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Abstract: The automatic recognition of a person’s emotional state has become a very active research
field that involves scientists specialized in different areas such as artificial intelligence, computer vi-
sion, or psychology, among others. Our main objective in this work is to develop a novel approach,
using persistent entropy and neural networks as main tools, to recognise and classify emotions from
talking-face videos. Specifically, we combine audio-signal and image-sequence information to com-
pute a topology signature (a 9-dimensional vector) for each video. We prove that small changes in the
video produce small changes in the signature, ensuring the stability of the method. These topological
signatures are used to feed a neural network to distinguish between the following emotions: calm,
happy, sad, angry, fearful, disgust, and surprised. The results reached are promising and competitive,
beating the performances achieved in other state-of-the-art works found in the literature.

Keywords: topological data analysis; persistent homology; persistent entropy; neural networks;
audio-visual emotion recognition; talking-face videos

1. Introduction

(Facial) Emotion recognition consists of a series of processes to detect human emotions from (fa-
cial) human expressions. When people communicate with others, they are constantly sending and
receiving nonverbal cues, expressed through body gestures, voice, facial expressions, and physiolog-
ical changes. Nonverbal cues increase trust, clarity and provide more information supporting what
spoken words transmit. A particular emotional state produces certain verbal and nonverbal signals that
transmit information regarding personal feelings. Nowadays, (facial) emotion recognition has become
an important research area in the fields of computer vision and artificial intelligence due to its potential
applications. In general, people express their emotional state (such as joy, sadness, or anger) through
facial expressions and vocal tones, and these are features that are often analyzed for emotion recog-
nition. Several factors make emotion recognition in talking-face videos difficult to handle (see, for
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example [1]). Among others, one of them is that body language cues are not as available to the listener
as opposed to having a face-to-face conversation. Besides, rigid movements of the face in a talking-
face video can reduce the accuracy of extracting facial features. Another problem is how to measure
a ground truth for emotions. Measuring the right emotion at the right time in a talking-face video is,
in general, quite subjective and relies entirely on the research setting. Another challenge to take into
account is how to deal with facial micro-expressions. In [2], the facial micro-expressions issue is faced
using the knowledge distillation approach (see [3]). These spontaneous and low-intensity expressions
are the bottleneck of applying deep learning methods due to the huge amount of data needed to train
such methods.

Regarding computer-aided emotion recognition research works, roughly speaking, they are focused
on the use of various input types such as facial expressions [4–6], speech [7–12] and physical signals
[13].

Several emotion classification and recognition techniques have been proposed in the past. Some of
them used speech prosody contour information to recognize emotions through different classification
methods such as artificial neural networks, multichannel hidden Markov models, mixture of hidden
Markov models, and Active Appearance Models.

Regarding audio emotion recognition, in [14], a preprocessing scheme is proposed to remove the
noise from speech signals based on fast Fourier transformation and spectral analysis. The authors eval-
uated their model using benchmark IEMOCAP and EMODB datasets and obtained a high recognition
accuracy, which were 73 and 90%, respectively. The authors in [15] faced the task of audio emo-
tion recognition using a convolutional neural network. Their baseline model included one-dimensional
convolutional layers combined with dropout, batch normalization, and activation layer. The proposed
framework achieved 71.61% of accuracy for the Ryerson Audio-Visual Database of Emotional Speech
and Song (RAVDESS dataset [16]). In [17], a novel approach based on persistent entropy (a compu-
tational topology tool) is developed to obtain a single value for the audio signal of a given video of a
person expressing emotions. These data were later used as the input of a support vector machine to
classify audio signals into eight different emotions, namely, neutral, calm, happy, sad, angry, fearful,
disgust, and surprised. The results obtained were close to the existing accuracy of methods with a
greater scope such as the ones introduced in [18].

Regarding visual emotion recognition, in [19], a topology-based approach was used to understand
and discern existing patterns between emotions in talking-face videos. In that paper, the authors used
precomputed landmark points to compute the persistence diagrams (a key tool in computational topol-
ogy [20]) from the Vietoris-Rips filtration in a given frame. The paper focuses on emotions at instant
moments, i.e., no interframe relation is considered in the image sequence. Furthermore, the audio
signal is neither used in that approach. The feature obtained is the persistence diagram and pairwise
comparisons are made using bottleneck or Wassertein distances. The classification of emotions is not
considered in that paper.

Regarding multimodal emotion recognition, different approaches have been explored so far. For
example, in the H2020 KRISTINA project∗, multimodal computer-aided emotion recognition is used
to help in the interaction between health professionals and migrated patients, allowing to overcome
linguistic barriers that hinder communication. Besides, the MixedEmotions project† developed an ap-

∗http://kristina-project.eu/en/
†https://cordis.europa.eu/project/rcn/194226 es.html
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plication based on a complete emotional profile of the person’s behavior. It used data from different
channels: multilingual text, data sources, audio and video signals, social media, and structured data.
The project offered commercial solutions providing an integrated big linked data platform for emo-
tional analysis, using heterogeneous sets of data and addressing the multilingual and multimodality
aspects in a robust and large-scale setting.

Moreover, hybrid neural networks combining convolutional neural networks and recurrent neural
networks have become the state-of-art for multimodal emotion recognition. For example, the authors
in [21] proposed an audiovisual-based hybrid network that combines the predictions of five models
for emotion recognition in the wild. The overall accuracy of the proposed method achieved 55.61 and
51.15% classification accuracy for the audio-only and video-only dataset, respectively. The authors
used the Afew-va Database for Valence and Arousal Estimation In-the-wild introduced in [22]. In
general, solutions based on deep learning methods require a large amount of training data and, up to
now, the public datasets are limited [3].

In this paper, we consider both the audio signal and the image sequence of a given talking-face
video and we use a novel tool introduced in [23], called persistent entropy, to “vectorize” the topologi-
cal information provided by the persistence diagrams. Such vectors are used to feed a neural network to
classify emotions. Specifically, the method incorporates the idea consisting of computing the persistent
entropy of the lower-star filtration of the 1-dimensional simplicial complex obtained by a discretization
of the audio signal, together with a particular construction of a 3-dimensional cell complex obtained
from the image sequence as follows. First, the precomputed landmark points are used to build the
2-dimensional Delaunay triangulation in each frame, and then they are stacked in a particular way to
obtain a 3-dimensional cell complex. Later, we compute the persistent entropy of each of the eight fil-
trations, considering, respectively, the distance to eight fixed planes (two horizontal planes, two vertical
planes, and four oblique planes). This way, the method is able to completely capture the movement
in the image sequence. The computed topological features together with the features obtained from
the audio-signal, make up a 9-dimensional vector, also called the topological signature, of the given
talking-face video. Besides, thanks to [24], we are able to prove that topological signatures are stable
to small changes in the input audio signal and image sequence. Finally, the topological signatures
computed are used to train a neural network to classify emotions.

As said before, the use of persistent entropy to compute the topological signature of a talking-face
video is supported by its demonstrated stability under small perturbations in the input data [24] and by
numerous applications of this technique in other fields such as, for example, pattern recognition [25],
complex systems [26], clustering [27], heart-rate-based sleep-wake classification [28], glioblastoma
detection [29], and audio emotion recognition [17].

The idea of computing a 3-dimensional cell complex from an image sequence is not new. In [30],
this idea was used for gait classification, but there, the 3-dimensional simplicial complex was obtained
from the silhouettes of the person walking in the video. That methodology was also used in [31] to
monitor human activities at distance and in [32] for gait-based gender classification.

The novelty of the method presented here is the computation of a topological signature associ-
ated to a talking-face video, combining topological information from the audio signal and the image
sequence. This topological signature is obtained by computing the persistent entropy of certain filtra-
tions constructed on specific cell complexes aimed to capture topological changes along the video that
characterize the different emotions considered. The topological signatures computed are then used to
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feed a neural network to classify emotions. Let us observe that the neural network considered in this
paper is extremely simple because of the low dimension of the input.

The contribution of this work is a workflow of emotion recognition, being its stability guaranteed
by topology-based theoretical results. The experimentation section shows that our method outperforms
several state-of-the-art emotion recognition methods.

The paper is structured as follows. The needed background is introduced in Section 2. The descrip-
tion of the proposed method is provided in Section 3. The stability of the method is proven in Section 4.
The experimentation made is presented in Section 5, together with comparisons with state-of-the-art
methods. Finally, Section 6 provides conclusions and future work ideas.

2. Background

In this section, the main concepts of topological data analysis and neural networks, needed to un-
derstand our method for facial emotion recognition, are recalled.

2.1. Topological data analysis

Topological data analysis has emerged as an important approach to characterize the behavior of
datasets using techniques from topology. Tools from topological data analysis, specifically persistent
homology, allow assigning shape descriptors to large and noisy data across a range of spatial scales. We
will compute such a descriptor to capture the topological changes along the video and these changes
will be used to classify emotions.

To compute the persistent homology, we first have to provide the input data with a combinatorial
structure that reflects the topology of the underlying space where the input data lay. The combinatorial
structure used in this work is the one of cell complexes, whose elements in each dimension d, called
d-cells, are d-dimensional topological spaces homeomorphic‡ to a d-dimensional ball. This way, a
0-dimensional cell is a point (vertex), a 1-dimensional cell is a curve, a 2-dimensional cell is home-
omorphic to a disk, and so on. A cell complex K is a collection of cells constructed inductively: 1)
The 0-skeleton K(0) (i.e., the set of 0-cells of K) is a set of points in an ambient n-dimensional space
Rn. 2) The d-skeleton K(d) is constructed from the (d − 1)-skeleton K(d−1) by attaching d-cells via
homeomorphisms.

From now on, we will assume that the given cell complex K has a finite number of cells. The
boundary set of a d-cell σ ∈ K can be informally defined as the set of (d − 1)-cells in the (d − 1)-
skeleton K(d−1) used to attach the d-cell σ. Successively adding to F = {σ} the boundary set of each
cell in F, we obtain the set of faces of σ. For example, the boundary set of an edge is its two endpoints
(vertices). A d-dimensional cell complex K is a cell complex satisfying that the dimension of the cell
of the higher dimension in K is d. A subcomplex of a cell complex K is a subset K′ ⊂ K which itself
is still a cell complex. An example of a subcomplex is the closed star of a vertex v, denoted by St v
and defined as follows: A cell σ is in St v if there exists µ ∈ K such that σ and v are faces of µ. A
filtration is an increasing sequence of cell complexes ∅ ⊂ K1 ⊂ K2 ⊂ · · · ⊂ Kr = K. See an example of
a filtration of cell complexes in Figure 1.

There are several methods to compute cell complexes and filtration from input data depending on
the nature of the data and the purpose of the analysis. In this work, given a talking-face video, we will

‡A homeomorphism is a bicontinuous and bijective function between two topological spaces.
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collect the set of landmark points S precomputed in the image sequence of the video. Such landmark
points will be embedded in R3, being the last coordinate, the position of the frame where the landmark
points are allocated. Let Vs be the set of points of R3 that are closer to s ∈ S than to any other point
of S . That is, for s ∈ S , Vs = {x ∈ R3 | d(x, s) ≤ d(x, s′) ∀s′ ∈ S }. The collection of the sets Vs is
a covering for R3 and it is called the Voronoi decomposition of R3 concerning S . The nerve of this
covering is a a simplicial complex called the Delaunay triangulation of S . The construction of this
complex is costly in high dimensions, although there exist efficient algorithms for computing it when
n = 2 and n = 3. See [33] for more details on Voronoi diagrams and Delaunay triangulation.

The filtration considered in this paper is the lower-star filtration (see [20, page 135]). Let us see
how to define it. Consider a real-valued function h, also called height function, on a finite set of points
V . Suppose K is a cell complex with set of vertices V . The lower star of v ∈ V is defined as the
subset of cells of K for which v is the vertex with maximum function value, that is, low St v = {σ ∈

St v : x ∈ σ ⇒ h(x) ≤ h(v)}. Sort the vertices by their function values, in a non-decreasing order,
V = {v1, v2, . . . , vr}. The lower-star filtration K1 ⊂ K2 ⊂ · · · ⊂ Kr = K satisfies that K j is the union of
the lower stars of the first j vertices of V , that is, K j =

⋃
i≤ j low St vi, for all j.

Figure 1. From left to right, the lower-star filtration K1 ⊂ K2 ⊂ K3 = K obtained using the
height function h.

The next step is to compute the persistent homology of a filtration K1 ⊂ K2 ⊂ · · · ⊂ Kr = K [20,34]
that tracks the moment t where a homology class is born and the moment s where the same class dies
leading to a topological descriptor called persistence diagram. Specifically, a d-dimensional homology
class of a cell complex Kt is an element of the d-dimensional homology group Hd(Kt) which is defined
as follows. First, the d-dimensional chain group Cd(Kt) is obtained by summing up§ the d-cells of
Kt. Then, the boundary operator is extended to a linear map ∂d from Cd(Kt) to Cd−1(Kt) in an obvious
way. Since the boundary of the boundary of a cell is always zero, then the image Bd(K) of ∂d+1 is
a subgroup of the kernel Zd(K) of ∂d. The d-dimensional homology group of Kt is defined as the
quotient group Hd(Kt) = Bd(Kt)/Zd(Kt). Then, the given filtration leads a family of homology groups
and homomorphisms {Hd(Kt) → Hd(Ks) : t ≤ s} from which we can track the births and deaths of
homology classes. Now, each homology class α that was born in Hd(Kt) and died in Hd(Ks) can be
stored as a point (t, s). The result is a multiset of points in R2 called the persistence diagram for the
given filtration. The persistence of the homology class α is the difference pers(α) = s− t. In this work,
homology classes with infinity persistence correspond to points of the form (t,N + 1), where N is a
fixed big positive integer. This way, all points in the persistence diagram have finite coordinates. The

§The ground ring considered in this paper is Z/Z2.
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features of higher persistence are represented by the points furthest from the diagonal, while points
nearby to the diagonal may be interpreted as topological noise.

Finally, we summarize the information described by a persistence diagram in a quantity called per-
sistent entropy (introduced in [23]) which consists in the Shannon entropy of the probability distribu-
tion obtained from the given persistence diagram. Specifically, given a filtration and the corresponding
persistence diagram Dgm = {(a j, b j) : j ∈ J}, the persistent entropy of the filtration is defined as
E = −

∑
j∈J p j log(p j) where p j =

` j

L , ` j = b j − a j, and L =
∑

j∈J ` j. Let us notice that if p j ≤ 1, then
log(p j) ≤ 0, so the persistent entropy is always positive. Intuitively, the persistent entropy measures
how different the persistence of the homology classes that appear along the filtration are.

2.2. Neural networks

In this paper, we deal with a supervised classification problem where a set of labelled examples
are provided with the aim of making predictions for unlabelled points. A widely extended machine
learning model for classification problems is neural networks. In general, we could say that a neural
network is a mapping Nω,Φ : Rn → Rk that depends on a set of weights ω and a set of parameters Φ

describing the synapses between neurons, layers, activation functions and any other characteristic of
its architecture. A good introduction to artificial neural networks was given in [35].

The specific kind of neural network architecture used in this paper is a feedforward neural network
composed of a set of neurons hierarchically organized in layers that are fully connected. In this paper,
a 9 × 512 × 128 × 64 × 7 fully-connected feedforward neural network will be used (see Figure 2).
Neural networks can be seen as directed graphs where the input is transmitted and transformed along
the graph using different activation functions such as ReLu, sigmoid, or softmax. In this paper, the
ReLU activation functions are used in the hidden layers and the Softmax activation function in the
output layer.

51
2

12
8

64

Dropout

Figure 2. A 9×512×128×64×8 fully-connected feedforward neural network composed of
an input layer with 9 neurons, three hidden layers with 512, 128 and 64 neurons, respectively,
and an output layer with 7 neurons.

To train the neural network Nw,Φ for a supervised classification task, we will use a labelled dataset
D = {(x, cx)} consisting of a finite set of pairs where, for each pair (x, cx), point x lies in Rn and label cx

lies in {0, 1, . . . , k}, for some k ∈ N. During the training process, the set of weights of the neural network
is updated trying to minimize a loss function which measures the difference between the output of the
network (obtained with the current weights) and the desired output (dictated by the labelled dataset).
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The loss function used in this paper is the cross-entropy loss function which is related to the Kullback-
Leibler divergence: Given two probability distributions P(x) and Q(x) over the same random variable
x, the cross-entropy is computed as H(P,Q) = −

∑
(x,cx)∈D P(x) log(Q(x)). To iteratively update the

weights, the loss-driven training method used in this paper is the Adam algorithm (introduced in [36])
which is a stochastic gradient-based optimization algorithm.

The goal of training a neural network is generalization. That is, we want our neural network to
learn from the given data and to apply the learnt information to new data. One way to measure the
performance of the trained neural network is to split the given dataset into two subsets called the
training set and the test set. When the trained neural network reaches high accuracy on the training set
but performs badly on new data, we say that there is an overfitting. Among the different approaches
to prevent overfitting existing in the literature, in this paper, we will use dropout regularization that
consists in randomly invalidating a certain percentage of the neurons of the neural network during the
training procedure (consult [37] for more information).

3. Description of the method

In this section, we develop an emotion recognition method using persistent entropy and neural net-
works as the main tools. Overall, the method works as follows. The input data are talking-face videos
with precomputed facial landmark points. For each video, we compute a topological feature obtained
from the audio signal together with eight topological features obtained from the image sequence, de-
riving a 9-dimensional vector called the topological signature of the video. The set of topological
signatures obtained from the video dataset will then be used to feed a neural network. The summary
of the process workflow is outlined in Figure 3.

Video

audio signal

image

sequence
landmarks

raw signal

subsampling

(9 frames)

subsampling

(1000 points)

1-dimensional

simplicial 

complex

3-dimensional

cell complex
8 filtrations

lower-star

filtration

persistent

entropy

8-dimensional

vector

9-dimensional

vector

neural

network

1-dimensional

vector

persistent

entropy

Figure 3. Summary of the process workflow for emotion recognition used in this paper.

Let us explain, step by step, the procedure outlined above. We start by extracting the landmark
points on each frame of the input image sequence (see Figure 4). We assume that these landmark
points are already precomputed in the given dataset.

For each frame, we use the landmark points to compute the 2-dimensional simplicial complex that
consists of the Delaunay triangulation of the set of points corresponding to the spatial position of the
landmark points. To connect the topological information along the image sequence, the landmark
points corresponding to the same part of the face in consecutive frames are joined by an edge. A
2-dimensional cell is obtained when the two endpoints of an edge are joined to the two endpoints of
the corresponding edge in the neighbor frame. A 3-dimensional cell is obtained when the vertices
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Figure 4. The landmark points considered in this paper drawn on a face in a video frame
extracted from the RAVDESS dataset.

of a triangle of the Delauney triangulation associated to one frame are joined with the vertices of the
corresponding triangle in the neighbor frame.

The output of the steps described above is a 3-dimensional cell complex K for each input image
sequence, which condenses all gestures the person is making while recording on video. In Figure 5,
the 1-skeleton of the 3-dimensional cell complex K obtained from an image sequence, is pictured.

Figure 5. The 1-skeleton of the cell complex K obtained from an image sequence of a video
extracted from the RAVDESS dataset.

The next step in this process is to sort the cells of K in different ways to obtain different filtrations
with the aim of capturing the small details that characterize an emotion. In this work, eight different
filtrations (two horizontal, two vertical, and four obliques) are used to obtain eight different persistence
diagrams (see Figure 6 to have intuitions). The way to define a filtration is as follows: Given a plane
π, we define the filter function hπ : K → R that assigns to each vertex of K its distance to the plane
π, and to any other cell of K, the maximum distance of its vertices to the plane π. The cells are sorted
according to the function values of their vertices, and then, the lower-star filtration Kπ associated with
the plane π is computed.
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Facial landmarks extraction from
image sequence

Cell complex and 
eight different filtrations

Persistence diagrams

Figure 6. Illustration of the steps followed to compute the eight persistent entropy values
from an image sequence with precomputed landmark points. From left to right: firstly, the
landmark points are extracted from the image sequence. Then, a cell complex K is computed.
Eight different filtrations are used to obtain eight persistence diagrams, one for each filtration.
Finally, the eight persistent entropy values are computed, one for each persistence diagram.

Next, the persistence diagram is computed for each of the eight filtrations. The algorithm used
for this step is described in Algorithm 1 with complexity O(n3) in theory but linear in practice [20,
page 159].

Algorithm 1: Computing the persistence diagram for a filtration [38].
Input: A filtration ∅ = K0 ⊂ K1 ⊂ K2 ⊂ · · · ⊂ Kn = K and an ordering of the cells {σ1, . . . , σm}

of K such that if i < j then ind(σi) < ind(σ j) where ind(σi) = min{r : σi ∈ Kr}

Output: The persistence diagram Dgm
Initialize H = ∅, Dgm = ∅, and f (σi) = 0 for i ∈ {1, . . . ,m}
for i = 1 to m do

if f∂(σi) == 0 then
H ∪ {σi} (a new homology class was born)
f (σi) = σi

Dgm∪{(ind(σi),∞)}
if f∂(σi) , 0 then

Let σ j ∈ f∂(σi) such that j == max{ind(µ) : µ ∈ f∂(σi)}
H \ {σ j} (an homology class died)
foreach x ∈ K such that σ j ∈ f (x) do

f (x) = f (x) + f∂(σi).
Dgm \{(ind(σ j),∞)} ∪ {(ind(σ j), ind(σi))}

The persistent entropy is then computed for each of the eight persistence diagrams. Due to its
formulation, persistent entropy can be computed in linear time. As a result, an 8-dimensional vector is
obtained for each image sequence.

Besides, for each talking-face video, we add a new entry to the 8-dimensional vector computed con-
sisting of the persistent entropy of the lower-star filtration obtained from the 1-dimensional simplicial
complex computed from the raw audio signal of the video as it is done in [17].
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Putting all together, we obtain a 9-dimensional feature vector called the topological signature of the
video. Finally, the topological signatures computed from the talking-face video dataset are then used
to train a feed-forward neural network to classify the videos into the different emotions considered.

4. Stability of the method

Thanks to the work presented in [24] we have the following result.

Lemma 4.1. The so-called topological signature associated with a given talking-face video is stable
in the sense that small changes in the input video produce small changes in the topological signature.

Proof. In [24], it is proved that persistent entropy is stable. It means that small changes in the input data
produce small changes in the persistent entropy value. In this case, the input data are, first, the eight
filtrations obtained from the image sequence and, second, the filtration obtained from the audio signal.
Small perturbations in the filtrations are equivalent to a small displacement of the landmark points in
the image sequence or small changes in the audio signal, that is, they consist of small perturbations in
the input data used to compute the persistent entropy values, concluding the proof. �

5. Experimentation

For experimentation, the Ryerson Audio-Visual Database of Emotional Speech and Song
(RAVDESS [16]) is used, that is a talking-face video dataset where facial landmark points composed of
62 points have been precomputed. This dataset contains the vocalization of two statements in a neutral
North American accent by 24 professional actors (12 female, 12 male). Each expression is produced at
two levels of emotional intensity (normal, strong), with an additional neutral expression. The intensity
fulfils an important role in emotional theory (see the works in [39, 40]). The strong intensity is useful
when we are looking for clear emotional examples. However, as explained in [41], the normal inten-
sity is generally used if we are interested in providing classification for daily life. All actors produced
60 spoken expressions and 44 sung expressions. These vocalizations are available in three formats:
audio-only, video-only and audio-video.

In this paper, we focus on the 60 speech videos provided in the RAVDESS video dataset. The total
tracked files used is 24 actors × 60 speeches. Since we do not consider neutral emotions to avoid an
unbalanced dataset, we used a total of 1344 videos.

The number of frames used as well as the number of points in the subsampled audio signal were
an experimental choice consisting of the minimum number of frames and points needed to obtain
good results and to develop the experiment in a feasible time. The neural network considered was the
simplest one that provided satisfactory results and the weights of the neural network were tuned using
a traditional training procedure.

The steps for experimentation follow the methodology explained in Section 3 and outlined in Figure
3. We first consider the image sequence obtained for each video of the audio-video dataset. For each
image sequence, nine equally spaced frames were selected to have an appropriate representation of the
full image sequence. The landmark points of those 9 frames were then used to build an 8-dimensional
vector following the method described in Section 3. Then, for each video, we added a new entry to the
8-dimensional vector computed consisting of the persistent entropy of the lower-star filtration of the
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Table 1. Confusion matrix of the audio-video experiment for one of the repetitions measured
on the test dataset.

Emotion Calm Happy Sad Angry Fearful Disgust Surprised
Calm 61 0 0 0 0 0 3
Happy 0 48 0 4 0 0 0
Sad 0 0 55 0 0 0 0
Angry 0 0 0 60 0 0 2
Fearful 0 0 0 0 60 0 2
Disgust 0 0 0 0 0 45 1
Surprised 0 0 0 0 4 0 55

1-dimensional simplicial complex obtained from a subsampling of the raw audio signal consisting of
10,000 points. The subsampling process was done uniformly on the signal, maintaining its shape and
main distribution of the spikes. As a result, we obtained a set of 1344 9-dimensional feature vectors,
one for each video of the dataset considered. Finally, this set was split into a training set with 944
vectors and a test set for validation with 400 vectors.

Then, the training set was used to train a neural network with the following standard architecture:
It is composed by five layers with a total of n × 512 × 128 × 64 × 7 neurons, using dropout (20%) in
the first hidden layer with n = 9 being the dimension of the input (i.e., the 9-dimensional topological
feature vectors). The ReLU activation function is used in the hidden layers and the Softmax activation
function in the output layer. We used the default learning rate in the Tensorflow package, which is
0.001.

The neural network was trained during 500 epochs and the experiment was repeated 10 times using
sparse categorical cross-entropy as the loss function and the Adam training algorithm. The accuracy
values for those repetitions are shown in Figure 7 for the training set and in Figure 8 for the test set.

Figure 7. Accuracy values on the training set during 500 epochs. 10 repetitions.

Figure 8. Accuracy values on the test set during 500 epochs. 10 repetitions.
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The highest values reached were 99.9% of accuracy on the training set with 98.02% of accuracy on
the test set. Average accuracy was 95.97% on the test set. A confusion matrix for the experiment is
shown in Table 1.

To test the importance of the eight filtrations in the computation of the topological signatures used
to feed the neural network in the methodology presented in this paper, Table 2 shows how the accuracy
of the feed-forward neural network applied increases when we use more filtrations, concluding that
using the eight filtrations we reach the highest accuracy. Notice that all the parameters considered to
train and test the neural network are the same as above, except for the input layer that increases in each
experiment from n = 2 to n = 9 at the same time that we increase the number of filtrations considered.

Table 2. Experimental results highlighting the need of the eight different filtrations to com-
pute the topological signature of a talking-face video to recognise emotions.

Number of filtrations
Filtrations

Average accuracy
on the test setAudio signal Image sequence

1 1 → 21.49%
1 3 → ↑ ↗ 33.47%
1 5 → ↑ ↗ ↖ 66.05%
1 6 → ↑ ↗ ↖ ↓ 75.05%
1 7 → ↑ ↗ ↖ ↓ ↙ 79.98%
1 8 → ↑ ↗ ↖← ↓ ↙ ↘ 95.97%

The state-of-the-art methods we compare ours to are [42–45]. All of them used the audio-video
RAVDESS dataset. As we can see in Table 3, our method outperforms them. In [42], a model is
proposed based on three deep networks that are fed by image sequences, facial landmark points, and
acoustic features, respectively. Such a method depends on three deep neural networks and they might
need more input data to reach higher accuracy. Nonetheless, no drawback is reported in that paper,
perhaps because it outperformed the state-of-the-art methods at the time of publication. In [43], the fu-
sion of visible images and infrared images with speech are used to feed an ensemble method based on
convolutional neural networks. The method does not use the precomputed landmark points provided
in the RAVDESS dataset. Nevertheless, a similar accuracy to that of the method presented in [42] was
obtained, perhaps because a bigger training data was used, obtained through augmentation methods,
to feed the deep neural network system designed. In [44], the authors proposed a multimodal emotion
recognition. For the speech-based modality, they obtained good accuracy results when used transfer
learning techniques, confirming that the training was more robust when it did not start from scratch and
the tasks were similar. Regarding the facial emotion recognizers, they propose a pre-trained Spatial

Table 3. Comparison of our method with state-of-the-art methods.

Paper Year Dataset Average accuracy on the test set
[42] 2020 RAVDESS 87.11%
[43] 2020 RAVDESS 86.36%
[44] 2021 RAVDESS 80.08%
[45] 2020 RAVDESS 76.30%
Our method − RAVDESS 95.97%
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Transformer Network with saliency maps and facial images followed by a bi-LSTM with an attention
mechanism. These two modalities were then combined with a late fusion strategy. As the authors
claimed, the method lacked in modeling the dynamic nature of the emotions represented in the im-
age sequence. Finally, in [45], an attention mechanism is used as a powerful approach for sequence
modeling, achieving an enhanced multimodal emotion recognition and highlighting the importance of
exploiting the temporal strength of audio and video signals for emotion recognition.

The advantages of the tools applied in our approach are several, including the robustness to per-
turbations in the input data that is theoretically guaranteed, and the low-dimensional representation
obtained using persistent entropy, resulting in simple input data for almost any kind of machine learn-
ing model. The latter advantage also allows for fast training and easy model tuning. Roughly speaking,
the crucial part of the classification is not the machine learning model but the robust, explainable and
interpretable preprocessing persistent homology application.

6. Conclusions and future works

In this work, we have developed a novel method using persistent entropy and neural networks
for emotion classification of talking-face videos. The results reached are promising and competitive,
beating the performance reached in other state-of-the-art works found in the the literature. We com-
bined audio-signal and image-sequence information to develop our topology-based emotion recogni-
tion method. The main drawback of our methodology is the need of precomputed landmarks and a
video long enough to be able to select a representative subset of frames to compute the cell complex.
This fact makes our method not useful in real-time applications.

The following future works are planned to be explored: To expand the topological signature by
extracting more information from the audio signals. To divide the landmark points into different subsets
to determine regions or pairs of regions that contain discriminative landmark points for each facial
expression. To use the 3-dimensional information provided by the landmark points. To take advantage
of the depth information of the landmark points could be a challenging problem for the future together
with considering higher dimensional topological information once that we increase the dimension of
the data we are dealing with.

Code availability

The code developed is available at the link https://github.com/Cimagroup/AudioVisual-
EmotionRecognitionUsingTDA. All the parameters are provided in the implementation to be able to
perform a complete replication of the experiments using the RAVDESS database and the provided
code. If other dataset different to RAVDESS is used, then the facial landmark points should be com-
puted before applying the algorithm proposed in this paper.
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