix A are the independent identically distributed uniform random variables in the interval

Electronic Research Archive Volume 30, Issue 2, 755–779.

767

(t, 1), and the vector b = Ax∗+ r, where x∗ is one of the solutions of (1.1), which is generated randomly
with the MATLAB function randn, and r is a nonzero vector in the null space of AT , which is generated
by the MATLAB function null. The size of A is m × n with m = 103 ∗ k (k = 1, 2, · · · , 5), and n = 100.

Tables 4–6 list the iteration number (IT) and the CPU time when all methods stop and we also set
t = 0.1, 0.5, 0.8 in each case. Figure 3 shows the plots of m versus IT (left) and m versus CPU (right)
of TRGS and RGS2 applied to solve all linear systems (1.1) in Tables 4–6.

From Tables 4–6, we can see that the TRGS method is better than other algorithms based on IT
and CPU(s). We also find that TREK and TRGS are basically stable in both IT and CPU(s), while the
REK, RGS, PREK and RGS2 need more iterations and CPU time.

1000 1500 2000 2500 3000 3500 4000 4500 5000

m

6

7

8

9

10

11

12

13

lo
g 10

(I
T

)

1000 1500 2000 2500 3000 3500 4000 4500 5000

m

-3

-2

-1

0

1

2

3

4

lo
g 10

(C
P

U
)

Figure 3. Pictures of log10(IT) (left) and log10(CPU) (right) versus for RGS2 and TRGS for
inconsistent system when n = 100. RGS2 for t = 0.1:“- * -”, RGS2 for t = 0.5: “- o -”, RGS2
for t = 0.8:“−�−”, TRGS for t = 0.1: “-”, TRGS fort = 0.5: “- -” and TRGS for t = 0.8:
“·-·-·”.

From Figure 3, the curves of TRGS and RGS2 show that RGS2 needs more iterations and CPU time
to reach the stopping criterion. In addition, RGS2 is sensitive to t, while TRGS is not. For example,
in Figure 3, fix m = 3000, when t = 0.1, 0.5 and 0.8, the IT of TRGS are basically steady at the level
about 107, while the IT of RGS2 are steady at the level about 108, 1010 and 1012 respectively. Similar
results also appear in the CPU(s).

Example 4.4 In this example, we apply the TRGS method to solve the least squares problem (1.1)
with the sparse coefficient matrix A taken from the Florida sparse matrix collection in [31]. Especially,
we select the tall and narrow sparse matrix A with full column rank. Table 7 summarizes different
sparse systems with density and condition number Cond(A), where the density of a matrix A means the
ratio of the number of the nonzero elements of A to the total number of the elements of A. Algorithm
2 is compared with the RK, RGS, GTRK, REK, PREK, TREK and RGS2 methods.

When the sparse least squares problem (1.1) is set to be consistent, the vector b = Ax∗, where x∗,
one of the solutions of learst squares problem (1.1), is generated randomly with the MATLAB function
randn. Table 8 lists the iteration number (IT) and the CPU time when RK, RGS, RGS2, GTRK and
TRGS methods stop. Figure 4 shows the plot of RSE versus IT (left) and RSE versus CPU (right) of

Electronic Research Archive Volume 30, Issue 2, 755–779.

768

Table 7. The properties of different matrices from the Florida sparse matrix collection in [31].

name abtaha2 divorce Cites bibd-81-3T WorldCities

m × n 37932 × 331 50 × 9 55 × 46 85320 × 3240 315 × 100

density 1.09% 50.00% 53.04% 0.09% 23.87%

Cond(A) 12.22 19.39 207.15 1.75 66.00

Algorithm 2 applied to solve (1.1) with the sparse coefficient matrix A named “divorce”.

Table 8. IT, CPU of all methods for m-by-n consistent system.

name abtaha2 divorce Cites bibd-81-3T WorldCities

RK
IT 150180 2244 320707 45633 37064

CPU(s) 9.028e+01 3.642e-02 5.686e+00 6.894e+01 9.448e-01

RGS
IT 137190 2978 286699 35515 39585

CPU(s) 2.913e+01 3.566e-02 3.779e+00 1.550e+01 8.348e-01

RGS2
IT 76949 1340 145180 17935 20637

CPU(s) 3.215e+01 2.958e-02 3.633e+00 1.477e+01 8.382e-01

GTRK
IT 78808 877 75523 22727 13788

CPU(s) 7.695e+01 3.540e-02 3.232e+00 6.220e+01 8.000e-01

TRGS
IT 64956 139 56142 18351 11306

CPU(s) 1.618e+01 4.470e-03 1.811e+00 9.819e+00 4.862e-01

When the sparse least squares problem (1.1) is set to be inconsistent, the b = Ax∗ + r, where the r is
a nonzero vector in the null space of AT . Due to the large dimension of A, the r cannot be generated by
the Matlab function null, but it can be generated by the projection vector ř. The ř is generated by the
MATLAB function randn and projected onto the null space of AT . That is to say, r = ř − AA†ř, where
A†ř is obtained by the Matlab function lsqminnorm. Table 9 lists the IT and the CPU(s) when REK,
RGS, PREK, RGS2, TREK and TRGS methods stop. Figure 5 shows the plot of RSE versus IT (left)
and RSE versus CPU (right) of Algorithm 2 applied to solve (1.1) with the sparse coefficient matrix A
named “divorce”.

It can be seen from Table 8 that for sparse matrices listed in Table 7, TRGS achieves fast conver-
gence with less IT and CPU(s) than that of RK, RGS, GTRK and RGS2 do. Similar results are shown
in Table 9. Furthermore, from Figure 4, TRGS reaches the stop criteria with less iterations (left) and
CPU time (right) than other methods for the “divorce” consistent sparse least squares problem (1.1).
Similar results also appear in Figure 5.

Example 4.5 This example uses Algorithm 2 to restore a computer tomography (CT) image.

Electronic Research Archive Volume 30, Issue 2, 755–779.

769

0 500 1000 1500 2000 2500 3000
10-6

10-5

10-4

10-3

10-2

10-1

100

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04
10-6

10-5

10-4

10-3

10-2

10-1

100

Figure 4. The RK, RGS, RGS2, GTRK and TRGS methods for solving linear consistent
systems named divorce. Left: the relationship between IT and RSE; Right: the relationship
between CPU (s) and RSE.

Table 9. IT, CPU of all methods for m-by-n inconsistent system.

name abtaha2 divorce Cites bibd-81-3T WorldCities

REK
IT 194480 4450 403533 52384 58586

CPU(s) 1.258e+02 1.636e-01 1.496e+01 9.001e+01 2.946e+00

RGS
IT 152939 3552 307945 35266 39632

CPU(s) 3.198e+01 4.360e-02 4.202e+00 1.552e+01 8.494e-01

PREK
IT 166019 3890 347192 47165 65670

CPU(s) 1.048e+02 9.710e-02 9.445e+00 7.933e+01 2.480e+00

RGS2
IT 53481 1548 156941 18004 20030

CPU(s) 2.210e+01 3.790e-02 4.086e+00 1.522e+01 8.309e-01

TREK
IT 88463 1075 103915 26109 20569

CPU(s) 8.522e+01 9.452e-02 9.175e+00 7.641e+01 2.209e+00

TRGS
IT 77953 94 98361 18306 15423

CPU(s) 1.957e+01 4.500e-03 3.260e+00 9.950e+00 6.633e-01

Electronic Research Archive Volume 30, Issue 2, 755–779.

770

0 500 1000 1500 2000 2500 3000 3500 4000 4500
10-6

10-5

10-4

10-3

10-2

10-1

100

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18
10-6

10-5

10-4

10-3

10-2

10-1

100

Figure 5. The REK, RGS, PREK, RGS2, TREK and TRGS methods for solving linear
inconsistent systems named divorce. Left: the relationship between IT and RSE; Right: the
relationship between CPU (s) and RSE.

We use the MATLAB function paralleltomo(N, θ, p) from Algebraic Iterative Reconstruction (ART)
package in [31] to generate a large sparse matrix A and the exact solution x∗, where N = 35,
θ = 0◦ : 1.5◦ : 178◦ and p = 50, then the size of A is 5950 × 1225 and the condition number
Cond(A) = 352.32. We compute b̂ by b̂ = Ax∗ and b = b̂ + r, where the noise r is from the null space
of the coefficient matrix AT , i.e., AT r = 0. We set ordinary Gaussian white noise with noise levels
δ = 0.01 and the maximum iterative number is 5 ∗ 106. The TRGS is used to recover x∗ from b and
compared with the REK, RGS, PREK, RGS2 and TREK methods.

Figure 6 shows the recovered images by REK, RGS, PREK, RGS2, TREK and TRGS together with
the original image and noised image with δ = 0.01. Figure 7 shows the convergence of RSE versus IT
(left) and RSE versus CPU(s) (right) of TRGS compared with other methods when δ = 0.01.

It is shown from Figure 6 that all methods obtain well restored image, and Figure 7 shows that
TRGS converges much faster than REK, RGS, PREK, RGS2 and TREK do when δ = 0.01.

Example 4.6 In this example, we use Algorithm 2 to solve the famous Phillips ill-posed problem
in [32], which comes from the Fredholm integral equation of first kind∫ 6

−6
K(s, t)φ(t)dt = f (s)

on the square [−6, 6] × [−6, 6], where the kernel function is presented by K(s, t) = φ(s − t) with

φ(x) =

1 + cos(πx
3), |x| < 3,

0, |x| ≥ 3,

and the right-hand side

f (s) = (6 − |s|)(1 +
1
2

cos(
sπ
3

)) +
9

2π
sin(
|s|π
3

).

The above problem is discretized to obtain the linear systems (1.1), where the coefficient matrix A ∈
Rn×n, exact solution vector x∗ ∈ Rn and column vector b ∈ Rn are all generated by MATLAB function

Electronic Research Archive Volume 30, Issue 2, 755–779.

771

(a) the original image (b) The noised image (c) REK (d) RGS

(e) PREK (f) RGS2 (g) TREK (h) TRGS

Figure 6. The original ”phantom” image (a), the noised image (b), the recovered images by
REK (c), RGS (d), PREK (e), RGS2 (f), TREK (g) and TRGS (h).

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

106

10-6

10-5

10-4

10-3

10-2

10-1

100

101

(a)

0 100 200 300 400 500 600 700 800 900
10-6

10-5

10-4

10-3

10-2

10-1

100

101

(b)

Figure 7. Convergence of RSE versus IT (a) and RSE versus CPU (b) of TRGS compared
with that of RGS2 and TREK for restoring the noised ”phantom” image with δ = 0.01.

Electronic Research Archive Volume 30, Issue 2, 755–779.

772

0 100 200 300 400 500 600 700 800 900 1000
-0.05

0

0.05

0.1

0.15

0.2

0.25

(a)

0 1 2 3 4 5 6 7 8

104

10-4

10-3

10-2

10-1

100

101

102

103

(b)

0 10 20 30 40 50 60 70 80 90
10-4

10-3

10-2

10-1

100

101

102

103

(c)

Figure 8. The performance of RGS, RGS2 and TRGS for the nosied Phillips test problem.

phillips(n) in [32]. As we know, if the system matrix A of (1.1) is ill-conditioned, one way to solve this
problem is to use the Tikhonov regularization, that is

min
x∈Rn

{
‖Ax − b‖22 + λ‖x‖22

}
, with λ > 0.

We set n = 1024, λ = 0.01 and Gaussian white noise level denoted by δ = ‖r‖2/||b||2 = 1% to obtain
b = Ax∗ + r. Here the condition number Cond(A) = 4.1618e + 10 and the rank is 1024, which
means (1.1) is a several linear ill-posed problem. It is worth noting that the system matrix satisfies the
conditions of Lemma 1, Theorems 1 and 2, so the above methods will converge. In Figure 8, the (a)
displays the approximation solution derived by RGS, RGS2 and TRGS together with the exact solution
for the Phillips test problem when δ = 0.01. The (b) and (c) show the convergence of RSE versus IT
and RSE versus CPU(s) of TRGS compared with the RGS and RGS2 methods when δ = 0.01.

We can see from Figure 8 that all the recovered solution by RGS, RGS2 and TRGS are close to the
exact solution in (a), (b) and (c) show that TRGS converges much faster than the other two methods.

5. Conclusions

A two-step randomized Guass-Seidel (TRGS) method for solving the linear least squares problems
with tall and narrow coefficient matrix was presented. And the convergence analysis is provided when
the coefficient matrix of (1.1) is of full column rank. This method does not need any columns pavings.
Numerical examples for different cases show the superiority of the current method (TRGS) in this
paper.

Acknowledgments

This work was supported by the Project of Department of Science and Technology of Sichuan
Provincial (No. 2021ZYD0005), the Opening Project of Key Laboratory of Higher Education of
Sichuan Province for Enterprise Informationalization and Internet of Things (No. 2020WZJ01), the
Opening Project of Bridge Non-destruction Detecting and Engineering Computing Key Laboratory
of Sichuan (Nos. 2021QYJ07, 2020QZJ03), the Scientific Research Project of Sichuan University of
Science and Engineering (No. 2020RC24), and the Graduate student Innovation Fund (No. y2021101).

Electronic Research Archive Volume 30, Issue 2, 755–779.

773

Conflict of interest

The authors declare no conflicts of interest regarding the publication of this paper.

References

1. A. Björck, Numerical Methods for Least Squares Problems, SIAM, Philadelphia, 1996.
https://doi.org/10.1137/1.9781611971484

2. A. Zouzias, N. M. Freris, Randomized extended Kaczmarz for solving least squares, SIAM J.
Matrix Anal. Appl., 34 (2013), 773–793. https://doi.org/10.1137/120889897

3. R. M. Gower, P. Richtarik, Randomized iterative methods for linear systems, SIAM J. Matrix Anal.
Appl., 36 (2015), 1660-1690. https://doi.org/10.1137/15M1025487

4. A. Ma, D. Needell, A. Ramdas, Convergence properties of the randomized extended
Gauss-Seidel and Kaczmarz methods, SIAM J. Matrix Anal. Appl., 36 (2015), 1590–1604.
https://doi.org/10.1137/15M1014425

5. Z. Z. Bai, W. T. Wu, On greedy randomized Kaczmarz method for solving large sparse linear
systems, SIAM J. Sci. Comput., 40 (2018), A592–A606. https://doi.org/10.1137/17M1137747

6. A. Ma, D. Needell, A. Ramdas, Iterative methods for solving factorized linear systems, SIAM J.
Matrix Anal. Appl., 39 (2018), 104–122. https://doi.org/10.1137/17M1115678

7. C. Byrne, A unified treatment of some iterative algorithms in signal processing and image recon-
struction, Inverse Prob., 20 (2004), 103–120. https://doi.org/10.1088/0266-5611/20/1/006

8. C. A. Bouman, K. Sauer, A unified approach to statistical tomography using coordinate descent
optimization, IEEE Trans. Image Process., 5 (1996), 480–492. https://doi.org/10.1109/83.491321

9. J. C. Ye, K. J. Webb, C. A. Bouman, R. P. Millane, Optical diffusion tomography by iterative-
coordinate-descent optimization in a Bayesian framework, J. Opt. Soc. Am. A., 16 (1999), 2400–
2412. https://doi.org/10.1364/JOSAA.16.002400

10. A. A. Canutescu, R. L. Dunbrack, Cyclic coordinate descent: A robotics algorithm for protein
loop closure, Protein Sci., 12 (2003), 963–972. https://doi.org/10.1110/ps.0242703

11. K. W. Chang, C. J. Hsieh, C. J. Lin, Coordinate descent method for large-scale
L2-loss linear support vector machines, J. Mach. Learn. Res., 9 (2008), 1369–1398.
https://doi.org/10.1145/1390681.1442778

12. P. Breheny, J. Huang, Coordinate descent algorithms for nonconvex penalized regression
with applications to biological feature selection, Ann. Appl. Stat., 5 (2011), 232–253.
https://doi.org/10.1214/10-AOAS388

13. M. Elad, B. Matalon, M. Zibulevsky, Coordinate and subspace optimization methods for linear
least squares with non-quadratic regularization, Appl. Comput. Harmonic Anal., 23 (2007), 346–
367. https://doi.org/10.1016/j.acha.2007.02.002

14. C. Wang, D. Wu, K. Yang, New decentralized positioning schemes for wireless sensor networks
based on recursive least-squares optimization, IEEE Wirel. Commun. Lett., 3 (2014), 78–81.
https://doi.org/10.1109/WCL.2013.111713.130734

Electronic Research Archive Volume 30, Issue 2, 755–779.

http://dx.doi.org/https://doi.org/10.1137/1.9781611971484
http://dx.doi.org/https://doi.org/10.1137/120889897
http://dx.doi.org/https://doi.org/10.1137/15M1025487
http://dx.doi.org/https://doi.org/10.1137/15M1014425
http://dx.doi.org/https://doi.org/10.1137/17M1137747
http://dx.doi.org/https://doi.org/10.1137/17M1115678
http://dx.doi.org/https://doi.org/10.1088/0266-5611/20/1/006
http://dx.doi.org/https://doi.org/10.1109/83.491321
http://dx.doi.org/https://doi.org/10.1364/JOSAA.16.002400
http://dx.doi.org/https://doi.org/10.1110/ps.0242703
http://dx.doi.org/https://doi.org/10.1145/1390681.1442778
http://dx.doi.org/https://doi.org/10.1214/10-AOAS388
http://dx.doi.org/https://doi.org/10.1016/j.acha.2007.02.002
http://dx.doi.org/https://doi.org/10.1109/WCL.2013.111713.130734

774

15. J. A. Scott, M. Tuma, Sparse stretching for solving sparse-dense linear least-squares problems,
SIAM J. Sci. Comput., 41 (2019), A1604–A1625. https://doi.org/10.1137/18M1181353

16. N. J. Higham, Accuracy and Stability of Numerical Algorithms, SIAM, Philadelphia, 2002.
https://doi.org/10.2307/2669725

17. Y. Saad, Iterative Methods for Sparse Linear Systems, SIAM, Philadelphia, 2003.
https://doi.org/10.1137/1.9780898718003.ch4

18. T. Strohmer, R. Vershynin, A randomized Kaczmarz algorithm with exponential convergence, J.
Fourier Anal. Appl., 15 (2009), 262–278. https://doi.org/10.1007/s00041-008-9030-4

19. D. Leventhal, A. S. Lewis, Randomized methods for linear constraints: Convergence rates and
conditioning, Math. Oper. Res., 35 (2010), 641–654. https://arxiv.org/abs/0806.3015

20. Z. S. Lu, L. Xiao, On the complexity analysis of randomized block-coordinate descent methods,
J. Math. Program, 152 (2015), 615–642. https://doi.org/10.1007/s10107-014-0800-2

21. Y. Liu, X. L. Jiang, C. Q. Gu, On maximum residual block and two-step Gauss-Seidel algorithms
for linear least-squares problems, Calcolo, 58 (2021), 1–32. https://doi.org/10.1007/s10092-021-
00404-x

22. Z. Z. Bai, W. T. Wu, On greedy randomized coordinate descent methods for solv-
ing large linear least-squares problems, Numer. Linear Algebra Appl., 26 (2019), 22–37.
https://doi.org/10.1002/nla.2237

23. J. H. Zhang, J. H. Guo, On relaxed greedy randomized coordinate descent methods for
solving large linear least-squares problems, J. Appl. Numer. Math., 157 (2020), 372–384.
https://doi.org/10.1016/j.apnum.2020.06.014

24. Z. Z. Bai, L. Wang, W. T. Wu, On convergence rate of the randomized Gauss-Seidel method,
Linear Algebra Appl., 611 (2021), 237–252. https://doi.org/10.1016/j.laa.2020.10.028

25. J. Nutini, M. Schmidt, I. H. Laradji, M. Friedlander, H. Koepke, Coordinate descent converges
faster with the Gauss-Southwell rule than random selection, Int. J. Technol. Manage., 43 (2015),
1632-1641. https://doi.org/10.1504/IJTM.2008.019410

26. K. Du, Tight upper bounds for the convergence of the randomized extended Kacz-
marz and Gauss-Seidel algorithms, Numer. Linear Algebra Appl., 26 (2019), 22–33.
https://doi.org/10.1002/nla.2233

27. W. Wu, Paving the Randomized Gauss-Seidel Method, BSc Thesis, Scripps College, Claremont,
California, 2017. https://scholarship.claremont.edu/scripps theses/1074

28. D. Needell, R. Ward, Two-subspace projection method for coherent overdetermined systems, J. J.
Fourier Anal. Appl., 19 (2013), 256–269. https://doi.org/10.1007/s00041-012-9248-z

29. W. T. Wu, On two-subspace randomized extended Kaczmarz method for solving large linear least-
squares problems, Numer. Algor., 89 (2022), 1–31. https://doi.org/10.1007/s11075-021-01104-x

30. Z. Z. Bai, W. T. Wu, On partially randomized extended Kaczmarz method for solving large
sparse overdetermined inconsistent linear systems, Linear Algebra Appl., 578 (2019), 225–250.
https://doi.org/10.1016/j.laa.2019.05.005

31. T. A. Davis, Y. Hu, The university of florida sparse matrix collection, ACM Trans. Math. Software,
38 (2011), 1–25. https://doi.org/10.1145/2049662.2049663

Electronic Research Archive Volume 30, Issue 2, 755–779.

http://dx.doi.org/https://doi.org/10.1137/18M1181353
http://dx.doi.org/https://doi.org/10.2307/2669725
http://dx.doi.org/https://doi.org/10.1137/1.9780898718003.ch4
http://dx.doi.org/https://doi.org/10.1007/s00041-008-9030-4
http://dx.doi.org/https://arxiv.org/abs/0806.3015
http://dx.doi.org/https://doi.org/10.1007/s10107-014-0800-2
http://dx.doi.org/https://doi.org/10.1007/s10092-021-00404-x
http://dx.doi.org/https://doi.org/10.1007/s10092-021-00404-x
http://dx.doi.org/https://doi.org/10.1002/nla.2237
http://dx.doi.org/https://doi.org/10.1016/j.apnum.2020.06.014
http://dx.doi.org/https://doi.org/10.1016/j.laa.2020.10.028
http://dx.doi.org/https://doi.org/10.1504/IJTM.2008.019410
http://dx.doi.org/https://doi.org/10.1002/nla.2233
http://dx.doi.org/https://scholarship.claremont.edu/scripps_theses/1074
http://dx.doi.org/https://doi.org/10.1007/s00041-012-9248-z
http://dx.doi.org/https://doi.org/10.1007/s11075-021-01104-x
http://dx.doi.org/https://doi.org/10.1016/j.laa.2019.05.005
http://dx.doi.org/https://doi.org/10.1145/2049662.2049663

775

32. P. C. Hansen, Regularization Tools: A Matlab package for analysis and solution of discrete ill-
posed problems, Numer. Algor., 06 (1994), 1–35. https://doi.org/10.1007/BF02149761

Appendix

Proof of Theorem 2. By the definition of TRGS, one can obtain that

xk+1 = yk +

AT
jk1

(b − Ayk)

‖A jk1
‖2

− µk

AT
jk2

(b − Ayk)

‖A jk2
‖2


e jk1
‖A jk1

‖2
− µk

e jk1
‖A jk2

‖2

‖uk‖
2
2

= xk +
AT

jk2
(b − Axk)

‖A jk2
‖2

e jk2
+

AT
jk1

(b − Ayk)

‖A jk1
‖2

− µk

AT
jk2

(b − Ayk)

‖A jk2
‖2

 ·
e jk1
‖A jk1

‖2
− µk

e jk1
‖A jk2

‖2

‖uk‖
2
2

.

Then,

A(xk+1 − xk) =
AT

jk2
(b − Axk)

‖A jk2
‖2

A jk2
+

AT
jk1

(b − Ayk)

‖A jk1
‖2

− µk

AT
jk2

(b − Ayk)

‖A jk2
‖2

 · uk

‖uk‖
2
2

. (A1)

The following will estimate
AT

jk1
(b−Ayk)

‖A jk1
‖2

and
AT

jk2
(b−Ayk)

‖A jk2
‖2

,

(i)

AT
jk1

(b − Ayk) = AT
jk1

b − A

xk +
AT

jk2
(b − Axk)

‖A jk2
‖2

e jk2




= AT
jk1

(b − Axk) −
AT

jk1
A jk2

AT
jk2

(b − Axk)

‖A jk2
‖22

= AT
jk1

(b − Axk) − µk

AT
jk2

(b − Axk)

‖A jk2
‖2

‖A jk1
‖2,

then,
AT

jk1
(b − Ayk)

‖A jk1
‖2

=
AT

jk1
(b − Axk)

‖A jk1
‖2

− µk

AT
jk2

(b − Axk)

‖A jk2
‖2

. (A2)

(ii)

AT
jk2

(b − Ayk)

‖A jk2
‖2

=

AT
jk2

[
b − A

(
xk +

AT
jk2

(b−Axk)

‖A jk2
‖2

e jk2

)]
‖A jk2
‖2

=

AT
jk2

(b − Axk) −
AT

jk2
A jk2

AT
jk2

(b−Axk)

‖A jk2
‖22

‖A jk2
‖2

= 0 (A3)

Electronic Research Archive Volume 30, Issue 2, 755–779.

http://dx.doi.org/https://doi.org/10.1007/BF02149761

776

Substitute (A2) and (A3) into (A1), then,

A(xk+1 − xk) =
AT

jk2
(b − Axk)

‖A jk2
‖2

A jk2
+

 AT
jk1

b

‖A jk1
‖2
− µk

AT
jk2

b

‖A jk2
‖2
− uT

k Axk

 uk

‖uk‖
2
2

Subtract Ax∗ from both sides of the equation, one can get

A(xk+1 − x∗) = A(xk − x∗) +
AT

jk2
(b − Axk)

‖A jk2
‖2

A jk2
+

 AT
jk1

b

‖A jk1
‖2
− µk

AT
jk2

b

‖A jk2
‖2
− uT

k Axk

 uk

‖uk‖
2
2

.

Since

A(xk − x∗) +
AT

jk2
(b − Axk)

‖A jk2
‖2

A jk2
= A(xk − x∗) +

A jk2
AT

jk2
A(x∗ − xk)

‖A jk2
‖2

=

Im −
A jk2

AT
jk2

‖A jk2
‖22

 A(xk − x∗)

and AT
jk1

b

‖A jk1
‖2
− µk

AT
jk2

b

‖A jk2
‖2
− uT

k Axk

 uk

‖uk‖
2
2

=


 AT

jk1

‖A jk1
‖2
− µk

AT
jk2

‖A jk2
‖2

 Ax∗ − uT
k Axk

 uk

‖uk‖
2
2

=
ukuT

k A(x∗ − xk)

‖uk‖
2
2

,

then,

A(xk+1 − x∗) =

Im −
A jk2

AT
jk2

‖A jk2
‖22

−
ukuT

k

‖uk‖
2
2

 A(xk − x∗) (A4)

Let ŷk and x̂k+1 be the first and second iterative solutions of xk obtained by single-step continuous
execution of RGS2 algorithm, respectively. i.e.,

ŷk = xk +
AT

jk1
(b − Axk)

‖A jk1
‖22

e jk1
and x̂k+1 = ŷk +

AT
jk2

(b − Aŷk)

‖A jk2
‖22

e jk2
.

According to Theorem 1, one has

A(x̂k+1 − x∗) =

Im −
A jk2

AT
jk2

‖A jk2
‖22


Im −

A jk1
AT

jk1

‖A jk1
‖22

 A(xk − x∗)

=

Im −
A jk2

AT
jk2

‖A jk2
‖22

−

Im −
A jk2

AT
jk2

‖A jk2
‖22

 A jk1
AT

jk1

‖A jk1
‖22

 A(xk − x∗)

=

Im −
A jk2

AT
jk2

‖A jk2
‖22

−

A jk1
AT

jk1

‖A jk1
‖22

−
A jk2

AT
jk2

A jk1
AT

jk1

‖A jk2
‖22‖A jk1

‖22


 A(xk − x∗)

=

Im −
A jk2

AT
jk2

‖A jk2
‖22

−

A jk1
AT

jk1

‖A jk1
‖22

− µk

A jk2
AT

jk1

‖A jk2
‖2‖A jk1

‖2


 A(xk − x∗)

=

Im −
A jk2

AT
jk2

‖A jk2
‖22

−
ukAT

jk1

‖A jk1
‖2

 A(xk − x∗)

Electronic Research Archive Volume 30, Issue 2, 755–779.

777

=

Im −
A jk2

AT
jk2

‖A jk2
‖22

−
ukuT

k

‖uk‖
2
2

+
ukuT

k

‖uk‖
2
2

−
ukAT

jk1

‖A jk1
‖2

 A(xk − x∗)

=

Im −
A jk2

AT
jk2

‖A jk2
‖22

−
ukuT

k

‖uk‖
2
2

 A(xk − x∗) +

 ukuT
k

‖uk‖
2
2

−
ukAT

jk1

‖A jk1
‖2

 A(xk − x∗)

= A(xk+1 − x∗) +

 ukuT
k

‖uk‖
2
2

−
ukAT

jk1

‖A jk1
‖2

 A(xk − x∗),

the last equation is obtained from (A4), then

A(xk+1 − x∗) = A(x̂k+1 − x∗) −

 ukuT
k

‖uk‖
2
2

−
ukAT

jk1

‖A jk1
‖2

 A(xk − x∗).

Due to the orthogonality, one can get that,

‖A(xk+1 − x∗)‖22 = ‖A(x̂k+1 − x∗)‖22 −
∥∥∥∥∥
 ukuT

k

‖uk‖
2
2

−
ukAT

jk1

‖A jk1
‖2

 A(xk − x∗)
∥∥∥∥∥2

2

= ‖A(x̂k+1 − x∗)‖22 −
∣∣∣∣∣AT

jk1
A(xk − x∗)

‖A jk1
‖2

−
uT

k A(xk − x∗)

‖uk‖
2
2

∣∣∣∣∣2‖uk‖
2
2.

So,

Ek‖A(xk+1 − x∗)‖22 = Ek‖A(x̂k+1 − x∗)‖22 − Ek

∣∣∣∣∣AT
jk1

A(xk − x∗)

‖A jk1
‖2

−
uT

k A(xk − x∗)

‖uk‖
2
2

∣∣∣∣∣2‖uk‖
2
2. (A5)

Next, we estimate the two conditional expectations on the right side of (A5).
(I) The first expectation
According to Theorem 1,

Ek‖A(x̂k+1 − x∗)‖22 ≤ (1 −
λmin(AT A)
τmax

)(1 −
λmin(AT A)
‖A‖2F

)‖A(xk − x∗)‖22. (A6)

(II) The second expectation
By Lemma 3, ‖uk‖

2
2 − 1 = −µ2

k . Then,

Ek

∣∣∣∣∣AT
jk1

A(xk − x∗)

‖A jk1
‖2

−
uT

k A(xk − x∗)

‖uk‖
2
2

∣∣∣∣∣2‖uk‖
2
2

= Ek

∣∣∣∣∣‖uk‖2

AT
jk1

A(xk − x∗)

‖A jk1
‖2

−
1
‖uk‖2

(
AT

jk1

‖A jk1
‖2
− µk

AT
jk2

‖A jk2
‖2

)A(xk − x∗)
∣∣∣∣∣2

= Ek

∣∣∣∣∣(‖uk‖2 −
1
‖uk‖2

)
AT

jk1
A(xk − x∗)

‖A jk1
‖2

+
µk

‖uk‖2

AT
jk2

A(xk − x∗)

‖A jk2
‖2

∣∣∣∣∣2
= Ek

∣∣∣∣∣ µ2
k

‖uk‖2

AT
jk1

A(xk − x∗)

‖A jk1
‖2

−
µk

‖uk‖2

AT
jk2

A(xk − x∗)

‖A jk2
‖2

∣∣∣∣∣2
Electronic Research Archive Volume 30, Issue 2, 755–779.

778

=

n∑
jk1 =1

‖A jk1
‖22

‖A‖2F

n∑
jk2

=1

jk2
, jk1

‖A jk2
‖22

‖A‖2F − ‖A jk1
‖22

·

∣∣∣∣∣ µ2
k

‖uk‖2

AT
jk1

A(xk − x∗)

‖A jk1
‖2

−
µk

‖uk‖2

AT
jk2

A(xk − x∗)

‖A jk2
‖2

∣∣∣∣∣2

=

n∑
jk1 =1

n∑
jk2

=1

jk2
, jk1

‖A jk1
‖22‖A jk2

‖22

‖A‖2Fτmax

∣∣∣∣∣ µ2
k

‖uk‖2

AT
jk1

A(xk − x∗)

‖A jk1
‖2

−
µk

‖uk‖2

AT
jk2

A(xk − x∗)

‖A jk2
‖2

∣∣∣∣∣2.
By Lemma 4, it is established as follows

Ek

∣∣∣∣∣AT
jk1

A(xk − x∗)

‖A jk1
‖2

−
uT

k A(xk − x∗)

‖uk‖
2
2

∣∣∣∣∣2‖uk‖
2
2

≥

n∑
s=1

n∑
t=1
t,s

‖As‖
2
2‖At‖

2
2

‖A‖2Fτmax

∣∣∣∣∣αs,t
AT

s A(xk − x∗)
‖As‖2

− βs,t
AT

t A(xk − x∗)
‖At‖2

∣∣∣∣∣2
=

1
‖A‖2Fτmax

∑
s<t

‖As‖
2
2‖At‖

2
2

(∣∣∣∣∣αs,t
AT

s A(xk − x∗)
‖As‖2

− βs,t
AT

t A(xk − x∗)
‖At‖2

∣∣∣∣∣2 +

∣∣∣∣∣αs,t
AT

t A(xk − x∗)
‖At‖2

− βs,t
AT

s A(xk − x∗)
‖As‖2

∣∣∣∣∣2).
For any α, β, θ, η ∈ R, we note the fact that

|αθ − βη|2+|αη − βθ|2≥ (|α|−|β|)2(|θ|2+|η|2).

Then,

Ek

∣∣∣∣∣AT
jk1

A(xk − x∗)

‖A jk1
‖2

−
uT

k A(xk − x∗)

‖uk‖
2
2

∣∣∣∣∣2‖uk‖
2
2

≥
1

‖A‖2Fτmax

∑
s<t

‖As‖
2
2‖At‖

2
2(|αs,t|−|βs,t|)2(

∣∣∣∣∣AT
t A(xk − x∗)
‖At‖2

∣∣∣∣∣2 +

∣∣∣∣∣AT
s A(xk − x∗)
‖As‖2

∣∣∣∣∣2)

≥
1

‖A‖2Fτmax

∑
s<t

(|αs,t|−|βs,t|)2(‖As‖
2
2|A

T
t A(xk − x∗)|2+‖At‖

2
2|A

T
s A(xk − x∗)|2).

By Lemma 4, (|αs,t|−|βs,t|)2 ≥ γ. Then

Ek

∣∣∣∣∣AT
jk1

A(xk − x∗)

‖A jk1
‖2

−
uT

k A(xk − x∗)

‖uk‖
2
2

∣∣∣∣∣2‖uk‖
2
2 ≥

γ

‖A‖2Fτmax

∑
s<t

(‖As‖
2
2

∣∣∣∣∣AT
t A(xk − x∗)

∣∣∣∣∣2 + ‖At‖
2
2|A

T
s A(xk − x∗)|2)

≥
γ

‖A‖2Fτmax

n∑
s=1

n∑
t=1
t,s

‖At‖
2
2|A

T
s A(xk − x∗)|2

=
γ

‖A‖2Fτmax

n∑
s=1

(‖A‖2F − ‖As‖
2
2)|AT

s A(xk − x∗)|2)

≥
γτmin

‖A‖2Fτmax

n∑
s=1

|AT
s A(xk − x∗)|2

≥
λmin(AT A)γτmin

‖A‖2Fτmax
‖A(xk − x∗)‖2,

Electronic Research Archive Volume 30, Issue 2, 755–779.

779

i.e.,

Ek

∣∣∣∣∣AT
jk1

A(xk − x∗)

‖A jk1
‖2

−
uT

k A(xk − x∗)

‖uk‖
2
2

∣∣∣∣∣2‖uk‖
2
2 ≥

λmin(AT A)γτmin

‖A‖2Fτmax
‖A(xk − x∗)‖22 (A7)

Substitute (A6) and (A7) into (A5), one can obtain that

Ek‖A(xk+1 − x∗)‖22 ≤
[(

1 −
λmin(AT A)
τmax

)(
1 −

λmin(AT A)
‖A‖2F

)
−
λmin(AT A)γτmin

‖A‖2Fτmax

]
‖A(xk − x∗)‖22.

Thus,

Ek‖xk+1 − x∗‖2AT A ≤
[(

1 −
λmin(AT A)
τmax

)(
1 −

λmin(AT A)
‖A‖2F

)
−
λmin(AT A)γτmin

‖A‖2Fτmax

]
‖xk − x∗‖2AT A.

© 2022 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

Electronic Research Archive Volume 30, Issue 2, 755–779.

http://creativecommons.org/licenses/by/4.0

	Introduction
	The simplified two-step randomized Gauss-Seidel method
	Two-step randomized Gauss-Seidel method
	Numerical examples
	Conclusions

