
Electronic
Research Archive

http://www.aimspress.com/journal/era

ERA, 30(2): 732–754.
DOI: 10.3934/era.2022039
Received: 14 December 2021
Revised: 07 February 2022
Accepted: 13 February 2022
Published: 28 February 2022

Research article

Acceleration of the generalized FOM algorithm for computing PageRank

Yu Jin1, Chun Wen1,*and Zhao-Li Shen2,*

1 School of Mathematical Sciences, University of Electronic Science and Technology of China,
Chengdu 611731, China

2 College of Science, Sichuan Agricultural University, Ya’an 625000, China

* Correspondence: Email: wchun17@163.com, szlxiaoyao@163.com.

Abstract: In this paper, a generalized full orthogonalization method (GFOM) based on weighted inner
products is discussed for computing PageRank. In order to improve convergence performance, the
GFOM algorithm is accelerated by two cheap methods respectively, one is the power method and the
other is the extrapolation method based on Ritz values. Such that two new algorithms called GFOM-
Power and GFOM-Extrapolation are proposed for computing PageRank. Their implementations and
convergence analyses are studied in detail. Numerical experiments are used to show the efficiency of
our proposed algorithms.

Keywords: PageRank; FOM; generalized FOM; power method; ritz values; extrapolation procedure

1. Introduction

With the booming development of the internet, the way people obtain information is gradually
changing to the web search. Google search engine is one of the most popular and successful search
engines, and it uses PageRank to determine the importance of web pages [1].

Let’s briefly introduce the mathematical model of PageRank problems. If the link structure of web
pages is considered as a directed link graph, then the adjacency matrix P ∈ Rn×n of the graph can be
described as

P = (pi j) =

 1
ni
, if page i links to page j,

0, otherwise,

where ni denotes the number of outlinks of page i. If page i contains no outlinks (page i is called as a
dangling node [2]), then the ith row of P will be zero. The existence of dangling nodes is a drawback
for computing PageRank. To correct this problem, a rank-1 modification is applied to obtain a row
stochastic matrix, that is,

P̃ = P + dwT,

http://http://www.aimspress.com/journal/era
http://dx.doi.org/10.3934/era.2022039

733

where d = (di) ∈ Rn×1 with

di =

1, if ni = 0,
0, otherwise,

and w = (wi) ∈ Rn×1 is a probability distribution vector.
To further guarantee the aperiodicity and irreducibility of P̃, a convex combination of P̃ is con-

sidered by introducing a damping factor α and a personalization vector v, which yields the Google
matrix

A = [αP̃ + (1 − α)evT]T = αP̃T + (1 − α)veT,

where α ∈ (0, 1) and v = e/n with e = [1, 1, . . . , 1]T ∈ Rn×1. Usually, we set w = v. The Google matrix
A is stochastic and irreducible after two corrections. Finally, the PageRank problem requires to solve
the following linear system:

Ax = x, ‖x‖1 = 1, x > 0, (1.1)

where x is called the unknown PageRank vector. More details about the formulation of PageRank
problems, please refer to [3, 4] and references therein.

The traditional method for computing PageRank is the power method [5] since it is based on matrix-
vector products and requires small memory space. However, when the largest and the second largest
eigenvalues of the matrix A can not be well separated, or in other words, when the damping factor α
is sufficiently close to 1, the power method performs poorly. To speed up the PageRank computation,
extensive studies have been carried out over the past few years, including the extrapolation methods [6–
9], the inner-outer methods [10–14], the adaptive methods [15–17] and the multigrid methods [18,19].

In addition, Krylov subspace methods play a powerful role in solving PageRank problems. Golub
and Greif proposed an Arnoldi-type algorithm [20] without Ritz value computations by using a rele-
vant shift in the refined Arnoldi method [21] to be 1. Wu and Wei developed a Power-Arnoldi algo-
rithm [22] by periodically knitting the power method with the thick restarted Arnoldi algorithm [23].
Hu et al. proposed a variant of the Power-Arnoldi algorithm [24] by using the power method with
the extrapolation process based on trace (PET) [8]. Wu and Wei developed an Arnoldi-Extrapolation
algorithm [25] by periodically combining the Arnoldi-type method [20] with the extrapolation method
based on Ritz values. Zhang et al. proposed a FOM-Extrapolation algorithm [26] by using the same
extrapolation method. Gu et al. developed a GMRES-Power algorithm [27] by periodically knitting
the GMRES method [28] with the power method. Yin et al. proposed a generalized Arnoldi (GAr-
noldi) algorithm [15] by replacing the standard inner products with the weighted inner products during
the Arnoldi process. Wen et al. developed a Power-GArnoldi algorithm [16] by taking the adaptive
GArnoldi method as an accelerated technique for the power method. More numerical methods for
computing PageRank problems can be found in [29–37].

Since the Google matrix A in system (1.1) is stochastic, its largest eigenvalue is 1, and thus the
linear system (1.1) can be rewritten as the following singular linear system:

(I − A)x = 0, ‖x‖1 = 1, x > 0, (1.2)

where I ∈ Rn×n is an identity matrix.

Electronic Research Archive Volume 30, Issue 2, 732–754.

734

In [26], the FOM algorithm is used to solve system (1.2). Hence, inspired by the GArnoldi algo-
rithm [15–17], a generalized full orthogonalization method (GFOM) based on a weighted inner product
is discussed for solving the singular linear system (1.2). To speed up the convergence performance,
two accelerated techniques are applied to the GFOM algorithm respectively, one is the power method,
and the other is the extrapolation method based on Ritz values, such that two new algorithms called
GFOM-Power and GFOM-Extrapolation are proposed for computing PageRank. Their implementa-
tions and convergence analysis are studied in detail. Numerical results show that the performance of
our proposed algorithms are superior to the other methods when the damping factor α is close to 1.

The remainder of the paper is organized as follows. In Section 2, we first briefly review the GAr-
noldi process, then discuss the GFOM algorithm for computing PageRank. In Section 3, we propose
the GFOM-Power algorithm and the GFOM-Extrapolation algorithm for computing PageRank, and an-
alyze their convergence properties, respectively. Numerical experiments and comparisons are reported
in Section 4. Finally, conclusions are given in Section 5.

2. GFOM algorithm for computing PageRank

In this section, we first briefly review the generalized Arnoldi (GArnoldi) process [15] based on
weighted inner products, and then discuss the generalized FOM (GFOM) algorithm for computing
PageRank. Some comparison results for the FOM algorithm and GFOM algorithm are presented at
last.

2.1. The GArnoldi process

Given a symmetric positive definite (SPD) matrix G = (gi j) ∈ Rn×n, let x = (xi) ∈ Rn×1, y = (yi) ∈
Rn×1 be two vectors, then a G-inner product is defined as

(x, y)G = xTGy =

n∑
i=1

n∑
j=1

gi jxiy j.

Since the matrix G is symmetric positive definite, it can be diagonalized. Suppose G = QTDQ, where
Q ∈ Rn×n is an orthogonal matrix, and D = diag {d1, d2, . . . , dn} is a n × n diagonal matrix with di > 0,
i = 1, 2, . . . , n. Then the corresponding G-norm is defined as

‖x‖G =
√

(x, x)G =
√

xTGx =
√

xTQTDQx =

√√
n∑

i=1

di(Qx)2
i , ∀x ∈ Rn×1.

Given a general non-Hermitian matrix Ã ∈ Rn×n, an initial vector v0 ∈ R
n×1, a SPD matrix G, and the

steps m of the GArnoldi process, then the GArnoldi process is described as follows. More details can
be found in [15–17].

Algorithm 1. [Vm,Hm, vm+1, hm+1,m, β] = GArnoldi (Ã, v0,G,m)

1. Compute β = ‖v0‖G, v1 = v0/β.
2. for j = 1, 2, . . . ,m

Electronic Research Archive Volume 30, Issue 2, 732–754.

735

3. Compute z = Ãv j

4. for i = 1, 2, . . . , j
5. Compute hi, j = (vi, z)G

6. Compute z = z − hi, jvi

7. end for
8. Compute h j+1, j = ‖z‖G
9. if h j+1, j = 0
10. break;
11. end if
12. v j+1 = z/h j+1, j

13. end for

Note that when the matrix G = I, the GArnoldi process is reduced to the standard Arnoldi process
[21, 38]. And according to Algorithm 1, the following relations hold:

AVm = VmHm + hm+1,mvm+1eT
m = Vm+1Hm+1,m, GAVm = VmHm, Hm+1,m =

(
Hm

hm+1,meT
m

)
, (2.1)

where Vk = [v1, v2, . . . , vk] ∈ Rn×k (k = m, m + 1) is a G-orthogonal matrix, Hm = (hi, j) ∈ Rm×m is an
upper Hessenberg matrix and em ∈ R

m×1 is the mth co-ordinate vector.

2.2. The GFOM algorithm

In this subsection, by using the G-inner product as given above, we consider a generalized FOM
(GFOM) algorithm for computing PageRank. The specific implementation of the GFOM algorithm is
given as follows.

Algorithm 2. The GFOM algorithm for computing PageRank

1. Given a nonzero initial vector x0, the steps m of the GArnoldi process and a prescribed tolerance tol.
2. Compute the initial residual vector r0 = −(I − A)x0.
3. Set G = I.
4. Run Algorithm 1 as [Vm, Hm, vm+1, hm+1,m, β] = GArnoldi(I − A, r0, G, m).
5. Compute the approximation vector x = x0 + Vmy with y = βH−1

m e1.
6. Compute r = −hm+1,m(eT

my)vm+1.
7. if ‖r‖2 / ‖x‖1 ≤ tol
8. Output x = x/ ‖x‖1 and stop
9. else
10. Set r0 = r, x0 = x, G = diag{|r|/‖r‖1} and goto step 4
11. end if

Here, some remarks need to be given about Algorithm 2.

• In the line 5, the GFOM algorithm seeks a solution x satisfying the Galerkin condition: −(I −
A)x ⊥ Km(I − A, r0), then we have the following formulation:

0 = VT
m(−(I − A)x) = VT

m(Ax0 − x0 + AVmy − Vmy)

Electronic Research Archive Volume 30, Issue 2, 732–754.

736

= VT
mr0 − VT

m(I − A)Vmy = βe1 − Hmy,

where e1 = [1, 0, . . . , 0]T. Thus if Hm is nonsingular, the vector y can be computed as y = βH−1
m e1.

• In the line 7, there are two differences between the GFOM algorithm and the FOM algorithm [26].
One is the 2-norm of the residual vector r, which can be computed as ‖r‖2 = |hm+1,m| · |y(m :
)| · ‖vm+1‖2 rather than |hm+1,m| · |y(m, :)|. The other is the convergence condition, which is set as
‖r‖2/‖x‖1 ≤ tol rather than ‖r‖2/‖x‖2 ≤ tol.
• In the first iteration, the GFOM algorithm reduces to the FOM algorithm since G = I. For other

iterations, from the line 10 of Algorithm 2, we construct the matrix G as

G = diag {δ1, δ2, . . . , δn} , δi = |ri|/ ‖r‖1 , i = 1, 2, . . . , n, (2.2)

where ri is the ith component of the residual vector r.

2.3. Comparisons of the FOM algorithm and the GFOM algorithm

In this subsection, we aim at testing the effectiveness of the GFOM algorithm by comparing it with
the FOM algorithm [26] for computing PageRank. The same initial guess x0 = e/n is used, where
e = [1, 1, . . . , 1]T. The damping factors are chosen as α = 0.99, 0.993, 0.995 and 0.997, respectively.
And the stopping criteria are set as |hm+1,m|·|y(m, :)|/‖x‖1 ≤ tol for the FOM algorithm and |hm+1,m|·|y(m :
)| · ‖vm+1‖2/‖x‖1 ≤ tol for the GFOM algorithm, where tol = 10−8 is the user described tolerance.

Here we show the choice of the restart number m by analyzing the numerical performance of the
FOM algorithm and the GFOM algorithm for the wb-cs-stanford matrix, which is available from [39],
and it obtains 9914 pages and 36,854 links. Table 1 reports the number of matrix-vector products for
the FOM algorithm and the GFOM algorithm when α = 0.99, 0.993, 0.995, 0.997 and m = 6, 7, 8, 9,
10, respectively. Figure 1 depicts the total CPU time of the FOM algorithm and the GFOM algorithm
relative to different restart number m, respectively.

Table 1. The number of matrix-vector products of the FOM algorithm and the GFOM algo-
rithm with different damping factor α and restart number m for the wb-cs-stanford matrix.

α
m = 6 m = 7 m = 8 m = 9 m = 10

FOM GFOM FOM GFOM FOM GFOM FOM GFOM FOM GFOM
α = 0.99 280 287 240 176 198 162 260 160 209 154
α = 0.993 455 350 312 208 261 189 340 200 264 176
α = 0.995 539 448 392 232 315 207 420 220 341 231
α = 0.997 644 490 552 320 621 252 520 240 385 330

From Table 1, it observes that the number of matrix-vector products of the FOM algorithm and the
GFOM algorithm is decreasing at first, and then is increasing as m increases in most cases. Specifically,
it seems m = 8 is a clear turning point on the whole. Meanwhile, from Figure 1, we find that the optimal
CPU time of the FOM algorithm and the GFOM algorithm is different for different damping factor α.
However, considering the memory requirements of the FOM algorithm and the GFOM algorithm, it
is obvious that m = 8 is a reasonable choice for most cases. Hence, we set m = 8 in the following
numerical experiments.

Electronic Research Archive Volume 30, Issue 2, 732–754.

737

6 7 8 9 10
m

0.05

0.1

0.15

0.2

0.25

0.3

0.35
C

P
U

 t
im

e

FOM

=0.99
=0.993
=0.995
=0.997

6 7 8 9 10
m

0.05

0.1

0.15

0.2

0.25

C
P

U
 t

im
e

GFOM

=0.99
=0.993
=0.995
=0.997

Figure 1. The total CPU time of the FOM algorithm and the GFOM algorithm versus differ-
ent restart number m for the wb-cs-stanford matrix.

Figure 2 plots the convergence behavior of the FOM algorithm and the GFOM algorithm for the
wb-cs-stanford matrix when α = 0.99, 0.993, 0.995 and 0.997, respectively. It shows that the GFOM
algorithm has a faster convergence than the FOM algorithm. Thus it is meaningful to consider the
weighted inner products in the standard Arnoldi process.

0 50 100 150 200

The number of matrix-vector products

10-10

10-5

100

R
es

id
ua

l n
or

m
s

=0.99

FOM
GFOM

0 100 200 300

The number of matrix-vector products

10-10

10-5

100

R
es

id
ua

l n
or

m
s

=0.993

FOM
GFOM

0 100 200 300

The number of matrix-vector products

10-10

10-5

100

R
es

id
ua

l n
or

m
s

=0.995

FOM
GFOM

0 200 400 600

The number of matrix-vector products

10-10

10-5

100

R
es

id
ua

l n
or

m
s

=0.997

FOM
GFOM

Figure 2. Convergence behavior of the FOM algorithm and the GFOM algorithm for the
wb-cs-stanford matrix.

Electronic Research Archive Volume 30, Issue 2, 732–754.

738

3. Acceleration of the GFOM algorithm for computing PageRank

Since the GFOM algorithm requires large memory as the restart number m increases, two acceler-
ated techniques are used to improve the GFOM algorithm respectively, one is the power method and the
other is the extrapolation method based on Ritz values. Thus two new algorithms named GFOM-Power
and GFOM-Extrapolation are developed to compute PageRank problems, and their constructions and
convergence analyses are discussed in detail.

3.1. The GFOM-Power algorithm for computing PageRank

In this subsection, we first give the description of the GFOM-Power algorithm, and then discuss its
convergence.

3.1.1. The GFOM-Power algorithm

Similar to the construction of these algorithms in [16, 22, 24]. The idea of the GFOM-Power al-
gorithm can be described as follows: given an initial vector x0, we first run Algorithm 2 for a few
times (e.g., 2–3 times) to get an approximation, if the approximation is unsatisfactory, then we use the
resulting vector as the initial guess of the power method to obtain another approximation. If this ap-
proximation is still unsatisfactory, repeat the above procedure periodically until the required tolerance
is achieved.

One of the problems is when and how to control the conversion between the power method and the
GFOM algorithm. Here we use the parameters φ, restart, maxit as the flip-flop [22]. Let τcurr and
τprev be the residual norm of the current power iteration and the previous power iteration, respectively.
Denoting ratio = τcurr/τprev, we estimate whether ratio is greater than φ, if so, let restart = restart +1.
And then we check whether restart is larger than maxit, if so, terminate the power iteration and cycle
the GFOM algorithm. Otherwise, continue to run the power method. Considering the asymptotic
convergence rate of the power method for PageRank problems [5], it is reasonable to choose φ = α−0.1.
In summary, the GFOM-Power algorithm that computes PageRank is given as follows.

Algorithm 3. The GFOM-Power algorithm for computing PageRank

1. Given a unit positive initial guess x0, the steps m of the GArnoldi process, a prescribed tolerance
tol, the parameters φ, maxit and set restart = 0, τ = 1, τ0 = τ, τ1 = τ.
2. Run Algorithm 2 for a few times (2–3 times): iterate steps 1–11 for the first run and steps 4–11
otherwise. If the residual norm satisfies the prescribed tolerance tol, then stop, else continue.
3. Run the power method with x̃ as the initial guess, where x̃ is the approximation vector obtained from
the GFOM algorithm:
3.1. restart = 0
3.2. while restart < maxit & τ > tol
3.3. x̃ = x̃/‖x̃‖1
3.4. ratio = 0
3.5. while ratio < φ & τ > tol
3.6. xP = Ax̃

Electronic Research Archive Volume 30, Issue 2, 732–754.

739

3.7. r = xP − x̃
3.8. τ = ‖r‖2
3.9. ratio = τ/τ0 % τcurr/τprev

3.10. x̃ = xP, τ0 = τ

3.11. end while
3.12. if τ/τ1 > φ % τcurr/τprev

3.13. restart = restart + 1
3.14. end if
3.15. τ0 = τ, τ1 = τ

3.16. end while
3.17. Set G = diag{|r|/‖r‖1}
3.18. if τ ≤ tol, stop, else goto step 2

Note that the residual r in the line 3.7 of Algorithm 3 is used not only to construct G (see the line
3.17), but also for checking convergence.

3.1.2. Convergence analysis of the GFOM-Power algorithm

In this subsection, we pay attention to analyze the convergence of the GFOM-Power algorithm. In
particular, our analysis focuses on the procedure when turning from the power method to the GFOM
algorithm.

Assume that eigenvalues of the Google matrix A are ordered as 1 = |λ1| > |λ2| ≥ · · · ≥ |λn| and
Λ(A) denotes the set of eigenvalues of A. Let Pm−1 be the set of polynomials of degree not greater
than m − 1 and (λi, µi), i = 1, 2, . . . , n denote the eigenpairs of A. For two given vectors v and w,
cos ∠(v,w) = 〈v,w〉

‖v‖2‖w‖2
indicates the cosin of the corresponding angle between them. We first introduce a

useful theorem about the spectrum property of the Google matrix A.
Theorem 1 [40]. Let P̃ be an n × n column-stochastic matrix. Let α be a real number such that
0 < α < 1. Let E be an n × n rank-one column-stochastic matrix E = veT, where e is the n-vector
whose elements are all ones and v is an n-vector whose elements are all nonnegative and sum to 1. Let
A = αP̃ + (1−α)E be an n× n column-stochastic matrix, then its dominant eigenvalue λ1 = 1, |λ2| ≤ α.

Now let’s analyze the convergence of the GFOM-Power algorithm. Comparing the FOM algorithm
and the GFOM algorithm, it is not difficult to find that the main difference between them lies in the
Arnoldi process. The former uses the 2-norm, while the latter uses the G-norm. Suppose the weighted
matrix G is given as in Eq (2.2), then the relation between the G-norm and the 2-norm is shown as
follows.
Lemma 1 [16]. Let G = diag{δ1, δ2, · · · , δn}, δi > 0, 1 ≤ i ≤ n, be a diagonal matrix. For any vector
x ∈ Rn×1, according to the definitions of the G-norm and the 2-norm, it has

min
1≤i≤n

δi · ‖x‖22 ≤ ‖x‖
2
G ≤ max

1≤i≤n
δi · ‖x‖22 . (3.1)

Since our analysis focuses on the procedure when turning from the power method to the GFOM
algorithm, it is necessary to derive the iterative formula of the power method in Algorithm 3. Let x̃ be
the initial vector for the power method, which is obtained from the GFOM algorithm. Then the power
method of Algorithm 3 produces the vector xP = ωAl x̃, where l ≥ maxit, and ω = 1/‖Al x̃‖1 is the

Electronic Research Archive Volume 30, Issue 2, 732–754.

740

normalizing factor. In the next cycle of the GFOM-Power algorithm, the resulting vector xP will be
used as the initial vector for an m-step GFOM algorithm, so that the new associated Krylov subspace
is

Km(I − A, rP) = span{rP, (I − A)rP, . . . , (I − A)m−1rP},

where rP = −(I − A)xP. For any vector u ∈ Km(I − A, rP), there exists a certain polynomial p(x)
achieving min

p∈Pm−1
max

λ∈Λ(A)/λ1
|p(λ)|, so that u = xP + p(I − A)rP. Then, we present the convergence result of

the GFOM-Power algorithm for computing PageRank as follows.
Theorem 2. Let x̃ be the current approximate vector obtained from the GFOM algorithm, and assume
that x̃ =

∑n
i=1 γiµi with respect to the eigenbasis {µi}i=1,2,...,n, in which ‖µi‖2 = 1 , i = 1, 2, . . . , n and

γi , 0. Then, the relationship between the next approximate vector u and µ1 holds asymptotically that

| sin ∠(u, µ1)| ≤
√

max1≤i≤n δi
√

min1≤i≤n δi
· αl ·

 n∑
i=2

|γi|

|γ1|

 · ε1,

where l ≥ maxit and ε1 = min
q∈Pm−1

max
λ∈Λ(A)/λ1

|q(λ)| with q(λ) = 1 − (1 − λ)p(1 − λ).

Proof. From the step 3 of Algorithm 3, we know that x̃ is used as an initial vector to run the power
iterations, thus it has xP = ωAl x̃, which can be represented by

xP = ω

n∑
i=1

γiAlµi.

The corresponding residual is computed as rP = −(I − A)xP, which is used as the initial residual vector
for the next GFOM algorithm. Thus the next approximate vector u ∈ Km(I − A, rP) is obtained, and
there exists a polynomial p ∈ Pm−1 so that

u = xP + p(I − A)rP

= [I − (I − A)p(I − A)]xP

= ω

n∑
i=1

γiλ
l
i[1 − (1 − λi)p(1 − λi)]µi,

where we used the facts that Aµi = λiµi (i = 1, 2, . . . , n).
By computing, we have

| sin ∠(u, µ1)| ≤

∥∥∥∑n
i=2 γiλ

l
i[1 − (1 − λi)p(1 − λi)]µi

∥∥∥
G

‖γ1µ1‖G
. (3.2)

Using Eq (3.1), for the numerator of Eq (3.2), it has∥∥∥∥∥∥∥
n∑

i=2

γiλ
l
i[1 − (1 − λi)p(1 − λi)]µi

∥∥∥∥∥∥∥
G

≤
√

max1≤i≤n δi ·
∥∥∥∑n

i=2 γiλ
l
i[1 − (1 − λi)p(1 − λi)]µi

∥∥∥
2

≤
√

max1≤i≤n δi ·
(∑n

i=2 |γi| |λi|
l
|1 − (1 − λi)p(1 − λi)|

)
. (3.3)

On the other hand, for the denominator of Eq (3.2), it has

‖γ1µ1‖G ≥
√

min
1≤i≤n

δi · ‖γ1µ1‖2 ≥
√

min
1≤i≤n

δi · |γ1| . (3.4)

Electronic Research Archive Volume 30, Issue 2, 732–754.

741

Substituting Eqs (3.3) and (3.4) into (3.2), and let q(λ) = 1 − (1 − λ)p(1 − λ), we have

| sin ∠(u, µ1)| ≤

√
max1≤i≤n δi ·

(∑n
i=2 |γi| |λi|

l
|1 − (1 − λi)p(1 − λi)|

)
√

min1≤i≤n δi · |γ1|

≤

√
max1≤i≤n δi
√

min1≤i≤n δi
· αl ·max

i,1
|1 − (1 − λi)p(1 − λi)| ·

 n∑
i=2

|γi|

|γ1|


≤

√
max1≤i≤n δi
√

min1≤i≤n δi
· αl ·

 n∑
i=2

|γi|

|γ1|

 · min
q∈Pm−1

max
λ∈Λ(A)/λ1

|q(λ)|

=

√
max1≤i≤n δi
√

min1≤i≤n δi
· αl ·

 n∑
i=2

|γi|

|γ1|

 · ε1,

where we used the result in Theorem 1, and |λn| ≤ · · · ≤ |λ2| ≤ α. �

3.2. The GFOM-Extrapolation algorithm for computing PageRank

In this subsection, we describe the GFOM-Extrapolation algorithm and discuss its convergence.

3.2.1. The GFOM-Extrapolation algorithm

The extrapolation procedure is based on the power iterations and Ritz values. Assume that the initial
approximation x0 can be written as the following linear combination:

x0 = µ1 + a2µ2 + a3µ3,

where µ1, µ2, µ3 are the first three largest eigenvectors of the Google matrix A corresponding to λ1, λ2

and λ3, respectively. After two power iterations, it has

x1 = Ax0 = µ1 + a2λ2µ2 + a3λ3µ3,

x2 = Ax1 = µ1 + a2λ
2
2µ2 + a3λ

2
3µ3.

Then it has

µ1 = (x2 − (λ2 + λ3)x1 + λ2λ3x0)/(1 − λ2)(1 − λ3). (3.5)

By normalizing µ1, an improved approximation to the PageRank vector can be computed as

xEx = µ1/‖µ1‖1. (3.6)

One advantage of the extrapolation procedure is that the unknown eigenvalues λ2 and λ3 of the
Google matrix A can be estimated along with the step 4 in Algorithm 2. It is well-known that the
Ritz values are defined as the eigenvalues of the upper Hessenberg matrix Hm and they can be used to
approximate the true eigenvalues of the cofficient matrix I − A. Let λ̃2 and λ̃3 be the second and third
largest eigenvalues of Hm, then we make a simple transformation,

λ2 � 1 − λ̃2, λ3 � 1 − λ̃3.

Electronic Research Archive Volume 30, Issue 2, 732–754.

742

Since λ̃2 and λ̃3 may be complex valued, the following classifications are made, please refer to [25,26]
for details.
Case 1. If both λ̃2 and λ̃3 are real, or λ̃2 and λ̃3 are conjugate, then xEx is computed as Eq (3.6).
Case 2. If λ̃2 is real but λ̃3 is complex, we assume that x0 = µ1 + a2µ2 and x1 = Ax0 = µ1 + a2λ2µ2, then
xEx is computed as

xEx = (x1 − λ2x0)/‖x1 − λ2x0‖1. (3.7)

Case 3. If λ̃2 is complex but λ̃3 is real, or both λ̃2 and λ̃3 are complex but not conjugate, then xEx is
computed as

xEx = (x1 − αx0)/‖x1 − αx0‖1. (3.8)

Now we accelerate the GFOM algorithm with the extrapolation procedure based on Ritz values for
computing PageRank. The specific implementation is given as follows.

Algorithm 4. The GFOM-Extrapolation algorithm for computing PageRank

1. Given a unit positive initial guess x0, the steps m of the GArnoldi process, a prescribed tolerance
tol, and the number for applying extrapolation procedure maxnum.
2. Run Algorithm 2 for a few times (2–3 times): iterate steps 1-11 for the first run and steps 4–11
otherwise. If the residual norm satisfies the prescribed tolerance tol, then stop, else continue.
3. Compute the eigenvalues of Hm obtained from Algorithm 2, and select the second and third largest
Ritz values: λ̃2, λ̃3.
4. Set λ2 = 1 − λ̃2, λ3 = 1 − λ̃3.
5. Run the extrapolation procedure with x0 = x̃/‖x̃‖1 as the initial guess, where x̃ is the approximation
vector obtained from the Algorithm 2:
5.1. for i = 1 : maxnum
5.2. x1 = Ax0

5.3. x2 = Ax1

5.4. if case 1 is satisfied
5.5. xEx = (x2 − (λ2 + λ3)x1 + λ2λ3x0)/‖x2 − (λ2 + λ3)x1 + λ2λ3x0‖1

5.6. else the case 2
5.7. xEx = (x1 − λ2x0)/‖x1 − λ2x0‖1

5.8. else the case 3
5.9. xEx = (x1 − αx0)/‖x1 − αx0‖1

5.10. end if
5.11. Compute r = xEx − x0

5.12. Set x0 = xEx

5.13. end for
5.14. if ‖r‖2 ≤ tol, stop, else set G = diag{|r|/‖r‖1} and goto step 2

Note that the choice of the number maxnum in the line 5.1 of Algorithm 4 would be discussed in
Section 4.

Electronic Research Archive Volume 30, Issue 2, 732–754.

743

3.2.2. Convergence analysis of the GFOM-Extrapolation algorithm

In this subsection, we analyze the convergence of the GFOM-Extrapolation algorithm. In particular,
our analysis focuses on the procedure when turning from the extrapolation procedure to the GFOM
algorithm.

As shown in [41], the second largest eigenvalue λ2 of the Google matrix A is semi-simple. Here we
assume that the third largest eigenvalue λ3 is also semi-simple and A is diagonalizable. The following
theorem shows the form of the new PageRank vector obtained after the extrapolation procedure in
Algorithm 4.
Theorem 3. Let x̃ be the initial vector for the extrapolation procedure, which is obtained from the
previous GFOM algorithm. Assume that x̃ can be expressed as x̃ = µ1 +

∑n
i=2 aiµi with respect to the

eigenbasis {µi}i=1,2,...,n, in which ‖µi‖2 = 1, i = 1, 2, . . . , n. Then the new initial vector which is obtained
from the extrapolation procedure for the next GFOM algorithm is

xEx = c−1

(1 − λ2)(1 − λ3)µ1 +

n∑
i=4

aiλ
f
i [λ2

i − (λ2 + λ3)λi + λ2λ3λi]µi

 , (3.9)

where c = ‖x2 − (λ2 + λ3)x1 + λ2λ3x0‖2 is the scaling factor and f is the number for applying the
extrapolation procedure maxnum.
Proof. The proof of Theorem 3 is totally similar to the convergence of the Arnoldi-Extrapolation
algorithm and the FOM-Extrapolation algorithm, please refer to [25, 26] for details. �
Theorem 4. Under the above assumptions and set S = [λ1, λ2, λ3]. Then the relationship between the
next approximate vector u and µ1 holds asymptotically that

| sin ∠(u, µ1)| ≤
√

max1≤i≤n δi
√

min1≤i≤n δi
· ξ · α f · ε2,

where ξ =
∑n

i=4 |ai ||λ
2
i −(λ2+λ3)λi+λ2λ3 |

|(1−λ2)(1−λ3)| and ε2 = min
q∈Pm−1

max
λ∈Λ(A)/S

|q(λ)| with q(λ) = 1 − (1 − λ)p(1 − λ).

Proof. According to Algorithm 4 and Theorem 3, after the extrapolation procedure, the residual vector
of the approximate vector xEx is computed as rEx = −(I − A)xEx, which is used as the initial residual
vector to run the next GFOM algorithm. Then we get the next approximation u ∈ Km(I − A, rEx), and
there exists a polynomial p ∈ Pm−1 so that

u = xEx + p(I − A)rEx

= [I − (I − A)p(I − A)]xEx

= c−1

(1 − λ2)(1 − λ3)µ1 +

n∑
i=4

aiλ
f
i [λ2

i − (λ2 + λ3)λi + λ2λ3λi][1 − (1 − λi)p(1 − λi)]µi

 ,
where we used the facts that λ1 = 1, Aµ1 = µ1 and Aµi = λiµi (i = 4, . . . , n).

Then we have

|sin ∠(u, µ1)| ≤

∥∥∥∑n
i=4 aiλ

f
i [λ2

i − (λ2 + λ3)λi + λ2λ3][1 − (1 − λi)p(1 − λi)]µi

∥∥∥
G

‖(1 − λ2)(1 − λ3)µ1‖G
. (3.10)

Electronic Research Archive Volume 30, Issue 2, 732–754.

744

Now, using Eq (3.1), for the numerator of Eq (3.10), it has∥∥∥∥∥∥∥
n∑

i=4

aiλ
f
i [λ2

i − (λ2 + λ3)λi + λ2λ3][1 − (1 − λi)p(1 − λi)]µi

∥∥∥∥∥∥∥
G

≤
√

max
1≤i≤n

δi ·

∥∥∥∥∥∥∥
n∑

i=4

aiλ
f
i [λ2

i − (λ2 + λ3)λi + λ2λ3][1 − (1 − λi)p(1 − λi)]µi

∥∥∥∥∥∥∥
2

≤
√

max
1≤i≤n

δi ·

 n∑
i=4

|ai| |λi|
f
|1 − (1 − λi)p(1 − λi)| |λ2

i − (λ2 + λ3)λi + λ2λ3|

 . (3.11)

On the other hand, for the denominator of Eq (3.10), it has

‖(1 − λ2)(1 − λ3)µ1‖G ≥
√

min1≤i≤n δi · ‖(1 − λ2)(1 − λ3)µ1‖2

≥
√

min1≤i≤n δi · |(1 − λ2)(1 − λ3)| . (3.12)

Substituting Eqs (3.11) and (3.12) into (3.10), and let q(λ) = 1 − (1 − λ)p(1 − λ), we have

|sin ∠(u, µ1)| ≤

√
max1≤i≤n δi ·

(∑n
i=4 |ai| |λi|

f
|1 − (1 − λi)p(1 − λi)| |λ2

i − (λ2 + λ3)λi + λ2λ3|
)

√
min1≤i≤n δi · |(1 − λ2)(1 − λ3)|

≤

√
max1≤i≤n δi
√

min1≤i≤n δi
· α f ·max

4≤i≤n
|1 − (1 − λi)p(1 − λi)| ·

∑n
i=4 |ai| |λ

2
i − (λ2 + λ3)λi + λ2λ3|

|(1 − λ2)(1 − λ3)|

≤

√
max1≤i≤n δi
√

min1≤i≤n δi
· ξ · α f · min

q∈Pm−1
max

λ∈Λ(A)/S
|q(λ)|

=

√
max1≤i≤n δi
√

min1≤i≤n δi
· ξ · α f · ε2,

where we also used the result in Theorem 1, and |λn| ≤ · · · ≤ |λ2| ≤ α. �

4. Numerical experiments

In this section, we present numerical experiments to verify the effectiveness of the proposed algo-
rithms: the GFOM-Power algorithm and the GFOM-Extrapolation algorithm in terms of the computing
time (CPU) in seconds and the number of matrix-vector products (Mv). All the numerical results are
obtained by using MATLAB 2019a on the Windows 10 64 bit operating system with 2.40 GHz Intel(R)
Core(TM) i7-5500U CPU and RAM 8.00 GB.

The characteristic of test matrices is listed in Table 2, where n stands for the matrix size, nnz denotes
the number of nonzero elements, numd is the number of dangling nodes and den is the density which
is defined by den = nnz

n×n × 100. All test matrices are available from [39]. For the sake of justice, all
algorithms use the same initial guess x0 = e/n with e = [1, 1, . . . , 1]T and the same tolerance tol = 10−8.
And the damping factors are set as α = 0.99, 0.993, 0.995 and 0.997, respectively.

Electronic Research Archive Volume 30, Issue 2, 732–754.

745

Table 2. The characteristic of test matrices.

Name n nnz numd den
California 9664 5027 4637 0.538 × 10−1

wb-cs-stanford 9914 36,854 2861 0.375 × 10−1

soc-Epinions1 75,888 60,341 15,547 0.105 × 10−2

flickr 820,878 9,837,214 265,189 0.146 × 10−2

eu-2005 862,664 790,989 71,675 0.106 × 10−3

in-2004 1,382,908 1,100,602 282,306 0.575 × 10−4

wikipedia-20051105 1,634,989 19,753,078 72,556 0.739 × 10−3

wiki-Talk 2,394,385 5,021,410 2,246,783 0.876 × 10−4

4.1. Numerical comparisons for the GFOM-Power algorithm

In this subsection, we test the effectiveness of the GFOM-Power algorithm (denoted as “GFOM-P”),
and compare it with the the Power-Arnoldi algorithm (denoted as “PA”) [22], the Arnoldi-Chebyshev
algorithm (denoted as “AC”) [32] as well as the GFOM algorithm (denoted as “GFOM”) as given in
Algorithm 2. The test matrices are soc-Epinions1, eu-2005, in-2004 and wikipedia-20051105. We
define

Spe1 =
CPUGFOM − CPUGFOM-P

CPUGFOM
× 100%.

to record the speedup of the GFOM-Power algorithm with respect to the GFOM algorithm in terms of
CPU time. Note that, in the Power-Arnoldi algorithm, we run the thick restarted Arnoldi procedure
two times per cycle with the number of approximate eigenpairs k = 6. In the GFOM-Power algorithm,
we run the GFOM procedure also two time per cycle. And in the Arnoldi-Chebyshev algorithm, we
set the Chebyshev steps l = 10.

4.1.1. The choice of the number maxit

In this subsection, we show the choice of the number maxit according to the numerical performance
of the Power-Arnoldi algorithm and the GFOM-Power algorithm for the wb-cs-stanford matrix. Table
3 lists the number of matrix-vector products of the Power-Arnoldi algorithm and the GFOM-Power
algorithm when the damping factor α = 0.99, 0.993, 0.995, 0.997 and the number maxit varies from
6 to 9, respectively. Figure 3 depicts the total CPU time of the Power-Arnoldi algorithm and the
GFOM-Power algorithm versus different number maxit.

From Table 3, we find that the number of matrix-vector products of the Power-Arnoldi algorithm and
the GFOM-Power algorithm is first decreasing and then increasing as the number maxit increases when
the damping factor α = 0.99 and 0.993. As for α = 0.995 and 0.997, it shows that the number of matrix-
vector products of the Power-Arnoldi algorithm and the GFOM-Power algorithm is relatively small
when the number maxit = 8. At the same time, from Figure 3, we observe that the optimal number
maxit to the minimum CPU time of the Power-Arnoldi algorithm and the GFOM-Power algorithm is
different for different damping factor α. In the left picture of Figure 3, we find that the total CPU
time of the Power-Arnoldi algorithm is less when maxit = 8. In the right picture of Figure 3, it seems
that both the number maxit = 8 and 9 are feasible. Therefore, as a compromise choice, maxit = 8 is
selected in the following numerical experiments.

Electronic Research Archive Volume 30, Issue 2, 732–754.

746

Table 3. The number of matrix-vector products of the Power-Arnoldi algorithm and the
GFOM-Power algorithm with different damping factor and number maxit for the wb-cs-
stanford matrix.

α maxit = 6 maxit = 7 maxit = 8 maxit = 9

PA GFOM-P PA GFOM-P PA GFOM-P PA GFOM-P

α = 0.99 148 153 139 130 145 174 149 192
α = 0.993 183 350 159 167 176 161 181 190
α = 0.995 212 205 256 190 196 189 210 177
α = 0.997 235 238 267 234 224 231 243 209

6 7 8 9
maxit

0.05

0.1

0.15

0.2

0.25

C
P

U
 t

im
e

PA

=0.99
=0.993
=0.995
=0.997

6 6.5 7 7.5 8 8.5 9
maxit

0.04

0.06

0.08

0.1

0.12

0.14

0.16

C
P

U
 t

im
e

GFOM-P

=0.99
=0.993
=0.995
=0.997

Figure 3. The total CPU time of the Power-Arnoldi algorithm and the GFOM-Power algo-
rithm versus different number maxit for the wb-cs-stanford matrix.

4.1.2. Numerical comparisons

In this subsection, Table 4 lists numerical results of the GFOM algorithm, the Power-Arnoldi algo-
rithm, the Arnoldi-Chebyshev algorithm and the GFOM-Power algorithm for these four test matrices
when α = 0.99, 0.993, 0.995 and 0.997, respectively.

From Table 4, we can observe that,

• The GFOM-Power algorithm makes great improvements on the GFOM algorithm in terms of the
number of matrix-vector products and the CPU time for these four test matrices with different
damping factor α. Particularly, the reduction proportion of the CPU time is up to 53.76% for the
soc-Epinions1 matrix with α = 0.993, which shows that using power method to accelerate the
GFOM algorithm is meaningful.
• The GFOM-Power algorithm also outperforms the Power-Arnoldi algorithm and the Arnoldi-

Chebyshev algorithm in terms of the number of matrix-vector products and the CPU time for
these four test matrices in most cases. Hence, we can say that the GFOM-Power algorithm is
more efficient than the Power-Arnoldi algorithm and the Arnoldi-Chebyshev algorithm, especially
when the damping factor α is high.

Figure 4 plots the convergence behavior of the GFOM algorithm, the Power-Arnoldi algorithm, the
Arnoldi-Chebyshev algorithm and the GFOM-Power algorithm for the soc-Epinions1 matrix when α =

Electronic Research Archive Volume 30, Issue 2, 732–754.

747

Table 4. Numerical comparisons of the GFOM algorithm, the Power-Arnoldi algorithm, the
Arnoldi-Chebyshev algorithm and the GFOM-Power algorithm for these four test matrices,
where “∼” denotes stagnation.

GFOM PA AC GFOM-P Spe1

α Mv CPU Mv CPU Mv CPU Mv CPU

soc-Epinions1

0.99 126 0.5695 118 0.3991 151 0.3545 100 0.2755 51.62%
0.993 153 0.5443 118 0.3103 151 0.3070 104 0.2516 53.76%
0.995 162 0.5183 161 0.4407 171 0.3379 138 0.3837 26.20%
0.997 234 0.7594 198 0.6292 291 0.5857 151 0.3995 47.39%

eu-2005

0.99 171 12.9438 215 11.9705 271 12.5739 168 9.4228 27.20%
0.993 225 15.0967 218 12.7750 320 14.8302 198 12.0650 20.08%
0.995 315 23.1987 288 17.5105 391 17.5914 211 12.6781 45.35%
0.997 450 32.5724 ∼ ∼ 551 24.9951 295 18.9743 41.75%

in-2004

0.99 342 31.6287 535 46.8129 851 48.0653 284 23.8216 24.68%
0.993 378 46.1470 731 78.5646 1191 66.2892 345 34.7248 24.75%
0.995 423 48.4014 1051 113.7902 1591 88.8401 377 35.9242 25.78%
0.997 585 70.8687 1531 164.7577 2010 112.7999 486 47.3361 33.21%

wikipedia-20051105

0.99 126 23.0604 135 19.5614 151 32.1638 76 12.6008 45.36%
0.993 162 32.3998 136 21.1544 191 40.5334 119 20.5868 36.46%
0.995 207 42.5474 165 27.1784 231 50.9236 119 21.3030 49.93%
0.997 243 48.4092 206 33.5083 351 84.0431 144 22.9271 52.64%

0 50 100 150

The number of matrix-vector products

10-10

10-5

100

R
es

id
ua

l n
or

m
s

=0.99

GFOM
PA
AC
GFOM-P

0 50 100 150

The number of matrix-vector products

10-10

10-5

100

R
es

id
ua

l n
or

m
s

=0.993

GFOM
PA
AC
GFOM-P

0 50 100 150 200

The number of matrix-vector products

10-10

10-5

100

R
es

id
ua

l n
or

m
s

=0.995

GFOM
PA
AC
GFOM-P

0 100 200 300

The number of matrix-vector products

10-10

10-5

100

R
es

id
ua

l n
or

m
s

=0.997

GFOM
PA
AC
GFOM-P

Figure 4. Convergence behavior of the GFOM algorithm, the Power-Arnoldi algorithm, the
Arnoldi-Chebyshev algorithm and the GFOM-Power algorithm for the soc-Epinions1 matrix.

0.99, 0.993, 0.995 and 0.997, respectively. It shows that the GFOM-Power algorithm converges faster

Electronic Research Archive Volume 30, Issue 2, 732–754.

748

than the other two algorithms. Similar convergence behaviors can be found for the other three test
matrices, so we do not plot them for simplicity.

4.2. Numerical comparisons for the GFOM-Extrapolation algorithm

In this subsection, we test the effectiveness of the GFOM-Extrapolation algorithm (denoted as
“GFOM-EXT”), and compare it with the FOM-Extrapolation algorithm (denoted as “FOM-EXT”)
[26], the Arnoldi-Chebyshev algorithm [32] and the GFOM algorithm (denoted as “GFOM”) as given
in Algorithm 2. The test matrices are California, soc-Epinions1, flickr and wiki-Talk. We define

Spe2 =
CPUGFOM − CPUGFOM-EXT

CPUGFOM
× 100%.

to record the speedup of the GFOM-Extrapolation algorithm with respect to the GFOM algorithm
in terms of CPU time. Note that we run the GFOM procedure two times per cycle in the GFOM-
Extrapolation algorithm.

4.2.1. The choice of the number maxnum

In this subsection, we show the choice of the number maxnum by analyzing the numerical behavior
of the FOM-Extrapolation algorithm and the GFOM-Extrapolation algorithm for the wb-cs-stanford
matrix. Table 5 lists the number of matrix-vector products for the FOM-Extrapolation algorithm and
the GFOM-Extrapolation algorithm when the damping factor α = 0.99, 0.993, 0.995, 0.997 and
the number maxnum = 2, 3, 4, 5, respectively. Figure 5 depicts the total CPU time of the FOM-
Extrapolation algorithm and the GFOM-Extrapolation algorithm versus different number maxnum.

Table 5. The number of matrix-vector products of the FOM-Extrapolation algorithm and the
GFOM-Extrapolation algorithm with different damping factor and number maxnum for the
wb-cs-stanford matrix.

FOM-EXT GFOM-EXT

maxnum
α

0.99 0.993 0.995 0.997 0.99 0.993 0.995 0.997

maxnum = 2 217 279 341 461 182 213 217 304
maxnum = 3 159 198 231 297 159 192 192 288
maxnum = 4 167 202 210 272 167 167 202 245
maxnum = 5 175 212 249 360 148 185 296 259

From Table 5, it observes that the number of matrix-vector products of the FOM-Extrapolation
algorithm and the GFOM-Extrapolation algorithm is first decreasing and then increasing as the num-
ber maxnum increases in most cases. Meanwhile, from Figure 5, we find that the CPU time of the
FOM-Extrapolation algorithm and the GFOM-Extrapolation algorithm has a similar trend for different
damping factor α in most cases, i.e., the CPU time is relatively less when maxnum = 4. Hence, we
choose maxnum = 4 in the following numerical experiments.

Electronic Research Archive Volume 30, Issue 2, 732–754.

749

2 3 4 5
maxnum

0.05

0.1

0.15

0.2

0.25

0.3
C

P
U

 t
im

e

FOM-EXT

=0.99
=0.993
=0.995
=0.997

2 3 4 5
maxnum

0.05

0.1

0.15

0.2

C
P

U
 t

im
e

GFOM-EXT

=0.99
=0.993
=0.995
=0.997

Figure 5. The total CPU time of the FOM-Extrapolation algorithm and the GFOM-
Extrapolation algorithm versus different number maxnum for the wb-cs-stanford matrix.

4.2.2. Numerical comparisons

In this subsection, Table 6 lists numerical results of the GFOM algorithm, the Arnoldi-Chebyshev
algorithm, the FOM-Extrapolation algorithm and the GFOM-Extrapolation algorithm for these four
test matrices when α = 0.99, 0.993, 0.995 and 0.997, respectively.

Table 6. Numerical comparisons of the GFOM algorithm, the Arnoldi-Chebyshev algorithm,
the FOM-Extrapolation algorithm and the GFOM-Extrapolation algorithm for these four test
matrices.

GFOM AC FOM-EXT GFOM-EXT Spe2

α Mv CPU Mv CPU Mv CPU Mv CPU

California

0.99 99 0.0872 131 0.0760 104 0.1081 70 0.0723 17.09%
0.993 117 0.0547 140 0.0371 122 0.0682 70 0.0479 12.43%
0.995 117 0.0598 160 0.0415 122 0.0599 70 0.0430 28.09%
0.997 117 0.0482 171 0.0405 122 0.0480 96 0.0385 20.12%

soc-Epinions1

0.99 126 0.5695 151 0.3499 148 0.4959 122 0.4215 25.98%
0.993 153 0.5443 151 0.3119 156 0.4356 130 0.4169 23.41%
0.995 162 0.5183 171 0.3330 200 0.6044 156 0.4591 11.42%
0.997 234 0.7594 291 0.5868 252 0.7025 174 0.5378 29.06%

flickr

0.99 126 9.0932 160 6.8268 174 11.0006 100 5.9112 34.99%
0.993 144 9.6250 200 20.2166 226 13.0329 118 7.1573 25.64%
0.995 189 12.1234 231 23.4411 252 14.8641 144 8.4009 30.71%
0.997 234 16.6600 280 29.0787 304 18.5578 166 10.1311 39.20%

wiki-Talk

0.99 90 12.5757 151 33.3121 102 10.2323 52 5.9181 52.94%
0.993 108 16.1044 191 41.3051 119 12.7449 70 9.1337 43.28%
0.995 117 17.4529 231 55.9126 153 16.4464 78 9.7445 44.17%
0.997 171 28.5547 351 81.1511 204 22.0147 96 12.3118 56.90%

From Table 6, we find that,

• The GFOM-Extrapolation algorithm is superior to the GFOM algorithm in terms of the number

Electronic Research Archive Volume 30, Issue 2, 732–754.

750

0 50 100 150

The number of matrix-vector products

10-10

10-5

100

R
es

id
ua

l n
or

m
s

=0.99

GFOM
FOM-EXT
AC
GFOM-EXT

0 50 100 150 200

The number of matrix-vector products

10-10

10-5

100

R
es

id
ua

l n
or

m
s

=0.993

GFOM
FOM-EXT
AC
GFOM-EXT

0 50 100 150 200

The number of matrix-vector products

10-10

10-5

100

R
es

id
ua

l n
or

m
s

=0.995

GFOM
FOM-EXT
AC
GFOM-EXT

0 100 200 300 400

The number of matrix-vector products

10-10

10-5

100

R
es

id
ua

l n
or

m
s

=0.997

GFOM
FOM-EXT
AC
GFOM-EXT

Figure 6. Convergence behavior of the GFOM algorithm, the Arnoldi-Chebyshev algorithm,
the FOM-Extrapolation algorithm and the GFOM-Extrapolation algorithm for the wiki-Talk
matrix.

of matrix-vector products and the CPU time for these four test matrices with different damping
factor α. Particularly, the speedup is up to 56.90% for the wiki-Talk matrix with α = 0.997.
Hence, we can say that it is meaningful to use the extrapolation procedure based on Ritz values
to improve the GFOM algorithm.
• The GFOM-Extrapolation algorithm needs more CPU time than the Arnoldi-Chebyshev algo-

rithm in some cases. However, in terms of the number of matrix-vector products, the GFOM-
Extrapolation algorithm is superior to the Arnoldi-Chebyshev algorithm for all the test matrices.
• The GFOM-Extrapolation algorithm works better than the FOM-Extrapolation algorithm in terms

of the number of matrix-vector products and the CPU time for these test matrices. Therefore,
this suggests that the GFOM-Extrapolation algorithm has a faster convergence than the FOM-
Extrapolation algorithm, which again illustrate that using weighted inner products in the standard
Arnoldi process is significant.

Figure 6 plots the convergence behavior of the GFOM algorithm, the Arnoldi-Chebyshev algo-
rithm, the FOM-Extrapolation algorithm and the GFOM-Extrapolation algorithm for the wiki-Talk
matrix when α = 0.99, 0.993, 0.995 and 0.997, respectively. It shows that the GFOM-Extrapolation
algorithm converges faster than its counterparts. Note that the other three test matrices have the similar
convergence behaviors.

In a word, all the above numerical experiments have shown that the GFOM-Power algorithm and
the GFOM-Extrapolation algorithm are superior to their counterparts for computing PageRank when
the damping factor α is close to 1.

Electronic Research Archive Volume 30, Issue 2, 732–754.

751

5. Conclusions

In this paper, a generalized FOM (GFOM) algorithm based on weighted inner products is discussed
for computing PageRank as given in Algorithm 2. With the aim at improving the convergence perfor-
mance, we develop the GFOM-Power algorithm and the GFOM-Extrapolation algorithm by using the
power method and the extrapolation method based on Ritz values as the accelerated techniques respec-
tively. Their specific implementations and convergence analyses can be found in Section 3. Numerical
experiments in Section 4 are presented to illustrate the efficiency of our proposed algorithms. Further-
more, the proposed algorithms are worth trying to solve other Markov problems, such as ProteinRank
and CiteRank.

Acknowledgments

The authors are grateful to the anonymous referees for their much constructive comments and valu-
able suggestions, which greatly improved the original manuscript. This research is supported by the
National Natural Science Foundation of China under grant 12101433, and the Two-Way Support Pro-
grams of Sichuan Agricultural University (Grant No.1921993077).

Conflict of interest

The authors declare there is no conflicts of interest.

References

1. L. Page, S. Brin, R. Motwami, T. Winograd, The PageRank citation ranking: Bringing order to
the web, Stanford Digital Library Technol. Proj., 1998. https://doi.org/10.1007/978-3-319-08789-
4-10

2. I. C. Ipsen, T. M. Selee, PageRank computation, with special attention to dangling nodes, SIAM J.
Matrix Anal. Appl., 29 (2008), 1281–1296. https://doi.org/10.1137/060664331

3. A. Langville, C. Meyer, A survey of eigenvector methods for web information retrieval, SIAM
Rev., 47 (2005), 135–161. https://doi.org/10.1137/S0036144503424786

4. A. Langville, C. Meyer, Deeper inside PageRank, Internet Math., 1 (2004), 335–380.
https://doi.org/10.1080/15427951.2004.10129091

5. G. H. Golub, C. F. Van Loan, Matrix Computations, 3rd edition, The Johns Hopkins University
Press, Baltimore, London, 1996. https://doi.org/10.1007/978-1-4612-5118-7-5

6. S. Kamvar, T. Haveliwala, C. Manning, G. Golub, Extrapolation methods for accelerating PageR-
ank computations, in Proceedings of the Twelfth Internatinal World Wide Web Conference, ACM
Press, New York, (2003), 261–270. https://doi.org/10.1145/775152.775190

7. A. Sidi, Vector extrapolation methods with applications to solution of large systems
of equations and to PageRank computations, Comput. Appl. Math., 56 (2008), 1–24.
https://doi.org/10.1016/j.camwa.2007.11.027

Electronic Research Archive Volume 30, Issue 2, 732–754.

http://dx.doi.org/https://doi.org/10.1007/978-3-319-08789-4-10
http://dx.doi.org/https://doi.org/10.1007/978-3-319-08789-4-10
http://dx.doi.org/https://doi.org/10.1137/060664331
http://dx.doi.org/https://doi.org/10.1137/S0036144503424786
http://dx.doi.org/https://doi.org/10.1080/15427951.2004.10129091
http://dx.doi.org/https://doi.org/10.1007/978-1-4612-5118-7-5
http://dx.doi.org/https://doi.org/10.1145/775152.775190
http://dx.doi.org/https://doi.org/10.1016/j.camwa.2007.11.027

752

8. X. Y. Tan, A new extrapolation method for PageRank computations, J. Comput. Appl. Math., 313
(2017), 383–392. https://doi.org/10.1016/j.cam.2016.08.034

9. S. Cipolla, M. Redivo-Zaglia, F. Tudisco, Extrapolation methods for fixed-point mul-
tilinear PageRank computations, Numer. Linear Algebra Appl., 27 (2020), e2280.
https://doi.org/10.1002/nla.2280

10. D. Gleich, A. Gray, C. Greif, T. Lau, An inner-outer iteration for computing PageRank, SIAM J.
Sci. Comput., 32 (2010), 349–371. https://doi.org/10.1137/080727397

11. Z. Z. Bai, On convergence of the inner-outer iteration method for computing PageRank, Numer.
Algebra Control Optim., 2 (2012), 855–862. https://doi.org/10.3934/naco.2012.2.855

12. C. Q. Gu, F. Xie, K. Zhang, A two-step matrix splitting iteration for computing PageRank, J.
Comput. Appl. Math., 278 (2015), 19–28. https://doi.org/10.1016/j.cam.2014.09.022

13. C. Wen, T. Z. Huang, Z. L. Shen, A note on the two-step matrix splitting iteration for computing
PageRank, J. Comput. Appl. Math., 315 (2017), 87–97. https://doi.org/10.1016/j.cam.2016.10.020

14. Z. L. Tian, Y. Liu, Y. Zhang, Z. Y. Liu, M. Y. Tian, The general inner-outer iteration method
based on regular splittings for the PageRank problem, Appl. Math. Comput., 356 (2019), 479–501.
https://doi.org/10.1016/j.amc.2019.02.066

15. J. F. Yin, G. J. Yin, M. Ng, On adaptively accelerated Arnoldi method for computing PageRank,
Numer. Linear Algebra Appl., 19 (2012), 73–85. https://doi.org/10.1002/nla.789

16. C. Wen, Q. Y. Hu, G. J. Yin, X. M. Gu, Z. L. Shen, An adaptive Power-GArnoldi
algorithm for computing PageRank, J. Comput. Appl. Math., 386 (2021), 113209.
https://doi.org/10.1016/j.cam.2020.113209

17. C. Wen, Q. Y. Hu, B. Y. Pu, Y. Y. Huang, Acceleration of an adaptive generalized Arnoldi method
for computing PageRank, AIMS Math., 6 (2021), 893–907. https://doi.org/10.3934/math.2021053

18. H. D. Sterck, T. A. Manteuffel, S. F. McCormick, Q. Nguyen, J. Ruge, Multilevel adaptive ag-
gregation for Markov chains, with application to web ranking, SIAM J. Sci. Comput., 30 (2008),
2235–2262. https://doi.org/10.1137/070685142

19. Z. L. Shen, T. Z. Huang, B. Carpentieri, C. Wen, X. M. Gu, Block-accelerated aggregation multi-
grid for Markov chains with application to PageRank problems, Commun. Nonlinear. Sci. Numer.
Simulat., 59 (2018), 472–487. https://doi.org/10.1016/j.cnsns.2017.11.031

20. G. H. Golub, C. Greif, An Arnoldi-type algorithm for computing PageRank, BIT Numer. Math.,
46 (2006), 759–771. https://doi.org/10.1007/s10543-006-0091-y

21. Z. X. Jia, Refined iterative algorithms based on Arnoldi’s process for large unsymmet-
ric eigenproblems, Linear Algebra Appl., 259 (1997), 1–23. https://doi.org/10.1016/S0024-
3795(96)00238-8

22. G. Wu, Y. M. Wei, A Power-Arnoldi algorithm for computing PageRank, Numer. Linear Algebra
Appl., 14 (2007), 521–546. https://doi.org/10.1002/nla.531

23. R. B. Morgan, M. Zeng, A harmonic restarted Arnoldi algorithm for calculating
eigenvalues and determining multiplicity, Linear Algebra Appl., 415 (2006), 96–113.
https://doi.org/10.1016/j.laa.2005.07.024

Electronic Research Archive Volume 30, Issue 2, 732–754.

http://dx.doi.org/https://doi.org/10.1016/j.cam.2016.08.034
http://dx.doi.org/https://doi.org/10.1002/nla.2280
http://dx.doi.org/https://doi.org/10.1137/080727397
http://dx.doi.org/https://doi.org/10.3934/naco.2012.2.855
http://dx.doi.org/https://doi.org/10.1016/j.cam.2014.09.022
http://dx.doi.org/https://doi.org/10.1016/j.cam.2016.10.020
http://dx.doi.org/https://doi.org/10.1016/j.amc.2019.02.066
http://dx.doi.org/https://doi.org/10.1002/nla.789
http://dx.doi.org/https://doi.org/10.1016/j.cam.2020.113209
http://dx.doi.org/https://doi.org/10.3934/math.2021053
http://dx.doi.org/https://doi.org/10.1137/070685142
http://dx.doi.org/https://doi.org/10.1016/j.cnsns.2017.11.031
http://dx.doi.org/https://doi.org/10.1007/s10543-006-0091-y
http://dx.doi.org/https://doi.org/10.1016/S0024-3795(96)00238-8
http://dx.doi.org/https://doi.org/10.1016/S0024-3795(96)00238-8
http://dx.doi.org/https://doi.org/10.1002/nla.531
http://dx.doi.org/https://doi.org/10.1016/j.laa.2005.07.024

753

24. Q. Y. Hu, C. Wen, T. Z. Huang, Z. L. Shen, X. M. Gu, A variant of the Power-
Arnoldi algorithm for computing PageRank, J. Comput. Appl. Math., 381 (2021), 113034.
https://doi.org/10.1016/j.cam.2020.113034

25. G. Wu, Y. M. Wei, An Arnoldi-Extrapolation algorithm for computing PageRank, J. Comput. Appl.
Math., 234 (2010), 3196–3212. https://doi.org/10.1016/j.cam.2010.02.009

26. H. F. Zhang, T. Z. Huang, C. Wen, Z. L. Shen, FOM accelerated by an extrapolation
method for solving PageRank problems, J. Comput. Appl. Math., 296 (2016), 397–409.
https://doi.org/10.1016/j.cam.2015.09.027

27. C. Q. Gu, X. L. Jiang, C. C. Shao, Z. B. Chen, A GMRES-Power algorithm
for computing PageRank problems, J. Comput. Appl. Math., 343 (2018), 113–123.
https://doi.org/10.1016/j.cam.2018.03.017

28. Y. Saad, M. H. Schultz, GMRES: A generalized minimal residual algorithm for solv-
ing nonsymmetric linear systems, SIAM J. Sci. Stat. Comput., 7 (1986), 857–869.
https://doi.org/10.1137/0907058

29. Z. L. Shen, T. Z. Huang, B. Carpentieri, X. M. Gu, C. Wen, An efficient elimina-
tion strategy for solving PageRank problems, Appl. Math. Comput., 298 (2017), 111–122.
https://doi.org/10.1016/j.amc.2016.10.031

30. Z. L. Shen, T. Z. Huang, B. Carpentieri, X. M. Gu, C. Wen, X. Y. Tan, Off-diagonal low-rank
preconditioner for difficult PageRank problems, J. Comput. Appl. Math., 346 (2019), 456–470.
https://doi.org/10.1016/j.cam.2018.07.015

31. B. Y. Pu, T. Z. Huang, C. Wen, A preconditioned and extrapolation-accelerated GMRES method
for PageRank, Appl. Math. Lett., 37 (2014), 95–100. https://doi.org/10.1016/j.aml.2014.05.017

32. C. Q. Miao, X. Y. Tan, Accelerating the Arnoldi method via Chebyshev poly-
nomials for computing PageRank, J. Comput. Appl. Math., 377 (2020), 112891.
https://doi.org/10.1016/j.cam.2020.112891

33. X. M. Gu, S. L. Lei, K. Zhang, Z. L. Shen, C. Wen, B. Carpentieri, A Hessenberg-type algorithm
for computing PageRank problems, Numer. Algorithms, 2021. https://doi.org/10.1007/s11075-
021-01175-w

34. Z. L. Shen, H. Yang, B. Carpentieri, X. M. Gu, C. Wen, A preconditioned variant of the
refined Arnoldi method for computing PageRank eigenvectors, Symmetry, 13 (2021), 1327.
https://doi.org/10.3390/sym13081327

35. Z. L. Tian, Y. Zhang, J. X. Wang, C. Q. Gu, Several relaxed iteration meth-
ods for computing PageRank, J. Comput. Appl. Math., 388 (2021), 113295.
https://doi.org/10.1016/j.cam.2020.113295

36. Z. L. Tian, Z. Y. Liu, Y. H. Dong, The coupled iteration algorithms for computing PageRank,
Numer. Algor., (2021), 1–15. https://doi.org/10.1007/s11075-021-01166-x

37. Y. H. Feng, J. X. You, Y. X. Dong, An extrapolation iteration and its lumped type iteration for
computing PageRank, Bull. Iran. Math. Soc., (2021), 1–8. https://doi.org/10.1007/s41980-021-
00656-x

38. Y. Saad, Iterative Methods for Sparse Linear Systems, SIAM, 2003.

Electronic Research Archive Volume 30, Issue 2, 732–754.

http://dx.doi.org/https://doi.org/10.1016/j.cam.2020.113034
http://dx.doi.org/https://doi.org/10.1016/j.cam.2010.02.009
http://dx.doi.org/https://doi.org/10.1016/j.cam.2015.09.027
http://dx.doi.org/https://doi.org/10.1016/j.cam.2018.03.017
http://dx.doi.org/https://doi.org/10.1137/0907058
http://dx.doi.org/https://doi.org/10.1016/j.amc.2016.10.031
http://dx.doi.org/https://doi.org/10.1016/j.cam.2018.07.015
http://dx.doi.org/https://doi.org/10.1016/j.aml.2014.05.017
http://dx.doi.org/https://doi.org/10.1016/j.cam.2020.112891
http://dx.doi.org/https://doi.org/10.1007/s11075-021-01175-w
http://dx.doi.org/https://doi.org/10.1007/s11075-021-01175-w
http://dx.doi.org/https://doi.org/10.3390/sym13081327
http://dx.doi.org/https://doi.org/10.1016/j.cam.2020.113295
http://dx.doi.org/https://doi.org/10.1007/s11075-021-01166-x
http://dx.doi.org/https://doi.org/10.1007/s41980-021-00656-x
http://dx.doi.org/https://doi.org/10.1007/s41980-021-00656-x

754

39. SuiteSparse Matrix Collection, Available from: https://sparse.tamu.edu/.

40. T. Haveliwala, S. Kamvar, The second eigenvalue of the Google matrix, in Proceedings of the
Twelfth International World Wide Web of Conference, 2003.

41. R. Horn, S. Serra-Capizzano, A general setting for the parametric Google matrix, Internet Math.,
3 (2008), 385–411. https://doi.org/10.1080/15427951.2006.10129131

© 2022 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

Electronic Research Archive Volume 30, Issue 2, 732–754.

http://dx.doi.org/https://doi.org/10.1080/15427951.2006.10129131
http://creativecommons.org/licenses/by/4.0

	Introduction
	GFOM algorithm for computing PageRank
	The GArnoldi process
	The GFOM algorithm
	Comparisons of the FOM algorithm and the GFOM algorithm

	Acceleration of the GFOM algorithm for computing PageRank
	The GFOM-Power algorithm for computing PageRank
	The GFOM-Power algorithm
	Convergence analysis of the GFOM-Power algorithm

	The GFOM-Extrapolation algorithm for computing PageRank
	The GFOM-Extrapolation algorithm
	Convergence analysis of the GFOM-Extrapolation algorithm

	Numerical experiments
	Numerical comparisons for the GFOM-Power algorithm
	The choice of the number maxit
	Numerical comparisons

	Numerical comparisons for the GFOM-Extrapolation algorithm
	The choice of the number maxnum
	Numerical comparisons

	Conclusions

