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Departamento de Matemáticas, Universidad Nacional de Colombia, Edificio Yu Takeuchi 404, Kra 30
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1. Introduction

According to Ringel and Fahr [1], a categorification of a sequence of numbers means to consider in-
stead of these numbers suitable objects in a category (for instance, representation of quivers) so that the
numbers in question occur as invariants of the objects, equality of numbers may be visualized by iso-
morphisms of objects functional relations by functorial ties. The notion of this kind of categorification
arose from the use of suitable arrays of numbers to obtain integer partitions of dimensions of inde-
composable preprojective modules over the 3-Kronecker algebra (see Figure 1, where it is shown the
3-Kronecker quiver and a part of its associated oriented 3-regular tree or universal covering (T, E,Ωt)
as described by Ringel and Fahr in [2]).
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Figure 1. The 3-Kronecker quiver (left) and a part of its corresponding universal covering
(right).

Firstly they noted that the vector dimension of these kinds of modules consists of even-index Fi-
bonacci numbers (denoted fi and such that fi = fi−1 + fi−2, for i ≥ 2, f0 = 0, f1 = 1) then they
used results from the universal covering theory developed by Gabriel and his students to identify such
Fibonacci numbers with dimensions of representations of the corresponding universal covering. In
particular, preinjective and preprojective representations of the 3-Kronecker quiver were used in [2] by
Ringel and Fahr to derive a partition formula for even-index Fibonacci numbers.

The categorification process of even-index Fibonacci numbers introduced in [2] allowed Ringel and
Fahr to define an array of numbers T = T(i, j) called even-index Fibonacci partition triangle [3] with
similar properties as the Pascal's triangle and to include the integer sequence A132262 in the OEIS
(On-Line Encyclopedia of Integer Sequences). In particular, some modules called Fibonacci modules,
Auslander-Reiten sequences and suitable filtrations of these types of modules were used in [1] to
categorify the following identities between Fibonacci numbers:

ft+1 = ft−1 + ft,

f2t+1 = 1 +

t∑
i=1

f2i,

f2t =

t∑
i=1

f2i−1 and

ft−2 + ft+2 = 3 ft.

(1.1)

Entries in the array T are categorified by Fibonacci modules provided that they give Jordan-Hölder
multiplicities of these modules.

We point out that Ringel in [4] exhibits combinatorial data which can be derived from a category
mod Λ, where Λ is a hereditary Artin algebra of Dynkin type ∆. He comments that many enumeration
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problems give rise to categorification of different integer sequences. For instance, the number of some
tilting modules and the number of antichains in mod Λ categorify the Catalan numbers if Λ is an
algebra of Dynkin type An. Whereas, if Λ is of Dynkin type Bn then such number of modules and
antichains categorify the sequence

(
2n
n

)
. Results regarding the categorification of integer sequences

encouraged Ringel to propose the creation of an On-Line Encyclopedia of Dynkin Functions (OEDF)
with the same purposes as the OEIS. Such construction is currently an open problem (the number of
indecomposable Λ-modules over an algebra Λ of Dynkin type is an example of a Dynkin function).

1.1. Contributions

In this work, to categorify integer sequences, we identify combinatorial information arising from
the preprojective component of the 2-Kronecker algebra (or simply the Kronecker algebra) with combi-
natorial information arising from indecomposable projective modules over some Brauer configuration
algebras introduced recently by Green and Schroll in [5]. In particular, we use these settings to define
categorifications of the sequences encoded in the OEIS as A052558 and A052591. Configurations of
some multisets called polygons define such Brauer configuration algebras.

We recall here that the Kronecker problem is equivalent to the problem of determining the inde-
composable representations over a field k of the 2-Kronecker quiver Q illustrated in Figure 2.

Figure 2. The 2-Kronecker quiver.

We will see that some invariants associated with indecomposable projective modules over some suit-
able Brauer configuration algebras allow categorify any counting function. Since polygons in Brauer
configurations are multisets, we will assume that such polygons consists of words of the form

w = xs1
1 xs2

2 . . . xst−1
t−1 xst

t , (1.2)

where for each i, 1 ≤ i ≤ t, xi is an element of the polygon called vertex and si is the number of
times that the vertex xi occurs in the polygon. In particular, if vertices xi in a polygon V of a Brauer
configuration are integer numbers then the corresponding word w will be interpreted as a partition of
an integer number nV associated with the polygon V where it is assumed that each vertex xi is a part of

the partition and si is the number of times that the part xi occurs in the partition and nV =
t∑

i=1
sixi.

The following diagram (1.3) shows how the theory of Brauer configuration algebras (BCAs) and
the Kronecker problem are related to the main results (targets of green arrows) presented in this paper.
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BCAs (Sect:2.1)

��

Kronecker Problem (Sect:2.4, 2.5)

��
Theorem 1

��

Theorem 7

��
Proposition 3

��

Corollaries 8, 9

��
Theorem 4

++
Theorem 10

rr
Corollaries 12,13

��
Theorem 16

��
Theorem 17

��
Theorem 18

(1.3)

This paper is distributed as follows: in Section 2, we recall main definitions and notation used
throughout the document, in particular, in this section we define Brauer configuration algebras, and the
Kronecker problem.

In Section 3, some directed graphs named helices are associated with preprojective Kronecker mod-
ules to categorify numbers in sequences A052558 and A052591. Besides, it is defined a sequence ΛKn

of Brauer configuration algebras whose indecomposable projective modules are in bijective corre-
spondence with preprojective Kronecker modules via the number of summands in the heart of such
indecomposable modules. Formulas for the dimension of this type of algebras and corresponding cen-
ters are also given. Section 4 describes how it is possible to use integer sequences to build Brauer
configuration algebras, the process is applied to any counting function. Concluding remarks are given
in Section 5. Examples of helices are shown in the Appendix.

2. Preliminaries

In this section, we recall main definitions and notation to be used throughout the paper [5–10].

2.1. Brauer configuration algebras

Green and Schroll introduced in [5] Brauer configuration algebras as a generalization of Brauer
graph algebras which are biserial algebras of tame representation type and whose representation theory
is encoded by some combinatorial data based on graphs. According to them, underlying every Brauer
graph algebra is a finite graph with a cyclic orientation of the edges at every vertex and a multiplicity
function [6]. The construction of a Brauer graph algebra is a special case of the construction of a
Brauer configuration algebra in the sense that every Brauer graph is a Brauer configuration with the
restriction that every polygon is a set with two vertices. In the sequel, we remind Brauer configuration
and Brauer configuration algebra definitions.

A Brauer configuration Γ is a quadruple of the form Γ = (Γ0,Γ1, µ,O) where:
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(B1) Γ0 is a finite set whose elements are called vertices.

(B2) Γ1 is a finite collection of multisets called polygons. In this case, if V ∈ Γ1 then the elements of
V are vertices possibly with repetitions, occ(α,V) denotes the frequency of the vertex α in the
polygon V and the valency of α denoted val(α) is defined in such a way that:

val(α) =
∑
V∈Γ1

occ(α,V). (2.1)

(B3) µ is an integer valued function such that µ : Γ0 → N where N denotes the set of positive integers,
it is called the multiplicity function.

(B4) O denotes an orientation defined on Γ1 which is a choice, for each vertex α ∈ Γ0, of a cyclic
ordering of the polygons in which α occurs as a vertex, including repetitions, we denote S α

such collection of polygons. More specifically, if S α = {V (α1)
1 ,V (α2)

2 , . . . ,V (αt)
t } is the collection of

polygons where the vertex α occurs with αi = occ(α,Vi) and V (αi)
i meaning that S α has αi copies

of Vi then an orientation O is obtained by endowing a linear order < to S α and adding a relation
Vt < V1, if V1 = min S α and Vt = max S α, the set (S α, <) is called the successor sequence at
the vertex α. According to this order the αi copies of Vi can be ordered as V1,i < V2,i < · · · <

V(αi−1),i < Vαi,i and S α can be ordered in the form V (α1)
1 < V (α2)

2 < · · · < V (α(t−1))
(t−1) < Vαt

t . It is worth
noting that this ordering is kept without changes in the successor sequences containing all the
polygons V1,V2, . . . ,Vt,

(B5) Every vertex in Γ0 is a vertex in at least one polygon in Γ1.

(B6) Every polygon has at least two vertices.

(B7) Every polygon in Γ1 has at least one vertex α such that µ(α)val(α) > 1.

A vertex α ∈ Γ0 is said to be truncated if val(α)µ(α) = 1, that is, α is truncated if it occurs exactly
once in exactly one V ∈ Γ1 and µ(α) = 1. A vertex is nontruncated if it is not truncated.

2.2. The quiver of a Brauer configuration algebra

The quiver QΓ = ((QΓ)0, (QΓ)1) of a Brauer configuration algebra is defined in such a way that the
vertex set (QΓ)0 = {v1, v2, . . . , vm} of QΓ is in correspondence with the set of polygons {V1,V2, . . . ,Vm}

in Γ1, noting that there is one vertex in (QΓ)0 for every polygon in Γ1.
Arrows in QΓ are defined by the successor sequences. That is, there is an arrow vi

si
−→ vi+1 ∈ (QΓ)1

provided that Vi < Vi+1 in (S α, <) ∪ {Vt < V1} for some nontruncated vertex α ∈ Γ0. In other words, for
each nontruncated vertex α ∈ Γ0 and each successor V ′ of V at α, there is an arrow from v to v′ in QΓ

where v and v′ are the vertices in QΓ associated with the polygons V and V ′ in Γ1, respectively.

2.3. The ideal of relations and definition of a Brauer configuration algebra

Fix a polygon V ∈ Γ1 and suppose that occ(α,V) = t ≥ 1 then there are t indices i1, . . . , it such that
V = Vi j . Then the special α-cycles at v are the cycles Ci1 ,Ci2 , . . . ,Cit where v is the vertex in the quiver
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of QΓ associated with the polygon V . If α occurs only once in V and µ(α) = 1 then there is only one
special α-cycle at v.

Let k be a field and Γ a Brauer configuration. The Brauer configuration algebra associated with Γ

is defined to be the bound quiver algebra ΛΓ = kQΓ/IΓ, where QΓ is the quiver associated with Γ and
IΓ is the ideal in kQΓ generated by the following set of relations ρΓ of type I, II and III.

1) Relations of type I. For each polygon V = {α1, . . . , αm} ∈ Γ1 and each pair of nontruncated vertices
αi and α j in V , the set of relations ρΓ contains all relations of the form Cµ(αi) − C′µ(α j) where C is a
special αi-cycle and C′ is a special α j-cycle.

2) Relations of type II. Relations of type II are all paths of the form Cµ(α)a where C is a special α-cycle
and a is the first arrow in C.

3) Relations of type III. These relations are quadratic monomial relations of the form ab in kQΓ where
ab is not a subpath of any special cycle unless a = b and a is a loop associated with a vertex of
valency 1 and µ(α) > 1.

Henceforth, if there is no confusion, we will assume notations, Λ, I and ρ instead of ΛΓ, IΓ and ρΓ

for a Brauer configuration algebra, the ideal and set of relations, respectively defined by a given Brauer
configuration Γ.

The following results give some description of the structure of Brauer configuration algebras [5,7].

Theorem 1 ( [5], Theorem B, Proposition 2.7, Theorem 3.10, Corollary 3.12). Let Λ be a Brauer
configuration algebra with Brauer configuration Γ.

1) There is a bijective correspondence between the set of indecomposable projective Λ-modules and
the polygons in Γ.

2) If P is an indecomposable projective Λ-module corresponding to a polygon V in Γ. Then rad P is a
sum of r indecomposable uniserial modules, where r is the number of (nontruncated) vertices of V
and where the intersection of any two of the uniserial modules is a simple Λ-module.

3) A Brauer configuration algebra is a multiserial algebra.

4) The number of summands in the heart ht(P) = rad P/soc P of an indecomposable projective Λ-
module P such that rad2 P , 0 equals the number of nontruncated vertices of the polygons in Γ

corresponding to P counting repetitions.

5) If Λ′ is a Brauer configuration algebra obtained from Λ by removing a truncated vertex of a polygon
in Γ1 with d ≥ 3 vertices then Λ is isomorphic to Λ′.

Proposition 2 ( [5], Proposition 3.3). Let Λ be the Brauer configuration algebra associated with the
Brauer configuration Γ. For each V ∈ Γ1 choose a nontruncated vertex α and exactly one special
α-cycle CV at V,

A = {p | p is a proper pre f ix o f some Cµ(α) where C is a special α − cycle},

B = {Cµ(α)
V | V ∈ Γ1}.

Then A ∪ B is a k-basis of Λ.
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Proposition 3 ( [5], Proposition 3.13). Let Λ be a Brauer configuration algebra associated with the
Brauer configuration Γ and let C = {C1, . . . ,Ct} be a full set of equivalence class representatives of
special cycles. Assume that for i = 1, . . . , t, Ci is a special αi-cycle where αi is a nontruncated vertex
in Γ. Then

dimk Λ = 2|Q0| +
∑

Ci∈C

|Ci|(ni|Ci| − 1),

where |Q0| denotes the number of vertices of Q, |Ci| denotes the number of arrows in the αi-cycle Ci

and ni = µ(αi).

The following result regards the center of a Brauer configuration algebra.

Theorem 4 ( [7], Theorem 4.9). Let Γ be a reduced and connected Brauer configuration and let Q be
its induced quiver and let Λ be the induced Brauer configuration algebra such that rad2 Λ , 0 then the
dimension of the center of Λ denoted dimk Z(Λ) is given by the formula:

dimk Z(Λ) = 1 +
∑
α∈Γ0

µ(α) + |Γ1| − |Γ0| + #(Loops Q) − |CΓ|.

where |CΓ| = {α ∈ Γ0 | val(α) = 1, and µ(α) > 1}.

2.4. The Kronecker problem

The classification of indecomposable Kronecker modules was solved by Weierstrass in 1867 for
some particular cases and by Kronecker in 1890 for the complex number field case. This problem is
equivalent to the problem of finding canonical Jordan form of pairs of matrices (A, B) (with the same
size) with respect to the following elementary transformations over a field k (for the sake of brevity, it
is assumed that k is an algebraically closed field):

(i) All elementary transformations on rows of the block matrix (A, B).

(ii) All elementary transformations made simultaneously on columns of A and B having the same
index number.

If the matrix blocks P = (A, B) and P′ = (A′, B′) can be transformed one into the other by means of
elementary transformations, then they are said to be equivalent or isomorphic as Kronecker modules.
Figure 3 shows the matrix form (up to isomorphism) of the non-regular Kronecker modules [8, 9]:

II = III∗:
→

In

←

In

III = II∗: I↑n I↓n

Figure 3. Preprojective and preinjective Kronecker modules.
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In this case,
→

In (
←

In, respectively) denotes an n× (n+1) matrix obtained from the identity In by adding
a column of zeroes. In fact, the last column (the first column, respectively) in these matrices consists
only of zeroes. Similarly, I↑n (I↓n) denotes an n + 1 × n matrix obtained from an n × n identity matrix by
adding at the top (at the bottom) a row of zeroes.

We recall that the solution of the Kronecker matrix problem allows classifying the indecomposable
representations of the path algebra kQ with Q a quiver with the shape given in Figure 2.

Figure 4 shows the preprojective component of the Auslander-Reiten quiver of the 2-Kronecker
quiver which has as vertices isomorphism classes of indecomposable representations of type III
([i + 1 i] is a notation for the dimension vector of a preprojective representation (equivalently, prepro-
jective module), whereas [m m+1] is the dimension vector of a preinjective module). The preinjective
component has isomorphism classes of indecomposable representations of type III∗ as vertices.

Figure 4. The preprojective component of the Auslander-Reiten quiver of the 2-Kronecker
quiver.

Henceforth, we let (n + 1, n) ((n, n + 1)) denote a representative of an isomorphism class of prepro-
jective (preinjective) Kronecker modules obtained from a representation of type III (II) via elementary
transformations. Actually, for the sake of simplicity, we will assume that such representatives have the
form III (II).

2.5. Helices

For n ≥ 1, let P be an (n + 1) × 2n, k-matrix then P can be partitioned into two (n + 1) × n
matrix blocks A and B. In such a case we write P = (P, A, B, n), where A = (ai, j) = [CA

i1 , . . . ,C
A
in],

B = (bi, j) = [CB
j1 , . . . ,C

B
jn], with CA

ir (CB
js
) columns of P, if IA (IB) is the set of indices IA = {ir | 1 ≤ r ≤ n}

(IB = { js | 1 ≤ s ≤ n}) then IA ∩ IB = ∅, and |IA| = |IB| = n. In this case, each column of the matrix
P belongs either to the matrix A or to the matrix B and a word WP = lm1 . . . lmn . . . lm2n , lmh ∈ {A, B},
1 ≤ h ≤ 2n is used to denote matrix P by specifying the way that columns of P have been assigned to
the matrices A and B.

A row rP of P has the form (rA, rB) with rA (rB) being a row of the matrix block A (B). We let RA

(RB) denote the set of rows of the matrix block A (B), whereas Hn denotes the set of all matrices P
with the aforementioned properties.

An helix associated with a matrix P of type Hn is a connected directed graph h whose construction
goes as follows:

(h1) (Vertices) Vertices of h are entries of blocks A and B. We let h0 denote the set of vertices of h.

(h2) Fix two different rows iP = (iA, iB) and jP = ( jA, jB) of P.
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(h3) Choose sets PA and PB of pivoting entries also called pivoting vertices, PA ⊂ A, PB ⊂ B such that
|PA| = |PB| = n. Entries in A\PA and B\PB are said to be exterior entries or exterior vertices. In
this case, if x ∈ PA (x ∈ PB) then x < iA (x < jB).

PA and PB are sets of the form:

PA = {ai1, j1 , ai2, j2 , . . . , ais, js}, jx , jy if and only if ix , iy,

PB = {bt1,h1 , bt2,h2 , . . . , bts,hs}, hx , hy if and only if tx , ty.
(2.3)

where, air , jr ∈ RA\iA, btm,hm ∈ RB\ jB, 1 ≤ r,m ≤ s. It is chosen just only one entry air , jr (btm,hm)
for each row in RA\iA (RB\ jB) and for each column CA (CB) of A (B).

(h4) (Arrows) arrows in h are defined in the following fashion:

(a) Arrows in h are either horizontal or vertical. We let h1 denote the set of arrows of h.

(b) Horizontal arrows connect a vertex of the matrix block A (B) with a vertex of the matrix block
B (A). Vertical arrows only connect vertices in the same matrix block. Starting and ending
vertices of horizontal (vertical) arrows are entries of the same row (column) of P.

(c) The starting vertex of a horizontal (vertical) arrow is an exterior (pivoting) vertex. The ending
point of a horizontal (vertical) arrow is a pivoting (exterior) vertex.

(d) A pivoting vertex occurs as ending (starting) vertex just once. Thus, h does not cross itself.

(e) The first and last arrow of h are horizontal and its starting vertex belongs to iA.

( f ) Each vertical arrow is preceded by a unique horizontal arrow, and unless the first arrow, any
horizontal arrow is preceded by a vertical arrow.

(g) All the rows of P are visited by h, and no row or column of P is visited by arrows of h more
than once.

(h) There are not horizontal arrows connecting exterior vertices of jA with vertices of jB.

Remark 5. We let (iP, jP, PA, PB) denote the set of all helices which can be built by fixing these data
associated with a matrix P of type Hn, hP

n = |(iP, jP, PA, PB)| denotes the corresponding cardinality.
See diagrams (A1)–(A8) in the Appendix where it is presented a set (4P, 2P, PA, PB) defined by the word
BAABAB.

Matrix presentations of preprojective Kronecker modules p of type III are of type Hn, n ≥ 1 (In this
case, Wp = AA . . . ABB . . . B). In [10], the authors studied sets of helices (1p, (n + 1)p, pA = {ai+1,i | 1 ≤
i ≤ n}, pB = {bi,i | 1 ≤ i ≤ n}) associated with this kind of matrices.

Proposition 6. If WP is the set of matrix words associated with a matrix P of type Hn then |WP| equals
n2∑

m=0
P(n, n,m) = (n + 1)Cn, where P(n, n,m) denotes the number of partitions of m into n parts, each

≤ n, P(n, n, 0) = 1, and Cn denotes the nth Catalan number.

Proof. Each matrix word WP of the form WP = lm1 . . . lmn . . . lm2n , lmh ∈ {A, B}, 1 ≤ h ≤ 2n, gives
rise to an integer partition λ = (λ1, λ2, . . . , λt), λi, t ≤ n of a nonnegative integer number m ≤ n2 by
defining λ1 as the number of A’s after the first occurrence of the letter B, λ2 is the number of A′s after
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the second occurrence of the letter B and so on. Since there are n letters A′s and n letters B′s in WP

then the number of words associated with P is
(

2n
n

)
. The result holds.

In Theorem 10 we prove that the number of helices hp
n associated with a preprojective Kronecker

module, p = (n + 1, n) is hp
n = n!d n

2e.
If we associate with a set of n equidistant points on a circle the rows of a representation p = (n+1, n)

then the number of helices containing the fixed arrow a1,1 → b1,1 equals the number a(n) of ways of
connecting n + 1 equally spaced points on a circle with a path of n line segments ignoring reflections.
In this case, vertical edges in a helix are in bijective correspondence with the edges of the path in the
circle (Figure 5 shows examples of helices and these kinds of paths). Thus

a(n) =
hp

n

n
, n ≥ 1. (2.4)

Figure 5. Helices associated with preprojective Kronecker modules.

Sequence a(n) is recorded as A052558 in the OEIS.

3. Categorification of the sequences A052558 and A052591

Results in this section can be interpreted as categorifications (see Remark 11) of the sequences
(n − 1)!d n

2e and n!d n
2e (A052558 and A052591 in the OEIS, respectively) via Kronecker modules and

Brauer configuration algebras. Theorems 7 and 10 and Corollaries 8 and 9 prove that the number
of helices associated with preprojective Kronecker modules is invariant with respect to admissible
transformations.

The following results regard the number of helices associated with matrices of type Hn and in
particular with preprojective Kronecker modules (see Figure 4), k is an algebraically closed field.

Theorem 7. Let (P, A, B, n), (P′, A′, B′, n), HP and HP′ be two matrices of type Hn with correspond-
ing sets of helices HP and HP′ defined by systems of the form (iP, jP, PA, PB) and ( fP′ , gP′ , P′A′ , P

′
B′),

respectively. Then |HP| = hP
n = |HP′ | = hP′

n .

Proof. Firstly, we suppose without loss of generality that, iP , fP′ and jP , gP′ . Then, we note that
each helix h ∈ (iP, jP, PA, PB) gives rise to a unique helix h′ ∈ (iP, gP, PA′′ , PB′′), where PA′′ and PB′′

are suitable sets of pivoting entries in P. The process consists of copying helix h, in such a way that
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each occurrence of entries of jP is substituted by a corresponding occurrence of gP (taking into account
the new sets of pivoting vertices, PA′′ and PB′′), conversely, each occurrence of gP is substituted by a
corresponding occurrence of jP, keeping without changes the remaining rows visited by the helix h.
For example, if a vertical arrow v ∈ h1 connects entries pi, j (starting vertex) and pi′, j (ending vertex) in
P then the corresponding vertical arrow v′ ∈ h′1 connects entries of the rows i and i′ if i ∈ { jP, gP} and
i′ < { jP, gP} or if i and i′ are such that i, i′ < { jP, gP}, v′ connects rows i and j (g) if i′ = g (i′ = j). We let
σ denote the bijection, σ : (iP, jP, PA, PB)→ (iP, gP, PA′′ , PB′′) defined by these substitutions. Thus, if a
bijection δ : (iP, gP, PA′′ , PB′′)→ ( fP, gP, PA′ , PB′) is defined as σ where PA′ and PB′ are sets of pivoting
entries of P given by P′A′ and P′B′ respectively, then the maps composition δσ is also a bijection from
(iP, jP, PA, PB) to ( fP, gP, PA′ , PB′). Any helix h′ ∈ ( fP, gP, PA′ , PB′) corresponds uniquely to an helix
h′′ ∈ ( fP′ , gP′ , P′A′ , P

′
B′) via the identification τ : P → P′ such that τ(pi, j) = p′i, j, in this case pi, j ∈ PA′

(pi, j ∈ PB′) if and only if p′i, j ∈ P′A′ (p′i, j ∈ P′B′). In general, a copy h′′ ∈ ( fP′ , gP′ , P′A′ , P
′
B′) of an helix

h′ ∈ ( fP, gP, PA, PB) can be built taking into account that an initial exterior vertex e f , j ∈ h′ has a vertex
e′f , j′ ∈ fA′ as its corresponding initial exterior copy and h′′ visits the same rows in the same order as
those visited previously by h′. We are done.

Examples of copies of elements of the set
(4P, 2P, PA = {p3,2, p1,3, p2,5}, PB = {p4,1, p1,4, p3,6}),

associated with a matrix P of type H3 and defined by the word WP = BAABAB are given in the
Appendix (see A1–A8). In such a case, the corresponding copies belong to the set

(4P, 1P, PA = {p2,1, p1,3, p3,6}, PB = {p3,2, p2,4, p4,5}),
and the matrix P is partitioned according to the word ABABBA.

Corollary 8. Let WP = lm1 . . . lm2n and W ′
P = l′m1

. . . l′m2n
; lmn , l

′
mn
∈ {A, B} be two words asso-

ciated with a matrix P of type Hn with corresponding sets of helices HP = (iP, jP, PA, PB), and
H′P = ( f ′P, g

′
P, P

′
A, P

′
B). Then |HP| = |H′P|.

Proof. The result follows from Theorem 7 by replacing, P′, A′, B′, P′A′ , P
′
B′ , fP′ and gP′ for

P, A, B, P′A, P
′
B, f ′P and g′P, respectively.

Corollary 9. If for n ≥ 1, P and P′ are equivalent preprojective Kronecker modules with dimension
vector of the form [n + 1 n] and corresponding sets of helices HP and HP′ then |HP| = |HP′ |.

Proof. Matrix presentations of preprojective Kronecker modules P and P′ are both of type Hn

defined by words of the form AA . . . ABB . . . BB.

Theorem 10. If for n ≥ 1, P denotes a preprojective Kronecker module then the number of helices
associated with P is hP

n = n!dn
2e where dxe denotes the smallest integer greatest than x.

Proof. According to Theorem 7 and Corollary 9, it suffices to determine the number of helices
|(1p, (n + 1)p, pA = {ai+1,i | 1 ≤ i ≤ n}, pB = {bi,i | 1 ≤ i ≤ n})| associated with preprojective Kronecker
modules p = (n + 1, n) of type III and words of the form Wp = AA . . . ABB . . . B.

Firstly, we note that there is only one helix associated with the indecomposable preprojective mod-
ules (2, 1) and (3, 2). And the vertices sequence of helices associated with the indecomposable (4, 3)
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with a1, j fixed are:

hl1 = {a1, j, b1,1, b2,1, a2,1, a3,1, b3,3, b4,3, a4,3},

hl2 = {a1, j, b1,1, b3,1, a3,2, a2,2, b2,2, b4,2, a4,3},

hl3 = {a1, j, b1,1, b4,1, a4,3, a3,3, b3,3, b2,3, a2,1},

hl4 = {a1, j, b1,1, b4,1, a4,3, a2,3, b2,2, b3,2, a3,2}.

(3.2)

The number of helices is given by the number of vertices at the last level of the rooted tree showed
in Figure 6:

Figure 6. Rooted tree associated with the preprojective Kronecker module (4,3).

Suppose now that the result is true for any indecomposable preprojective Kronecker module (t+1, t),
1 ≤ t < n then we can see that in general the rooted tree Tn associated with the indecomposable
preprojective Kronecker module (n + 1, n) has the following characteristics bearing in mind that vertex
b1,1 gives the root node a0

1:

(a) a0
1 has n children enumerated from the left to the right as (a1

1, a
1
2, . . . , a

1
n),

(b) For 1 ≤ i ≤ n − 1 each vertex a1
i has n − 2 children enumerated from the left to the right as

(a1
i,1, a

1
i,2, . . . , a

1
i,n−2) whereas vertex a1

n has n − 1 children of the form (a1
n,1, a

1
n,2, . . . , a

1
n,n−1), each

children of a vertex a1
n,l1

, 1 ≤ l1 ≤ n − 1 has n − 2 children a1
n,l1,l2

with 1 ≤ l2 ≤ n − 2, in general for
this particular tree a vertex a1

n,l1,l2,l3,...,lt
has n − (t + 1) children, 1 ≤ t ≤ n − 2. Note that the number

of vertices at the last level of the rooted tree T ′n with a1
n as root node is (n − 1)!,

(c) For each h, 1 ≤ h ≤ n − 2, vertex a1
i,h is a root node of the tree Tn−2.

Figure 7 shows the general structure of the rooted tree Tn.
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Figure 7. Rooted tree associated with the preprojective Kronecker module (n + 1, n).

According to the rules (a) − (c) the number of vertices LTn at the last level of the tree Tn is given by
the formula

LTn = (n − 1)(n − 2)LTn−2 + L(T ′n) = (n − 1)(n − 2)
hp

n−2

n − 2
+ (n − 1)!

= (n − 1)!d
n
2
e =

hp
n

n
.

(3.3)

We are done.

Remark 11. Sequence A052558 is categorified via the number of helices associated with preprojective
Kronecker modules, if in the condition (e) of its definition, it is assumed that the starting vertex is fixed.
Without such fixing condition the number of helices associated with a preprojective Kronecker module
is given by the sequence encoded as A052591 in the OEIS.

3.1. Sequence A052591 Via Brauer configuration algebras

In this section, categorification of elements of the integer sequence A052591 is given via the number
of summands in the heart of indecomposable projective modules over the Brauer configuration algebra
ΛKn defined by the Brauer configuration Kn = (Kn

0 ,K
n
1 , µ,O) with the following properties for n ≥ 3

fixed:

1)

Kn
0 = {x1, x2},

Kn
1 = {Vt = x(2t+2)!

1 x((t)(2t+2)!)
2 }1≤t≤n.

(3.4)

2) The orientation O is defined in such a way that for t ≥ 1

at vertex x1; V (4!)
1 < V (6!)

2 < V (8!)
3 < · · · < V ((2n+2)!)

n ,

at vertex x2; V2(12)
1 < V2(720)

2 < V2(60480)
3 < · · · < V (((n)(2n+2)!))

n .
(3.5)
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3) The multiplicity function µ is such that µ(x1) = µ(x2) = 1.

where the symbol x( j)
i in a given polygon Vt means that occ(xi,Vt) = j. Note that, the specializations

x1 = 1 and x2 = 2 allows describing polygons Vt as integer partitions of numbers in the sequence
A052591 (see Eq (1.2)).

Figure 8 shows the Brauer quiver QKn associated with this configuration (numbers nt1(nt2) attached
to the loops denote the occurrence of the vertex (x1 above, x2 below) in the corresponding polygon
Vt, 1 ≤ t ≤ n), c1

it(c
2
jt) denotes a set of loops associated with the vertex Vt, |c1

it | = l1
t = nt1 − 1,

|c2
jt | = l2

t = nt2 − 1.

Figure 8. Brauer quiver QKn associated with the Brauer configuration Kn (see Eq (3.4)).

The admissible ideal I is generated by the following relations (in this case, if there are associated l1
t

(l2
t ) loops at the vertex Vt associated with x1 (associated with x2) then we let P j

t denote the product of
j ≤ lm

t loops, m ∈ {1, 2}), cm
hs

is a notation for a set of cycles {cm
hs,1
, cm

hs,2
, . . . , cm

hs,lms
,m ∈ {1, 2}, h ∈ {i, j}, s ∈

{1, 2, . . . , n}}:

1) c1
is,x

c1
is,y
− c1

is,y
c1

is,x
, for all possible values of i, s, x, y,

2) c2
js,x

c2
js,y
− c2

js,y
c2

js,x
, for all possible values of i, s, x, y,

3) c1
is,x

c2
js,y

and c2
js,x

c1
is,y

, for all possible values of i, s, x, y,

4) c1
is,x
βs+1; c2

js,y
αs+1; βsc1

is,x
; αsc2

js,x
, for all possible values of i, s, x, y,

5) (c1
is,x

)2; (c2
js,y

)2, for all possible values of i, s, x, y,

6) αtαt+1; αn+1α2; βtβt+1; βn+1β2; αtβt+1; β jα j+1; αn+1β2; βn+1α2, for all possible values of
j, t,
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7) αiP
j
iγi+1; αn+1P j

1γ2; βtPh
t γt+1; βn+1Ph

1γ2; 0 < j < l1
i , 0 < h < l2

t , 1 ≤ i, t ≤ n, γ ∈ {α, β},

8) For all the possible products (special cycles) of the form:

ε1
1 = αtP

l1t
t αt+1P

l1t+1
t+1 . . . αnPl1n

n αn+1Pl11
1 . . . αt−1P

l1t−1
t−1,

ε2
1 = Pm

t−1αtP
l1t
t αt+1P

l1t+1
t+1 . . . αnPl1n

n αn+1Pl11
1 . . . αt−1P

l1t−1− j
t−1 ,

ε3
2 = βtP

l2t
t βt+1P

l2t+1
t+1 . . . βnPl2n

n βn+1Pl21
1 . . . βt−1P

l2t−1
t−1,

ε4
2 = Ph

t−1βtP
l2t
t βt+1P

l2t+1
t+1 . . . βnPl2n

n βn+1Pl21
1 . . . βt−1P

l2t−1−h
t−1 ,

(3.7)

relations of the form εr
i − ε

s
j, r, s ∈ {1, 2, 3, 4}, i, j ∈ {1, 2} take place. Note that, products of the form

P0
t−1 correspond to suitable orthogonal primitive idempotents et, 1 ≤ t ≤ n,

9) ε1
1αt, ε3

2βt.

The following result holds for indecomposable projective modules over the algebra ΛKn .

Corollary 12. For n ≥ 3 fixed and 1 ≤ t ≤ n, the number of summands in the heart of the indecom-
posable projective representation Vt over the Brauer configuration algebra ΛKn equals the number of
helices associated with the preprojective Kronecker module (2t + 3, 2t + 2), 1 ≤ t ≤ n.

Proof. Firstly we note that for any t, rad2 Vt , 0. Thus according to the Theorem 1 the number
of summands in the heart of any of the indecomposable projective modules Vt equals occ(x1,Vt) +

occ(x2,Vt) = (2t + 2)! + t(2t + 2)! = hp
2t+2 = h(2t+3,2t+2)

2t+2 which is the number of helices associated in a
unique form to the indecomposable preprojective Kronecker module (2t + 3, 2t + 2). We are done.

The following results regard the dimension of algebras of type ΛKn .

Corollary 13. For n ≥ 3 fixed, it holds that 1
2 (dimk ΛKn) = n + tγn−1 + tδn−1, where γn =

n∑
m=1

m(2m + 2)!,

δn =
n∑

m=1
(2m + 2)!, and th denotes the hth triangular number.

Proof. Proposition 3 allows concluding that dimk ΛKn/I = 2n +
2∑

i=1
|Ci|(|Ci| − 1) where for each

i = 1, 2, |Ci| = val(xi). The theorem holds taking into account that for any j ≥ 2, j( j − 1) = 2t j−1.

Corollary 14. For n ≥ 3 fixed, it holds that dimk Z(ΛKn) = −n + 1 +
n∑

t=1
hp

2t+2.

Proof. Since rad2 ΛKn , 0, the result is a consequence of Theorem 4 with µ(x1) = µ(x2) = 1,
|Kn

0 | = 2, |Kn
1 | = n and occ(x1,Vt) + occ(x2,Vt) = hp

2t+2.

Remark 15. Similar results as those given in Corollaries 12-14 can be obtained for preprojective
Kronecker modules of the form (4t+2, 4t+1), t ≥ 1 by considering in the original Brauer configuration
that

Kn
0 = {x1, x2},

Kn
1 = {Vt = x(4t+1)!

1 x2t(4t+1)!)
2 }1≤t≤n,

(3.8)

keeping the relations in the quiver without changes (bearing in mind of course the new occurrences of

the vertices for the different products). In particular, it holds that dimk Z(ΛKn) = −n + 1 +
n∑

t=1
hp

4t+1.
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4. Brauer configuration algebras arising from counting Functions

In this section, we consider Brauer configurations arising from counting functions which are strictly
increasing integer sequence whose elements count a given class of objects Dn. For instance, Dn can
be the set of linear extensions of a poset (Pn,�) = {(i, j) ∈ N2 | 0 ≤ i ≤ j ≤ n}, where � is a partial
order defined on Pn such that (i, j) � (i′, j′) if and only if i ≤ i′ and j ≤ j′. According to Stanley [11],
the number of linear extensions e(Pn) of Pn is equal to the number of lattice paths from (0, 0) to (n, n)
with steps (1, 0) and (0, 1), which never rise above the main diagonal x = y of the plane (x, y)-plane. It
can be shown that e(Pn) is given by the nth Catalan number Cn = 1

n+1

(
2n
n

)
.

We define now a family of Brauer configuration algebras ΛDn , n > 1 arisen from Brauer configu-
rations Dn whose nontruncated vertices are in correspondence with objects of type Dn, polygons are
obtained by choosing objects of type Ds, for 1 ≤ s ≤ n. We assume the notation Ls

j,n ∈ Ds for the jth
object of type s in a given polygon. Without loss of generality, we assume that for the first polygon P1,
it holds that |P1| = u1 > 1.

For n ≥ 2 fixed, the definition of the Brauer configuration

Dn = (Dn
0,D

n
1, µ

n,On),

goes as follows:

Dn
0 = {Ls

is,n, 2 ≤ s ≤ n, 1 ≤ is ≤ us − u(s−1)} ∪ P1,

P1 = {L1
i1,n | 1 ≤ i1 ≤ u1},

Dn
1 = {Ph | 1 ≤ h ≤ n},

Ph = Ph
(h−1) ∪ Ph

h, |Ph
(h−1)| = |P(h−1)|, 2 ≤ h ≤ n,

Ph
(h−1) = {Ls

is,n | 1 ≤ s ≤ h − 1},

Ph
h = {Lh

ih,n | 1 ≤ ih ≤ uh − u(h−1), 2 ≤ h ≤ n},

µn(L) = 1, for any vertex L ∈ (D0)n\Pn
n,

µn(L) = 2, for any vertex L ∈ Pn
n,

(4.1)

In Ph
(h−1), it holds that, 1 ≤ i1 ≤ u1 if s = 1, and 1 ≤ is ≤ us − u(s−1), if s > 2.

The orientation On is defined by the usual order of natural numbers. Thus, for a vertex Li
j,n ∈ Dn

0\P
n
n,

the successor sequence has the form

Pi < P(i+1) < · · · < P(n−1) < Pn.

For vertices L(n−1)
r,n , the successor sequence has the form P(n−1) < Pn, whereas for vertices of the form

Ln
r,n ∈ Pn

n, the orientation is of the form Pn < Pn.

The following Figure 9 shows the shape of the Brauer quiver QDn defined by Dn.
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Figure 9. Brauer quiver QDn associated with the Brauer configuration Dn (see Eq (4.1)).

α j, β j and cLn
in
,n denote j × 1-matrices of the form:

α j =



α
j
L1

i1
,n

α
j
L2

i2
,n

...

α
j
Ls

is
,n
...

α
j

L j
i j
,n


, β j =



β
j
L1

i1
,n

β
j
L2

i2
,n

...

β
j
Ls

is
,n
...

β
j

L j
i j
,n


, cLn

in
,n =



cLn
1,n

cLn
2,n
...

cLn
i ,n
...

cLn
(un−u(n−1)),n


where α j

Ls
is
,n (β j

Ls
is
,n) is a set of arrows defined by the successor sequence at vertex Ls

is,n
connecting the

corresponding polygons (polygon Pn with the corresponding P j). And cLn
in ,n

is a set of loops defined by
vertices Ln

in,n
, 1 ≤ in ≤ un − u(n−1).

The following relations generate the admissible ideal J of the Brauer configuration algebra ΛDn =

kQDn/J, for all possible values of i, i′, j, j′, r, r′ and n.

1) (cLn
r,n)

2, cLn
r,ncLn

r′ ,n
, r , r′,

2) α j
Li

r ,n
α

j
Li′

r′ ,n
, i , i′,

3) α j
Li

r ,n
α

( j+1)
Li′

r′ ,n
,

4) cLn
in ,n
βi,

5) α(n−1)cLn
in ,n

,
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6) For 1 ≤ j ≤ n, fixed and 1 ≤ i ≤ j, sLi
j,n
− sL j

j′ ,n
where sx is a special cycle associated with the vertex

x,

7) βiαi,

products of the form; βiαi, α(n−1)cLn
in ,n

, cLn
in ,n
βi means that relations of the form xx′, y′y and z′z take place

where x′, y′ and z′ are entries of the corresponding matrices.
The following result categorifies numbers of a counting function ut, for t ≥ 1.

Theorem 16. For 1 ≤ i ≤ n and n > 1 fixed, the number of summands in the heart of the indecompos-
able projective module Pi over the algebra ΛDn is ui.

Proof. Since rad2 Pi , 0, then the number of summands in the heart of the indecomposable projec-
tive module Pi equals the number of its nontruncated vertices counting repetitions, which by definition
is given by the sum u1 + (u2 − u1) + · · · + (u(i−1) − u(i−2)) + (ui − u(i−1)) = ui. We are done.

Theorem 17. For n ≥ 1 fixed, dimk ΛDn = 2n + n(n − 1)u1 + 2
n∑

i=2
t(n−i)(ui − u(i−1)).

Proof. It suffices to note that val(Li
is,n

) = n − i + 1 and µn(Li
is,n

) = 1 for any Li
is,n
∈ Dn

0\P
n
n, whereas

for any x ∈ Pn
n, it holds that val(x) = 1 and µn(x) = 2. We are done.

Since for any n > 1, rad2 ΛDn , 0, then we have the following result regarding the center of these
algebras.

Theorem 18. For n ≥ 2 fixed, dimk Z(ΛDn) = (un − u(n−1)) + (n + 1).

Proof. Note that |Dn
0| = un, |Dn

1| = n,
∑
α∈Dn

0

µn(α) = 2un − u(n−1). Since #(Loops QD(n−1)) = |CDn |,

the theorem holds.

Remark 19. Perhaps, the sequence Cn of Catalan numbers is one of the most interesting counting
functions, they count the number of plane binary trees with n + 1 endpoints (or 2n + 1 vertices), the
number of triangulations of an (n + 3) polygon, or the number of paths L in the (x, y)-plane from (0, 0)
to (2n, 0) with steps (1, 1) and (1,−1) that never pass below the x-axis, such paths are called Dyck
paths [11]. Thus, if un = Cn+1, n ≥ 1 then Theorem 16 categorifies numbers in this sequence Cn via
these enumeration problems.

Since the number of compositions (partitions in which the order of the summands is considered)
of a positive integer n in which no 1’s appear is the Fibonacci number f(n−1) [12]. Then Theorem 16
categorifies these numbers by assuming that un = f(n−1) with n ≥ 4. If j > 4, then dimk (Z(ΛD j)/C j) −
1 = f( j−4), where C j is a k-subspace of Z(ΛD j) isomorphic to Z(ΛD j−1).

Theorem 16 categorifies the sequence p(n) which gives the number of partitions of a positive integer
n, recall the Hardy-Ramanujan theorem which states that for large n, p(n) ∼ 1

4n
√

3
eπ
√

2n
3 (see also the

sequence A002865 whose numbers give the differences p(n)−p(n−1)). In this case, we use un = p(n+1),
n ≥ 1.

Another interesting sequence categorified by Theorem 16 is the sequence M(n) encoded in the OEIS
as A000372, which consists of Dedekind numbers, these numbers count the number of antichains in
the powerset 2n (i.e., the set consisting of all the subsets of n = {1, 2, 3, . . . , n}) ordered by inclusion or
the number of elements in a free distributive lattice on n generators. In this case un = M(n), for n ≥ 1,
worth noting that up to date only 8 numbers of this sequence are known.
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5. Concluding remarks

Any counting function (e.g., Fibonacci numbers, Catalan numbers, or Dedekind numbers) can be
categorified in the sense of Ringel and Fahr via indecomposable projective modules over some Brauer
configuration algebras. In particular, integer sequences encoded in the OEIS as A052558 and A052591
are categorified by preprojective Kronecker modules via some helices, which are suitable directed
graphs associated with these modules.
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Appendix

In this section, we present the set of helices

(4P, 2P, PA = {p3,2, p1,3, p2,5}, PB = {p4,1, p1,4, p3,6}),

associated with a matrix P of type H3 and defined by the word WP = BAABAB. The corresponding
copies (see Theorem 7) in

(4P, 1P, PA = {p2,1, p1,3, p3,6}, PB = {p3,2, p2,4, p4,5}),

are also shown according with the associated word ABABBA.

p1,1 p1,2
//p1,3 p1,4

��

p1,5 p1,6

p2,1 p2,2 p2,3 p2,4
// p2,5 p2,6 jB

p3,1
// p3,2

OO

p3,3 p3,4 p3,5 p3,6

p4,1

OO

p4,2
oo p4,3 p4,4 p4,5 p4,6 iA

(A1)

p1,1 p1,2 p1,3 p1,4
oo p1,5 p1,6 jB

p2,1 p2,2 p2,3 p2,4

OO

p2,5 p2,6
oo

p3,1 p3,2 p3,3 p3,4 p3,5
// p3,6

OO

p4,1 p4,2 p4,3
//p4,4 p4,5

OO

p4,6 iA

(A2)
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p1,1 p1,2 p1,3 p1,4 p1,5 p1,6
oo

p2,1
//p2,2 p2,3 p2,4 p2,5

��

p2,6 jB

p3,1 p3,2 p3,3 p3,4 p3,5
// p3,6

OO

p4,1

OO

p4,2
oo p4,3 p4,4 p4,5 p4,6 iA

(A3)

p1,1 p1,2 p1,3

��

p1,4 p1,5
oo p1,6 jB

p2,1 p2,2
//p2,3 p2,4 p2,5 p2,6

p3,1 p3,2

OO

p3,3
oo p3,4 p3,5 p3,6

p4,1 p4,2 p4,3
//p4,4 p4,5

OO

p4,6 iA

(A4)

p1,1 p1,2 p1,3 p1,4

��

p1,5
oo p1,6

p2,1
//p2,2 p2,3 p2,4 p2,5

OO

p2,6 jB

p3,1 p3,2 p3,3 p3,4
oo p3,5 p3,6

p4,1

OO

p4,2
oo p4,3 p4,4 p4,5 p4,6 iA

(A5)
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p1,1 p1,2 p1,3

��

p1,4 p1,5
oo p1,6 jB

p2,1 p2,2 p2,3
// p2,4

��

p2,5 p2,6

p3,1 p3,2 p3,3 p3,4
//p3,5 p3,6

p4,1 p4,2 p4,3
//p4,4 p4,5

OO

p4,6 iA

(A6)

p1,1
//p1,2 p1,3

��

p1,4 p1,5 p1,6

p2,1 p2,2 p2,3 p2,4 p2,5 p2,6
oo jB

p3,1 p3,2 p3,3
//p3,4 p3,5 p3,6

OO

p4,1

OO

p4,2
oo p4,3 p4,4 p4,5 p4,6 iA

(A7)

p1,1 p1,2
// p1,3 p1,4 p1,5 p1,6 jB

p2,1

��

p2,2 p2,3 p2,4 p2,5
oo p2,6

p3,1
// p3,2

OO

p3,3 p3,4 p3,5 p3,6

p4,1 p4,2 p4,3
//p4,4 p4,5

OO

p4,6 iA

(A8)
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