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Abstract: In this work, we study, from the numerical point of view, a dynamic thermoviscoelastic
problem involving micropolar materials. The model leads to a linear system composed of parabolic
partial differential equations for the displacements, the microrotation and the temperature. Its weak
form is written as a linear system made of first-order variational equations, in terms of the velocity field,
the microrotation speed and the temperature. Fully discrete approximations are introduced by using
the finite element method and the implicit Euler scheme. A discrete stability property and a priori error
estimates are proved, from which the linear convergence is derived under some additional regularity
conditions. Finally, some two-dimensional numerical simulations are presented to demonstrate the
accuracy of the approximation and the behavior of the solution.
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1. Introduction

It seems that Voigt [1] was the first researcher who noted the polar structure of several materials
as crystalline solids. Later, Cosserat brothers [2] proposed a theory of micropolar materials. In such
theory, each material point has six degrees of freedom: three for the displacements and three for
the orientation usually called directions. After some time without relevant contributions in this field,
in 1964 Eringen and Suhubi [3, 4] studied the nonlinear theory of micropolar elasticity which took
into account the microstructural motions, and later Eringen [5] developed its linear version. A large
number of engineering materials may be modeled more realistically using these micropolar continua,
where the classical theory of elasticity is inadequate. Some particular examples can be, for instance,
the large-scale development and utilization of composite, reinforced and coarse-grained materials. The
basic idea of micropolar elasticity is the fact that the granular character of the medium is taken into
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account, describing deformations by a microrotation. Using this theory, solids support couple stresses
in addition to force stresses. Nowacki [6], Tauchert et al. [7], Tauchert [8] and other researchers
extended the theory by introducing the thermal effects (see also [9—11] for a good review on micropolar
themoelasticity). Since then, a large number of papers have been published dealing with mathematical
issues of this type of materials (see [12—19], among others [20-25]).

In this work, we continue the research started in [26], where isotropic and homogeneous micropolar
thermoviscoelastic materials were considered. The existence and uniqueness of solutions were shown
by using the theory of linear semigroups. The analyticity of the solutions was also obtained supposing
that the supply terms were absent. Here, our aim is to study this problem from the numerical point of
view, introducing a fully discrete approximation, proving a discrete stability property and a priori error
estimates, and performing some two-dimensional numerical results.

The paper is structured in the following way. The thermomechanical model and its weak form
are presented in Section 2. We recall an existence and uniqueness result obtained by Magana and
Quintanilla [26]. Then, in Section 3 fully discrete approximations are introduced, based on the finite
element method for the spatial approximation and the backward Euler scheme to discretize the time
derivatives. A discrete stability property is shown and a priori error estimates are provided, from
which, under some regularity conditions, the linear convergence is derived. Finally, two-dimensional
numerical examples are shown in Section 4.

2. The micropolar thermoviscoelastic model

Let us denote by Q C R?, d = 2,3, a domain with boundary I' = 9Q assumed to be Lipschitz, and
occupied by our thermoviscoelastic material with micropolar properties. As usual, the spatial variable
is represented by x € €, and for the time we use the notation 7 € [0, 7], T > 0 being the final time. To
save cumbersome expressions, we will remove the dependence of our functions with respect to these
two variables. Moreover, a subscript after a comma denotes the partial derivative with respect to the

corresponding variable (i.e., f;; = %), and the time derivative is denoted by a superposed dot for the
first order or two superposed dots for the second order. Repeated indices mean summation over those
indices.

Letu = (ui)le, ¢ = (¢,~);":1 and T be the displacement field, the microrotation vector and the tempe-
rature, respectively.

Since we assume that the material is homogeneous and isotropic, the micropolar thermoviscoelastic
problem is written as follows (see [26] for details).

Problem P. Find the displacement field u : Q x [0,T;] — R the microrotation vector ¢ : Q X

[0,T¢] — R? and the temperature T : Q x [0, T¢] — R such that, fori =1,...,d,

(/J + O-)Aul + (/1 + ,u)ur,ri + O-Girsfﬁs,r + (/Jv + O-V)Al;ti + (/lv + ,uv)l;lr,ri

+0 €, — BT + pF! = pii;  in QX (0,T)), 2.1)
YAG; + (@ + P)Pryi + b €4 Thj — 20¢; + Vo Ad: + (@, + B1)rri

+ O Eirslls, — 2004 + JF? = g in QX (0,T)), (2.2)
To(bit;; + aT) = kAT + k*€r5si + PR in Q x (0, Ty), (2.3)
ui(x,0) = ud(x), i;(x,0) =v(x), ¢(x,0)=¢"(x) forae x€Q, (2.4)
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$i(x,0) = ¥2(x), T(x,0)=T°x) forae x€Q, (2.5)
uix,t) = ¢i(x,t) =T(x,1) =0 forae t€(0,T;)andx €T. (2.6)

In Egs (2.1)—~(2.3), A denotes the classical Laplace operator, €;j represents the classical alternating
symbol, p, J, a, u, o, 4, u,, o, 4, b, v, a, B, b*, y,, a,, B, k and k" are constitutive coeflicients and
F' = (FHL,, F* = (F)Z, and R denote the supply terms. Moreover, in order to simplify the writing,
from now on we assume that T, = 1.

We note that in the case that o, 0, vy, @, B, ¥, @, B,, b* an k* vanish we recover the classical theory
of thermoviscoelasticity (see, for instance, [27-29]).

As it is pointed out in [26], the mechanical internal energy and the dissipation are given by

2W = deegs + (U + O0)ejje; + pejjeji + ady b + Boiibi i + vdiibji
D = A e 5 + (U, + 0))8 615 + éijéji + ad by + PP idi i+ yPjidi
+KT,,‘TJ' + (b* + K*) Ejir¢i,jT,r’

where tensors e = (e; j)j’jzl and é = (¢; j)?/:l are defined as
€ij = Uji + €,  €ij = j; + €ixPy.

Since we must impose that both functions are positive definite, we will assume the following con-
ditions on the constitutive coeflicients:

p>0, J>0, a>0, k>0, u+1>0, u+oc>0 o>0,
vy>0, a+B>0, u+4,>0, pu,+o0,>0, o,>0, B,+v, >0, 2.7)
3a, +B,+y, >0, k>0, 2y, —pB) > (b* + K"

We note that conditions (2.7) are slightly stronger than those required in [26]; however, we have mod-
ified them for the sake of simplicity in the calculations of the next section. See Appendix A for the
derivation of the relations of the viscous coeflicients.

The aim of this paper is to study numerically Problem P and so, we first introduce its variational
formulation. Therefore, let us define the spaces ¥ = L*(Q), H = [L*(Q)]? and Q = [L*(Q)]**?, with
their respective scalar product (-, )y, (,-)g and (-, -)o, being the corresponding norms || - ||y, || - ||z and
Il - llo- We also consider the variational spaces E and V as follows,

E={reH' Q);r=0 on T},
V={ze[H'Q]?;z=0 on T}

The corresponding scalar products and norms are denoted as (-, -)g and (-,-)y, and || - ||z and || - |ly,
respectively.

Using the classical procedure and the prescribed boundary conditions, we arrive to the variational
form of Problem P written in terms of the temperature 7', the velocity field v = (v)%, =& = (i), and
the microrotation speed ¥ = (Y)%, = ¢ = (¢;)L,.

Problem VP. Find the temperature T : [0,T;] — E, the velocity field v : [0,T¢] — V and the
microrotation speed ¥ : [0,T;] — V such that T(0) = T° v(0) = v°, ¥(0) = lﬁo, and, for a.e.,
t€(0,Ty) and forallw,§ €V, [ € E,

(v(1), w)u + (1, + ) (Vv(2), Vw)g + (4, + ,)(divv(t), divw)y
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+(u + o) (Vu(r), Vw)g + (A + p)(divu(r), divw)y + oAV (1), w)

+0, A(VY(D), ) + BOVT (1), W)y = p(F' (1), W), (2.8)
T, &) + o (V(0), VE)o + (@, + B)(div §(1), div €)y + ¥(V(1), VE)o

+a + B)(div ¢(0), div §)y + 207, (Y1), O + 20°($(1), )

+0,C(V(1), €) + oC(Vu(1), €) + B(VT (1), VE) = J(F*(1), E)n, (2.9)
a(T(®), Oy + k(VT(1), V)i = (pR(1), {)y — bdivv(®), Oy
—~D(V(1), V2), (2.10)

where V and div represent the usual gradient and divergence operators, and the displacement field u
and the microrotation ¢ are obtained from the respective equations:

u(t):fv(s)ds+u0, ¢(t):fl!ﬁ(s)ds+¢0. (2.11)
0 0

In Problem VP we have used the following bilinear operators to simplify the writing:

A(V¢a W) = (firs¢s,r’ Wi)Y v¢aw € Va

C(Vu’ ‘f) = (Eirsus,ra fi)Y Vf,u € V’

B(VT, V&) = b* (€T i, &)y YT €E, €€V,
D(VY, V) = (€, $i)y VY eV, €E.

We note that, using conditions (2.7), the dissipation D is positive definite and so, it leads to the follow-
ing property that we will use in the next section:

Ay + py)(divw, divw)y + (u, + 0,)(Vw, Vw)g + 0,A(VE, w)

+7v(V§’ Vé:)Q + (a’v +ﬁv)(div ‘f’ div §)Y + 20—v(§’ f)H
+0,C(Vw, &) + B(VL,VE) + k(VL, V) + D(VE, V)

> M*(Ildiv wif; + [IVwI + €11 + lidiv €1 + VIR, + V213,

(2.12)

where M* is a given positive constant.

The following well posedness result was proved in [26].

Theorem 1. Let conditions (2.7) hold. Then, there exists a unique solution to Problem VP with the
following regularity:

u,¢ € C'([0,T/1; V)N CX0, T/1; H), T € C([0,T/1; E) N C'([0, T(]; Y).
3. Finite element approximations: An a priori error analysis

In this section we will study, from the numerical point of view, a fully discrete approximation of
Problem VP. First, in order to provide the spatial approximation, we construct the finite element spaces
E" and V" given by

E'={"eCQ;r eP(Tr) YTreT" " =0onT} 3.1)
Vi=wh e [C@); wl €[P(TP]" YTreT" w'=0onT} (3.2)
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where, as usual, we assume that Q is a polyhedral domain and we denote by 7 a regular triangulation
of Q in the sense of [30]. P;(T'r) represents the space of linear polynomials in 7 and parameter 2 > 0
is the spatial discretization size.

The discretization of the time derivatives is obtained with a uniform partition of the time interval
[0,T], denoted by 0 = 7y < t; < ... <ty =Ty, being k = T/N the time step size. As a usual notation,
if f is a continuous function we denote f, = f(¢,), and for the sequence {z,,}nNzo, let 0z, = (z, — zo-1)/k
be its divided differences.

Applying the well-known implicit Euler scheme, we have the fully discrete approximation of Prob-
lem VP as follows.

Problem VP, Find the discrete temperature T"* = {Thk}nNzo C E" the discrete velocity field

n

yik = {vfl’k}nNzo c V" and the discrete microrotation speed Y™ = {tﬁzk}ivzo c V" such that Té’k = Té’,
vik =y g =y, and, forn=1,...,N and for all w", £ € V", (" € E",

(V™ Wy + (u, + o) (VR V") o + (A, + p,)(div v, div w")y

+(u + o)(Vu™, Vwh) g + (A + ) (divu’®, divw")y + cA(VS™, w")

+a, AV, Wy + b(VT™ WYy = p(FL, w")y, (3.3)
TSP, €N + 7o (VP VE ) + (a + B)(div g, div EMy + y(V)k, VEN

+(a + B)(div ¢, div &My + 20, (", My + 20 (@™, €My

+o,C(VW €M + oC(Vul™, €M) + B(VT™,VEr) = J(F?, €M)y, (3.4)
a(6T!*, "y + k(VTI, Vg = (R, ¢y — b(divv*, My
—-D(Vyk v, (3.5)

where the discrete displacement field u"™ and the discrete microrotation vector ¢™

the respective equations:

are updated from

it =k Vi vul, gl =k ) P+ g (3.6)
j=1 J=1

In the previous fully discrete problem, the discrete initial conditions T}, uj, vi, g and z//g are
approximations of the initial conditions 7°, u°, v°, ¢° and y° defined as

h B0 h ho 0 h h. 0 h h 40 / ho 10
Ty =P T, uy=Pu, vo=Pyv, ¢,=P¢, 0o =Py

Here, we denote by $" and #! the interpolation operators over the finite element spaces V" and E",
respectively (see, e.g., [30]).

Using Lax-Milgram lemma and assumptions (2.7), it is straightforward to show the existence of a
unique discrete solution to Problem VP,

We have the following discrete stability property.

Theorem 2. Under the assumptions of Theorem 1, then it follows that the sequences
{u*, v "k ' TH) generated by Problem VP, satisfy the stability estimate:

hk|2 hkj2 L k)2 hk (2 hk (|2 o Ahkp2
v e + Ve Nl + [1div e, [y + 1715 + 1Vl + ldiv @,y
hk
+Hlg, 17 + 1T < M,

where M is a positive constant which is independent of the discretization parameters / and k.
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Proof. Taking w" = v"* as a test function in discrete variational Eq (3.3) we have

(V™ vy + ('uv + 0, (Vv Vvhk)Q + (/l + u,)(div v, div vhk)
+(u + o) (Vul*, vy o + (A + p)(div ul®, div vy + oAV
+o A(VY VY 4 B(VTI vy, = p(FL vik),.

n’n

Thus, keeping in mind that

(00w, i = 2 Ibl ||H [EANAR
(1 + ) (Vul, Vviyg > {||V G = IVu 1)

/1+
(A + p)(div ™, divy*)y > 7{||dwu 15 — lidiv el 113}

JACVEL VI < MUV + V12,
(VT vy, < e VT2, + M||vhk||2,

n

where, from now on, € > 0 is assumed small enough and we have used Cauchy-Schwarz inequality
and the arithmetic-geometric mean inequality

1
ab < na* + 57b2 Ya,beR, n>0, (3.7)

we find that

hk hk (12
{||v 12— 102 ) + 2

o
S UV = 1Va i} + G + IVl
A+
(A + IV YR + o AW v + B (v - llivak, 1)

2k
l’l’i’l

< M(1+ VAR, + IVHZ) + el VT,

Proceeding in a similar form with the terms of the discrete microrotation speed and also keeping in
mind that

ag
AP (A A B
COVulh, gl < MAIVuME + 212,

we have

J
o U = I 1) + 21 (V115 — IV@2 1B} + vl Vi,

+ , s o
—ﬁ {idiv @715 — lidiv 815 7+ - {115, — 161
+(av + BNV Iy + 20 N1 + o, COWE, W6 + BVTLE, Vi)
< M(1+ A2, + Va2,

Finally, we obtain the estimates for the discrete temperature 77, Taking {* = T"* as a test function
in discrete variational Eq (3.5) it follows that

a(STM™, T"™) + k(VT"™ VNT"™)y = (oR,, T™)y — b(div v'*, T" ),
—D(Vy,", VT,5),
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and taking into account that

a(dThk Thk) > = o {”Thklly _ ”Thkl” }

I(div v, Tyl = 103 VT, nl < MIv i + elVT I,
we obtain 4
o W = I + IV + DOVt VT
< M(1+ 1T + IWIE ) + el VT,

Combining the previous estimates and taking into account property (2.12), we have

u+o
Zﬁk{nvﬁan W13 + i IVl = Va1
A+ u
T E iy I~ 1idiv e, 1)
k|2 hk (2 Y k)2 hk (2
o AU = Wl + o {99015 = IV 85 1)

+ . . o
L v 415~ v 815,15 + 5 g 117
o T = ITE
< M(1+ IVEIR, + IR, + VA, + ITHE + Va3

Multiplying them by k and summing up the resulting equation it follows that

hk) 2 hky 2 . hky 2 hky 2 hk| 2
I35 + 1921+ i a5 -+ 11 + 91
+Idiv @4 + 161411, + T2
n
hk |2 hk |2 hk|2 hky2 hky 2
< Mk )~ (1+ V@I + IR, + I, + TP + 19011

J=1
h h
+M(IIVRIZ, + IVl + g2, + IVBEIE, + IITEIE)-

Finally, the stability estimates are a direct consequence of the application of a discrete version of
Gronwall’s inequality (see, e.g., [31]), the properties of the interpolation operators P and P% (see [30])
and the regularities on the initial conditions.

In the rest of the section, we will obtain some a priori error estimates on the numerical errors v, —v/*,

ke w — ™, ¢ — @™ and T, — T"*. We have the following.

Theorem 3. Let the assumptions of Theorem 1 still hold. If we denote by (v, ¥, T) the solution to
problem VP and by (v, y"*, T") the solution to problem VP", then we have the following a priori
error estimates, for all w" = {w'}" pre £ =g o C Vhand " = {{;’}5"20 C E",

k2 : e 2 e 2 ik
orgi)](v{”v” =V, g + div (w,, — w,)lly + IV, —w,)llp + 1, — &, I

+ig, — @117 + 1div (8, — BN +11V(B, — #OMG + 1T, — Tfklli}

N
5 2 s 2 hy2 I 2
< Mk " () = vl + 19; = ou I + v — whiE, + s — oy 11

J=1
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+ip; — 0@} + lyr; — 411 + 1T = ST + 175 = Z4113)

+Cmaxv—wh2+CmaX —&ENE + C max ||T, — 7|
v, = Wy + € max g, — €)1 + € max 1T, 11
c v
1 N h B2
Z Iy = wh = ey = WD+, = €= Wy = £1 DI,
=1

T = & = (T = ZEDIF) + M(1Ivo = viIT, + lluo — ug)Ily
gy = Wil + 6o = BIE + 170 = TEIT), (3.8)
where M is again a positive constant which does not depend on parameters 4 and k.

Proof. First, we obtain the error estimates on the velocity field. Thus, subtracting variational Eq (2.8)
at time ¢ = t, for a test function w = w" € V" C V and discrete variational Eq (3.3) we have, for all
wh e Vi,
PO = V) W + (y + )V, — Vi), YW + cAV($, — ¢, ")
+(/l + w,)(div (v, — V), divwh)y + (u + o)(V(u, — ul®), Vwh),
+(A + p)(div (w, — u®), divw")y + o, AV, — ), wh)
+b(V(T, = T}*),w")y = 0,

and therefore, we have, for all w" € V",
W, = VI v, = VIV + (uy + )V, = VI, V, =)
+(Ay + ) (div (v, =0, div (v, = VI)y + (u + )(V(u, — ul¥), Vv, —v*)),
+(A + w)(div (w, — ul®), div (v, = VI*)y + o, AV, — 5, v, — viE)
+b(V(T, — TI), v, = VIO + cAV(B, — ¢15), v, — VIF)
= p(vn - 6vZk» Vo — wh)H + (,uv + O-V)(V(vn - vZk), V(vn - wh))Q

+(Ay + ) (div (v, = vI0), div (v, = W)y + (u + )(V(u, — ul*), Vv, — w")g
+H(A + (div (u, — ul), div (v, — wh)y + C, AVW, — Yi), v, — wh)
+b(V(T, — TI),v, = Wy + AV, — ¢1), v, — wh).

Using the estimates
(67 = 6wl vy =) > 2k{llvn = VM = Wy = V)5 IE)
(div (w, — ul), div (v, —v}*))y > (div (u, — u™), div (@, — ou,))y

+—{||dw(un—u”k>||y Idiv (-1 = DI}

2
(V(u, - Iik) V., = VN = (V(u, —u)), Vi, — 6u,))g

1
oIV = wllG = IV @y = )G
V(T = T, W)y = (T, = T, divw)y,

it follows that, for all w" € V",
LIy =1 = o = VI )+ G+ IV, = IO,

+(A, + )iy v, = VIl +

A+, .
S AV (@, = I~ ldiv (o1 = I
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+ o
+ AV, =) =) + (19 = I = 19 G,y - w1

< M1, = 6wl + Ny — Suallf, + v, — W'l + lldiv e, — wlNG + llv, = VI
HIV (@, — G +11V(B, = $ONG + (v, — 6V v, =Wy
HIT, = TG ) + elldiv v, = VIOI + eIV, = viG + ellV @, = wiIIG, (3.9)

where € > 0 is assumed small enough and we have used several times inequality Eq (3.7).
Proceeding in an analogous form, taking into account that

(¢n - ¢zkl’ Qpn - '/’Zk)H 2 (¢n - ¢Zk’ ¢n - 6¢n)H
TR Rl Ay A A
IC(V(a, — ul®), )l < MV, — u|E, + 19112,

we obtain the following error estimates for the microrotation vector, for all §h e V",

J
el = W = Wy = W) + 10, = U g, — A1)
+ 219, = #MG = IV@,, = B DIB} + 1V, — Wi

+ay, + BV (@, — YOI} + 2071w, — Il
+0, C(V(v, = V), ¥, — ') + B(V(T, — T), V@, — %))

+%3{||div (@, = #1015 = v (@, — #:5DIE

< M(Is, = 6,13 + I, — 68,15 + g, — E"11% + Ildiv (¢, — BLOI5
+HIV(B, — SN + IV — iy + 64, — W o, — €
+li¢, = $I5 + s, — w1l ) + ell V(T = TR,
+€llV, = VIOl (3.10)

where € > 0 is assumed again small enough.

Finally, we derive the error estimates on the temperature field. Then, subtracting variational Eq
(2.10) at time ¢ = t, for a test function = " € E" C E and discrete variational Eq (3.5), we find that,
for all 7" € E",

a(T, — 6T, My + k(V(T, = T, VMg + b(div (v, — v), My
+D(V(,, — Y1), VM = 0.

Therefore, it follows that, for all /* € E",
a(T, = 6T™, T, — T™)y + k(V(T, = T™), V(T, — T"™))y
+b(div (v, = V'), T, = T")y + D(V(Y,, — '), V(T, - T))

= a(T, = 6T™, T, = My + k(V(T, = T, V(T, = "Du
+b(div (v, — V'), T, = My + DV, — ™), V(T, = ).
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Keeping in mind that
a(oT, =TT, = 1), = Z{IT, = T = ITms = T I,
(div v, = V), Oyl = (v, = VI, VO] < M|y, — V2, + IVEIZ),
using inequality Eq (3.7) several times we find that, for all " € E”,
a
T = T =T, = T} + IV T = TIOIG
+D(V (Y, =), V(T = T}
< M(IT, = STl + W = VMG, + 1T, = G + (6T, = 6T, T = Iy
+ellVW, — WG + elV(T, = Tl (3.11)

where € > 0 is small enough.
Combining estimates (3.9)—(3.11) we have, for all w”, & € V" and (" € E",

A+ ) .
2 = v = vy = v} + 5l e, = 15 = v e, = I
+ O
(19 = N ~ 19— )1

J ) o
oW = 90l = Wy = W) + {16, = 81— 1, — 951

Y h
+5 IV @, = Ol = 19,1 =~ 5D
a+p

+

+ . .
Si \Idiv (8, = #1015 = Idiv (8, = #1)I
a

20T = TG = 1T = T

< M(|19, = vl + llien = Sually + W, = WL + lldiv e, — wf)G + 1w — I,
HIV @, =G + IV(P, = B1G + (60, = Vi vy = W' + 118, — 811
1T, = TG + s, — W, I3 + 116, — 5,115 + I, — €115 + Iidiv (8, — #2015
+ll, — WG + O, — Y, — € + 1T, = ST + 1T, = £
+(0T, = 6T}, Ty = {")y).

Multiplying the above estimates by k and summing up to n we have

v, — VI, + IIdiv @, — w5 + IV @, — w3 + Iy, — w13

+lg, — @17, + div (@, — SLONF + IV (@, — $ONG + T, — T2II5

< Mk " (1) = v, + 1) = w1 + v — whil + lidiv (e — )

= J JUH J Jity J jlv J j Ny

Jj=1

HIV G — wHIG + V(@ — ¢"ONG + (v — V™ v; = why + v, = VA1
HIT; = T + W, — 0w + g, — 6115 + 11, — €511 + lIdiv (8; — #9115
Hig; = WG + Sy — W = €D+ IT; = STl + 11T = 1
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+lip; — @41 + (OT; = 6T, T; = £1y) + M(Ivo = Il + lluo — ui)I
o = el + gy — SIS + 170 = TOII).

Keeping in mind the estimates:

n n
z: hk h E hk hk h
k (6vj_(‘)'vj ,Vj_wj)H: (Vj_"j _(vj—l_vj—l)’vj_wj)H

hk h h 0 I
=Wa =V, V= Wu+ (Vo= v, v =Wy

hk I/ h
+Z(Vj —Vivi=wi =i = Wi ),

k(0% — oW g~ €n = Z(w — W =W =D - €D
=1
== - &+ W4~ €D
+Z<¢,-—«//7",«//,-—f’;—<w,-+l—fi;l»H,
j=1

k) (6T, 6T} T; - g)y-Z@ T}~ (T =TTy = Oy
=1
j = (T~ T, T, -y (T~ 10T, gy

* Z(T,. — T T = = Ty = )y,
j=1

we use a discrete version of Gronwall’s inequality [31] and we conclude a priori error estimates (3.8).

From estimates (3.8), if we assume suitable regularity conditions on the continuous solution, we
can obtain the convergence order of the approximations. So, we have the following result.
Corollary 1. Under the assumptions of Theorem 3 and the additional regularity conditions:

T € H2(0,T;;Y) N L0, T;; HA(Q)) N H'(0, Tj; HY(Q)),
u, ¢ € H0,Ts; H) N W0, Ty; [HX (1Y) N HX0, T [H' ()],

we conclude the linear convergence of the approximations given by Problem VP™; that is, there exists
a constant M > 0, independent of parameters / and k, such that

max {1, = vl + lls =l + 1, = 90l + 11, = BNl + 1T = Tl | < MG+ ).

4. Numerical results

In this last section, we describe some two-dimensional numerical results obtained in the simulation
of an academical example to show the accuracy of the finite element approximation, and the generation
of the microrotations and temperature due to a surface mechanical force.

Since the problem is two-dimensional, we present below the corresponding version of Problem P.
Defining the solutions

u(xy, x2) = (ur(xy, x2), uz(x1, x2), uz(x1, X2)),  P(x1, x2) = (P1(x1, X2), P2(x1, X2), P3(x1, X2)),
T(xl’ XQ),
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after some calculations we find the following problem:

pity = (+ AUy + (A + WUy a1 + P32 + (U, + 0)A I + (A, + 1y)ilg a1
+0,¢32 —bT, +pF| inQx(0,Ty),

pily = (U + T)A Uy + (A + Wt a2 — Th31 + (W, + T)A iy + (A, + )it 02
—0,p31 —bT o +pF) inQx(0,Ty),

Jo3 = yA ¢3 + b* (T — T 12) — 20¢3 + 7,A"¢s
+0 (i) — i12) — 20,¢3 + JF;  in Qx(0,Ty),

To(bity o + al) = kAT + K*((]'53’21 - ¢3,12) +pR inQx(0,Ty),

Ua(x,0) = ud(x),  1t,(x,0) =12(x), #3(x,0) = p3(x) forae. x€Q,

$3(x,0) = yi(x), T(x,0)=T"%x) forae. x€Q,

Us(x,1) = ¢3(x,1) =T(x,1) =0 forae. 1€ (0,Tf)andx €T,

0 0
where a = 1,2 and the two-dimensional Laplacian operator is defined as A* = F + Fe
X1 p%)

The numerical scheme provided by the fully discrete problem VP* was implemented on a 3.2 Ghz
PC using MATLAB, and a typical run (using parameters 2 = V2/32 and k = 0.001) took about 145
seconds of CPU time.

4.1. First example: numerical convergence and discrete energy decay

As an academical example, in order to show the numerical behavior of the fully discrete approxi-
mations we solve a two-dimensional problem with the following data:

T,=1, Q=(0,1)x(0,1), p=1, pu=1, o=1, a1=2, p =1,
o,=1, A4,=1, b=1, J=1, b*'=1, y=1, vy, =4,
a=1, k=1, « =1,

the homogeneous Dirichlet boundary conditions, for all x = (xy,x;) € I,
ux) =0, ¢3x)=T(x) =0,
the initial conditions, for all (x;, x;) € (0,1) X (0,1)and @ = 1, 2,
g (X1, X2) = Vo (1, X2) = $3(x1, %2) = Y5001, 22) = TO(x) = x1 (g = Da(xa = 1),
and the supply terms, for all (x, x5, 7) € (0,1) X (0, 1) x (0, 1),

F'(x;, xp,1) = —et( - x%x% - 3xfx2 + 10xf + 3x1x§ + 21x1x0 — 20x; + 17x§ —27x, + 5,

— X33 = 5x3xy + 21x7 + Sxyx3 + 21x1x0 — 31x; + 6x3 — 16x; + 5),
F3(x1, X2, 1) = —€'(=5x725 + X1 + 1247 + 9x135 + 11x;x5 — 20x; + 1625 — 24x; + 4),
R(x,y,t) = et(x1(2x2 - D1 —=1)=2x00-1) = 2x1(x; = 1)

+02(2x1 = Dx2 = 1) + x50 — Dix - 1),
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In this case, the exact solution to the above two-dimensional problem can be easily calculated and
it has the form, for (x|, x», 1) € [0, 1] X [0, 1] X [0, 1]:

Uo (X1, X2, 1) = P3(x1, X2, 1) = T(x1, X2, 1) = €' x1(x; — Dx2(x, — 1) fora=1,2.
In order to analyze the numerical convergence, several uniform partitions of the domain have been
performed dividing Q = (0, 1) X (0, 1) into 2(nd)? triangles (that is, the spatial discretization parameter
h equals nidi). Thus, the approximation errors estimated by
max {1, = vl + lls =l + 1030 = @)l + 163 = @5l + 1T, = Ty

are presented in TaBLE 1 for several values of the discretization parameters /& and k. Moreover, the
evolution of the error depending on the parameter & + k is plotted in Figure 1. The convergence of
the approximations is clearly found, and the linear convergence, stated in Corollary 1, seems to be
achieved, providing a good accuracy.

Table 1. Example 1: Numerical errors for some % and k.

nd |l k— 0.02 0.01 0.005 0.002 0.001 0.0005

4 0.518017 0.518027 0.518032 0.518035 0.518037 0.518037
8 0.232063 0.232082 0.232092 0.232097 0.232099 0.232100
16 0.112456 0.112478 0.112489 0.112496 0.112499 0.112500
32 0.056238 0.056251 0.056260 0.056267 0.056269 0.056270
64 0.028755 0.028747 0.028749 0.028751 0.028752 0.028753
128 0.015110 0.015099 0.015097 0.015097 0.015098 0.015098
256 0.008301 0.008289 0.008287 0.008287 0.008287 0.008287

Asymptotic behaviour
0.7 T T T

0.6
0.51
0.4r

=
w
0.3

0.2r

0.1

0

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
h+k

Figure 1. Example 1: Asymptotic constant error.

If we assume now that there are not supply terms, and we use the final time 7y = 5, the following

data:
Q=0,Dx0O,1), p=1, g=1, o,=1, 4=1, b=1, J=1,

b*=1, y=1, vy,=1, a=1, k=1, « =1,
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and the initial conditions, for all (x{, x,,7) € (0,1) x (0,1) x (0, 1),
u’=v"=0, T°=0, @x1,x,0=y30x,x,.0=x(x - Dnlnp—1).

The discrete energy E™ is given by

hk k2 hk |2 k)2 hk hk hk hk
E." = plv, Iy + Jlly5,lly + allT, |y + f/l(e,, V(€ )ss + (u+ o)e, )ij(e, )i
Q
hk hk Wk phk
+/’l(en )ij(en )ﬁ + 7¢3n,i 3n,i dx’
where the discrete version of tensor e is defined as
hk Wk i .
N u}zl}(ln+¢]32 ifi=1, j=2,
(e, )ij = u}l}?n— o fi=2,j=1,

uiy, ifi=j.

Taking the time discretization parameter k = 0.01, the evolution in time of the discrete energy given
above is plotted in Figure 2 (in both natural and semi-log scales) for different values of A,  and 0. As
can be seen, it converges to zero and an exponential decay seems to be achieved in both cases.

Energy functional

A#0 u#0 6 #0 — M0 u#0c#0
—A=0p=005=0 —A=0p=005=0

Energy functional

log(E(1))

Figure 2. Example 1: Evolution in time of the discrete energy (natural and semi-log scales).

4.2. Second example: application of a surface mechanical force

In this second example, our aim is to show the coupling effect in a thermo-viscoelastic problem
with a prescribed mechanical force. Therefore, we consider the same square domain clamped on its
left vertical part {0} x [0, 1]. We also assume that ¢5; and T vanish on the whole boundary, and we use
the following expression for the surface mechanical force f applied on the horizontal upper boundary

[0, 1] x {1}:
x€é

f(xl’x2’t) = (0’_ )

The rest of the boundary is assumed traction-free. Moreover, we employ the following data:

), forx, =1, x; €(0,1).

u=1, o=1, a=1, u, =1, o,=1, A4,=1, b=1,
br=1, v=1, »=2, a=1, k=2, «=1, T;=1,

P

1,
J =1,
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and null initial conditions for all the variables. Taking the time discretization parameter k£ = 0.01,
in Figure 3 we plot the norm of the displacement field over the deformed mesh at final time. As ex-
pected, the bending of the body has been produced due to the applied force and the clamping boundary
condition.

Norm of the Displacement vector

1k NSNS
NSNS NS SRS
K mmmmummﬁt‘i&m
RN
RN

NNNVNNNSRAK]
RRRRRRRRRAY mu
RSNNSRRRRRRRN 0.03
0.8 SRRRRRRR \\\‘mmu\‘m\
- NNSISRRRN
m\u\\\\mm\‘m
NI
SRSRRRRRN
\\wm\\u‘mt N 0.025
L‘L‘L‘ NN 1 ‘L‘Bﬂ;‘m
0.6 SNNSNNSNSINY
‘BL‘L‘L NRNN

0.41

0.2F

—0.2 0
-0.2 0 0.2 0.4 0.6 0.8 1 1.2
X

Figure 3. Example 2: Norm of the displacement over the deformed mesh at final time.

Moreover, in Figure 4 the microrotations and the temperature are shown at final time. They have
been generated by the deformation of the body, reaching the lowest (microrotations) and highest (tem-
perature) values in its interior with a quadratic form. We also see the influence of the null boundary
condition.

T
o x 107 n x 107
1 0 1
0.9 -05 0.9 10
0.8 1 0.8
0.7 _15 0.7 8
0.6 - 0.6
> 05 > 05 6
: -25 :
0.4 0.4
-3 4
0.3 0.3
-35
0.2 0.2
—4 2
0.1 0.1
-45
0 0 0
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

Figure 4. Example 2: Microrotations and temperature at final time.

A. Derivation of the relations for the viscous coefficients

In conditions (2.7) we have proposed some assumptions on the constitutive constants to guarantee
that the internal energy and the dissipation are positive definite. The assumptions on the coefficients A,
u, oy, a+pB, 1+ 4,, u, + o, and o, are standard and we can find them in the book of Eringen [10];
however, we do not know any reference where the assumptions on §,, y,, @,, k, b* and k" are obtained.
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To clarify this aspect we need to impose that the matrices

a, +B,+7v, @, ay
a’v a’v +ﬁv + YV alV >
a, a, a, +:8v + Yy
1 5 %
o B S0+
1
ﬁv ay _E(b* + K*)
1 1
E(b* + k%) —E(b* + k%) K

are positive definite.
The eigenvalues of the first matrix are 8, + vy, and 3a, + 3, + ,. Therefore, they should be positive.
The eigenvalues of the second matrix are 3, + vy, and

(yv —B,+k+ \/2(19* + k*)* + (B, +K—’}/v)2).

N =

Last two eigenvalues are positive if and only if y,—8,+« > 0 and (y,—B,+«)* > 2(b* +«*)>+(B,+k—y,)*.
This last condition is equivalent to

26(yy =) > (b + k)

Thus, our conditions become k > 0 and 2«(y, — ,) > (b* + k*)>.
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