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Abstract: Since the COVID-19 outbreak, the global economy has been hit hard, and the development of 

renewable energy and energy transitions has become a common choice for all countries. The development 

of clean energy firms has become a hot topic of discussion among scholars, and the relationship between 

the stock prices of clean energy firms and the international crude oil market has attracted more attention. 

In this paper, we analyze the volatility connectedness between crude oil and Chinese clean energy firms 

from 2016 to 2022 by building time-varying vector autoregressive models with stochastic volatility 

components and time-varying spillover index and dynamic conditional correlation GARCH models. The 

results of the shock effects analysis show that international crude oil volatility had a significant short-term 

positive impact on Chinese clean energy firms during the COVID-19 outbreak period. Regarding spillover 

analysis, firms with large total market capitalization tended to be the senders of volatility spillovers, while 

smaller firms were likely to be the recipients. In terms of dynamic correlation analysis, the correlation 

between international crude oil and each clean energy firm was found to be volatile, and the dynamic 

correlation coefficient tended to reach its highest point during the COVID-19 outbreak. Meanwhile, from 

the optimal portfolio weighting analysis, it is clear that all optimal weights of international crude oil and 

medium clean energy firms will increase during an epidemic outbreak, and that more assets should be 

invested in clean energy firms. 
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1. Introduction  

To date, since the COVID-19 outbreak, the global economy has been hit hard and countries have 

generally chosen large-scale investments to boost their economies. The development of renewable energy 

and energy transitions has become a common choice for all countries. Energy transitions have become one 

of the most prominent megatrends in the world. In this context, the impact of the COVID-19 pandemic on 

crude oil and clean energy markets has become the focus of scholars’ attention. In the study by De Blasis 

and Petroni [1], we learn that the COVID-19 pandemic has had a two-fold impact on crude oil and clean 

energy markets: on the one hand, the predictability of volatility has strongly decreased; on the other hand, 

the linkages of the price time series have been modified. For this reason, it is of great importance to re-

analyze the volatility relationship between crude oil and clean energy markets. As the world’s largest 

producer and consumer of renewable energy and the world's largest importer of crude oil and natural gas, 

China has become one of the most important segments of the global energy landscape. An analysis of the 

Chinese case can provide an important basis for existing research findings. However, in terms of the 

amount of available literature, relatively few articles have been analyzed with China in mind, which clearly 

does not satisfy the need for scholars to study crude oil and clean energy markets. In this paper, we analyze 

the volatility connectedness between international crude oil and Chinese clean energy firms, which will 

provide an important reference for the development of clean energy firms in all regions of the world. 

At present, although China’s GDP still maintains high-speed growth, the problems of energy 

consumption and environmental degradation are becoming increasingly serious (e.g., high pressure on 

internal energy supply, high external dependence on energy consumption and high vulnerability to 

fluctuations in international crude oil prices). To solve the conflict between energy consumption and nature, 

China has put forth a lot of discussions on energy structure innovation. In recent years, government reports, 

development outlines, and other documents have pointed out that it is the general trend that new types of 

clean energy will replace traditional energy. The development and utilization of renewable and clean 

energy resources such as hydropower, wind energy, and nuclear power are more in line with the trajectory 

of energy development, and they play an important role in establishing a sustainable energy system and 

promoting economic development and environmental protection. Considering that the composition of 

China’s coal-dominated energy resources will not change in the short term, the transition of power-

generation firms from traditional energy to clean, low-carbon and renewable energy is a gradual and long-

term process, not a one-time sudden change. Long-term observation of volatility in crude oil energy 

markets is important for China's economic growth and business development. 

In the field of international research, the analysis of the relationship between the international crude 

oil market and the clean energy industry has been the focus of research in energy economics. Many 

conclusions with important implications have been obtained in the literature. Although these studies did 

not draw conclusions for China, they provide an important basis for our analysis. For example, Managi 

and Okimoto [2] concluded that oil prices and clean energy stock prices are positively correlated after 

structural disruptions. Özdurak [3] had similar findings. The results of their study indicated that, when oil 

prices fall, the volatility index typically rises while investments in renewable energy tend to fall. Henriques 

and Sadorsky [4] indicated that there is a linear Granger causality from the prices of crude oil and clean 

energy stocks. Reboredo [5] argued that oil prices have a significant impact on the clean energy index; in 
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particular, oil prices contribute about 30% to the downside and upside risk of renewable energy stocks. 

Bondia and Ghosh [6] found that oil prices have a unilateral effect on the stock prices of alternative energy 

firms. In the causal relationship, global crude oil prices will show a downturn in the short term, which 

may lead to a decline in the share prices of alternative energy firms. Similarly, Zhang et al. [7] found that 

short-term oil supply shocks have a major impact on clean energy. Su et al. [8] used the USA EPU 

(Economic Policy Uncertainty) monthly index and WTI (West Texas Intermediate) spot price data from 

1996 to 2019; they revealed that there is a one-way Granger causality link between the USA EPU and spot 

price of WTI crude oil. The above findings represent previous scholars’ analysis of the relationship 

between the international crude oil market and clean energy firms. Based on their studies, we can 

understand that there is indeed a significant and complex relationship between the international crude oil 

market and clean energy firms in the international context. However, in China, we are unable to draw 

sufficient conclusions echoing this because the relevant studies are not systematic. With this paper, we 

aim to complement this aspect of research. 

In addition, through a recent research literature search, we found that the impact of crude oil price 

shocks on various markets changed after the COVID-19 outbreak (Jiang et al. [9] and Ouyang et al. [10]). 

In this regard, if we can analyze the relationship between the international crude oil market and clean 

energy in the current COVID-19 era, this will be of great significance for the development of Chinese 

clean energy companies.  Meanwhile, we believe that constructing spillover indexes using time-varying 

parametric models and considering the volatility correlation analysis between clean energy firms and other 

markets is an important method to study clean energy firms in the COVID-19 era. Several international 

scholars have already obtained some meaningful conclusions by using this method. Liu and Hamori [11] 

showed that the return and volatility spillovers may be enhanced due to specific events or sudden price 

changes. Using a time-varying VAR (Vector Auto Regressive) model with stochastic volatility, Ghabri et 

al. [12] found that clean energy stocks tend to see a marked increase in returns following a sharp collapse 

in crude oil prices. Tiwari et al. [13] showed that the dynamic total connectedness between clean energy 

markets and green bonds and carbon prices is heterogeneous over time and related to economic events. 

Clean energy dominates all other markets, and it is considered a major net spreader of shocks across the 

network. Using a TVP-VAR (Time Varying -Vector Auto Regression) model, Liu and Hamori [14] 

indicated that the dynamic aggregate connectedness between clean energy stocks, technology stocks and 

crude oil varies over time and increases significantly during financial turbulence. Dynamic aggregate 

volatility connectedness is very sensitive to financial turmoil. In the study by Yahya et al. [15], they 

observed the dynamic effects of the financial crisis and the COVID-19 epidemic on the clean energy index 

and crude oil prices by dividing the data sample into several phases. Their research confirmed that the 

price transmission path between the two asset classes is nonlinear. And, in the post-crisis subsample, the 

clean energy index became the main factor affecting crude oil prices. 

The above research results show that, due to the frequent occurrence of financial market volatility 

events in recent years, which were affected by uncertain factors such as the COVID-19 epidemic, the 

volatility transfer between the international crude oil and clean energy markets is more significant, and 

the dynamic correlation between the two is enhanced. However, whether the above findings hold true in 

China and whether there are differences across different types of clean energy firms, which is the focus of 

our study. We know from the studies of Hsiao et al., Lv et al. and Zhu et al. [16–18] that fluctuations in 
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international oil prices tended to affect the share prices of listed Chinese renewable energy firms before 

the COVID-19 outbreak, and that there are significant bidirectional risk spillovers between oil and several 

clean energy sectors in China. Nowadays, the change in the spillover effect between international oil prices 

and Chinese clean energy firms due to the COVID-19 outbreak deserves to be analyzed again. It has also 

become more important to consider the spillover effects of oil on clean energy markets from a time-varying 

perspective. Therefore, combining the empirical summary of the above literature and the new impact 

brought by the COVID-19 epidemic now, we also considered the TVP-VAR model for data analysis. The 

time-varying impulse response analysis of TVP-VAR can obtain the response of each firm after receiving 

the crude oil shock and preliminarily obtain the impact form of the crude oil. Next, we can construct a 

spillover index by using variance decomposition to further analyze the volatility shocks received or sent 

by each firm. 

Combining the current state of the COVID-19 epidemic with the findings of Liow et al. [19], we can 

get an idea of the current situation in the Chinese financial markets. As China is currently accelerating the 

relaxation of various capital controls and promoting the further opening of its domestic market, its 

financial markets are attracting increasing interest from both domestic and foreign investors. To deal with 

the risks associated with financial market volatility events, the direction of venture capital research is also 

worthy of our consideration. From an international perspective, there are already some reports analyzing 

the international situation from which we can gain some experience. For example, Dutta [20] found that a 

reduction in the oil price implied volatility index implies a reduction in the volatility of clean energy 

realizations. If there are risk seekers who wish to obtain higher returns from risk, their asset allocation 

must be optimized or reset. At the same time, considering the impact of substitution effects, we also believe 

that it is worthwhile to analyze portfolios of international crude oil and clean energy firms under different 

scenarios. On the one hand, higher oil prices can promote the use of new energy sources, thus reducing 

the production costs of firms. On the other hand, falling oil prices can reduce the use of clean energy 

sources (Song et al. [21]). In addition, the effect of the stock market cannot be ignored, and the tail 

dependence of clean energy and oil prices is more moderate in the case of a bull market for clean energy 

and high oil prices coexisting (Tiwari et al. [22]). If we want to grasp the situation mentioned above, we 

should analyze the portfolio from a dynamic perspective; and, investors need to determine a reasonable 

energy investment policy based on the way volatility is transmitted in different periods (Foglia and 

Angelini [23] and Li et al. [24]). Regarding methods to develop portfolios, both Sadorsky [25] and Ahmad 

et al. [26] used MGARCH (Multivariate Generalized Autoregressive Conditional Heteroskedasticity) 

models to construct optimal diversification strategies for clean energy stocks. Maghyereh et al. [27] 

combined wavelet analysis and MGARCH to confirm a strong volatility transfer between clean energy 

and technology stock indices. They both obtained meaningful conclusions and demonstrated that the 

GARCH family of models has some advantages for this application. However, to better consider the 

portfolio from a dynamic perspective, we consider the analysis through a time-varying spillover index and 

dynamic conditional correlation GARCH (DCC-GARCH) model. Moreover, to diversify clean energy 

stock portfolios more effectively, we should consider the unique characteristics of each clean energy 

subsector and analyze portfolio management at a disaggregated level, which is an important idea proposed 

by Pham [28]. In conclusion, oil price volatility plays a crucial role in portfolio strategies. Different 

portfolio strategies should exist in different periods. Studying the link between different types of clean 
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energy firms and the international crude oil market is extremely important to establish optimal investment 

strategies for the firms concerned. 

Based on the above analysis, a large number of scholars have carried out fruitful research on the 

connection between oil and clean energy firms from the perspective of qualitative and quantitative analysis 

by using theoretical and quantitative methods, but the following aspects are still worthy of further 

consideration. First, most of the studies on the relationship between international crude oil and clean 

energy firms have been analyzed from a global perspective, and the analysis on China is less 

comprehensive and less frequent. China, as a major clean energy development country, has clean energy 

market development opportunities that are worth exploring. Second, the existing literature does not 

consider changes in the form of impact in sufficient detail when analyzing the impact of the international 

crude oil market on clean energy firms. Often, only positive or negative correlations between the two are 

simply described. An analysis like the time-varying impulse response could better illustrate how the 

international crude oil market affects clean energy firms over time. This is important to consider the 

relationship between international crude oil markets and clean energy firms in the COVID-19 era. Third, 

when considering portfolio issues, most articles consider the use of MGARCH models for analysis, which 

are not good at giving dynamic portfolio recommendations; this may also return to the problem of lack of 

adaptability in the COVID-19 era. Finally, the existing literature tends to describe the use of various clean 

energy indices to represent the operations of the clean energy industry. However, such data may not be 

intuitive. In China, clean energy indexes are not disaggregated in terms of energy type, and they do not 

take into account the effect of firm size. We cannot consider well the relationship between each type of 

firm and international crude oil by using the index. Therefore, a direct analysis of each firm's stock price 

can provide more realistic results. Moreover, the firms we selected are all firms that play a leading role in 

various types of clean energy industries and have the top firm size in the industry, so their returns are 

representative. 

In this regard, to better explore the connectedness between the clean energy market and the crude oil 

market, we selected the stock price of clean energy firms as a proxy indicator of the clean energy industry 

and conducted analysis and research in the following three aspects using this indicator. First, we analyzed 

the impact of different clean energy firms from international crude oil shocks based on the impulse 

response function of the time-varying vector autoregressive model with stochastic volatility components 

(TVP-SV-VAR) to analyze the shock effects. Second, we calculated the spillover index and used it to 

analyze the volatility connectedness between international crude oil and clean energy firms, as well as to 

empirically demonstrate the spillover connectivity within the clean energy market. Third, we used the 

DCC-GARCH model to analyze the relationship between international crude oil and clean energy firm 

stock prices from the perspective of portfolio diversification and risk management, and give related 

investment strategies. 

The main contributions of this paper are as follows. i). We have established the TVP-SV-VAR model 

from a dynamic perspective to analyze the impact of international crude oil on different Chinese clean 

energy firms at different times based on their impulse response; this solves the defects of traditional 

econometric models with constant parameters and static analysis. ii). We calculated the time-varying 

spillover index by referencing the study of Antonakakis [28] to more effectively analyze the international 

crude oil and clean energy industry between spillover effects. The advantage of the time-varying spillover 



4598 

Electronic Research Archive  Volume 30, Issue 12, 4593-4618. 

index is that it can more accurately accommodate potential changes in parameter values, does not require 

consideration of the size of the rolling window, and does not lose observations in the calculation. iii). The 

DCC-GARCH model enables us to calculate the dynamic conditional correlation coefficient and construct 

the optimal portfolio diversification strategy. This allows us to analyze the relationship between oil prices 

and Chinese clean energy stock prices from a portfolio diversification and risk management perspective, 

thereby reducing investment risk during major macroeconomic events. iv). This paper describes the use 

of a representative selection of Chinese clean energy firms for the empirical analysis, which allowed us to 

analyze the volatility connectedness between international crude oil prices and the Chinese clean energy 

market in a more intuitive way than has been done in previous studies on the Chinese clean energy market. 

The analysis also gives each firm a clearer understanding of its own situation, which is important for each 

firm's own planning, as well as for the experience of other firms. The above-mentioned contributions 

largely complete the study of the development of clean energy firms in China. 

Based on the above analysis, the sections of this paper were organized. In Section 1, we point out the 

significance and contribution of this paper by presenting the background and existing research. In 

Section 2, the model used in this study will be described as a way to provide the theoretical basis. In 

Section 3, the rationale for data selection will be described, along with a preliminary data analysis. In 

Section 4, we analyze the impact of the international crude oil market on clean energy firms by 

constructing impulse response functions using the TVP-VAR model. In Section 5, we examine the 

volatility linkage between the international crude oil market and clean energy firms by calculating the 

spillover index using the TVP-VAR model. In Section 6, we give portfolio recommendations for different 

periods as a basis for investors to consider investment risk. Finally, in Section 7, the conclusions of this 

paper are presented. 

2. Materials and methods 

In this section, the TVP-SV-VAR model and the DCC-GARCH model are presented, which are used 

for the analysis of shock effects and dynamic correlation and portfolio management, respectively. For the 

analysis of spillover effects, we calculated the time-varying volatility spillover index based on the work 

of Antonakakis et al. [29]. 

2.1. TVP-SV-VAR 

The assumption that the coefficients of the traditional VAR model are constant limits the attention to 

the problem of the existence of nonlinear relationships between the effects of variables in the event of 

sudden changes in the system. In response to the shortcomings of VAR models in practical use, 

Primiceri [30] introduced a nonlinear time-varying analysis tool, i.e., the time-varying parameter vector 

autoregressive (TVP-SV-VAR) model, for explaining the time-varying and nonlinear characteristics 

among economic phenomena. To study the dynamic shock effects of international crude oil prices on the 

clean energy market, we constructed a TVP-SV-VAR model for analysis. The coefficients and covariance 

matrix of this model can change continuously over time, so it can flexibly capture the time-varying and 

asymptotic characteristics of the relationship between variables and accurately observe the interaction 
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mechanisms among economic variables at different times. Compared with the previous models, the TVP-

SV-VAR model can not only effectively improve the estimation accuracy, but also better fit the economic 

data at different time points. 

The TVP-SV-VAR model evolved from the structural vector autoregressive (SVAR) model. The form 

of the SVAR model with s -lags is as follows: 

 1 1 2 2 , 1, ,t t t S t S tAy F y F y F y t s n− − −= + + + + = +    (1) 

where ty  is a vector of endogenous variables, A  is a k k  matrix, 1, , sF F  are 1k  coefficient matrices, 

1, ,t t s− −  are different lags, t  is a 1k  vector of errors, ~ (0, )t N   and can be written as follows: 
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Now, we can write (1) as 

 1

1 1 2 2t t t S t S ty B y B y B y A −

− − −= + + + +   (2) 

where -1

i iB A F=  and ~ (0, )t kN I , and we stack the coefficient matrix iB  by row elements and define 

1 2( , , , )t k t t t sX I y y y− − −
  =  ; (2) can be written as  

 1 , 1,...,t t ty X A t s n −= +  = +  (3) 

  denotes the Kronecker product. The SVAR model usually assumes that the parameters are constant. 

Here, we assume that all parameters of this class are time-varying. Ultimately, the TVP-SV-VAR model 

is as follows: 

 1

t t t t t ty X A −= +   (4) 

tA  and are time-varying, t  is the lower triangular element of tA  and 1( , , )t t kth h h = . The log variances 

are 
2ln ,  1, , ,  1, ,jt jth j k t s n= = = + . 

1t t t  + = + , 1t t t  + = +  and 1t t hth h + = + . 

2.2. DCC-GARCH 

To calculate the dynamic conditional correlation coefficients, we will use the DCC-GARCH model:  

 ( )t t tr μ θ ε= +  (5) 
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 ( )1/2 , 0,t t t t nε H u u iid I=  (6) 

where tr  is a vector of volatilities, tμ  denotes a vector of conditional means, tε  is residual, and tH  is a 

conditional covariance matrix of tμ  and tr . tH   can be decomposed as t t t tH D R D= , where 
1/2 1/2( , , )t iit NNtD diag h h=  is the diagonal square root conditional variance that stands for the time-varying 

conditional correlations matrix, which is defined as 1/2 1/2( ) ( )t t t tR diag Q Q diag Q− −= , where tQ  is a 

symmetric positive definite matrix, i.e.,  

 
1 1 1(1 )t t t tQ λ ν Q λu u νQ− − −
= − − + +  (7) 

where Q  is a correlation matrix of the standardized residuals 1tu − , while λ  and   are non-negative 

parameters satisfying 1λ ν+ < . Finally, the time-varying correlations are calculated as follows: 
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2.3. Time-varying volatility spillover index 

The TVP-VAR method proposed by Antonakakis et al. [29] extends the originally proposed 

connectedness approach of Diebold and Yılmaz [31] by allowing the variance-covariance matrix to vary 

via a Kalman filter estimation with forgetting factors, in the spirit of Koop and Korobiliz [32]. To calculate 

the GIRF (Generalized Impulse Response Function) and GFEVD (Generalized Forecast Error Variance 

Decomposition), we transform the TVP-VAR to its vector moving average representation: 
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where it directly follows: 
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The 
,

( ( ))
ij t

GIRFs H  represent the responses of all variables j , following a shock in the variable i . We 

computed the differences between an H-step-ahead forecast, which can be calculated by 

 
, 1 , 1 1( , , ) ( | , ) ( | )t j t t t H j j t t t J tGIRF H E y e E y − + − + − = =  −   (12) 
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where 1t−  represents all information available until 1t −  and 
je  is a selection vector with unity in the 

-thj  position, and zero otherwise. In turn, we compute the 
,

( ( ))
ij t

GFEVD H , which represents the pairwise 

directional connectedness from j  to i  and illustrates the influence that the variable j  has on the variable 

i  in terms of its forecast error variance share. These variance shares are then normalized so that each row 

sums up to one, meaning that all variables together explain 100% of the variable i  forecast error variance. 

This is calculated as follows: 
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= = ， , where the denominator represents the cumulative effect of all of the 

shocks, while the numerator illustrates the cumulative effect of a shock on the variable i . Now, we can 

calculate the various types of spillover indexes: 

(I) Total connectedness index 
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(II) The directional volatility spillover index 

Total directional connectedness to others: 
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Total directional connectedness from others: 
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(III) Net total directional connectedness 

 
, , ,( ) ( )i t i j t i j tC C H C H→ = −  (18) 

3. Data presentation and variable interpretation 

Our data set comes from the wind database of eight Chinese clean energy firms and WTI daily closing 

prices, among which the clean energy firms are wind power, nuclear power, hydropower, photovoltaic 

(PV) power, and other types, specifically, Xinjiang Goldwind Science and Technology Co., Apparatus 

Stock Co., Ltd., China National Nuclear Power Co., Ltd., China General Nuclear Power Group and China 

Yangtze Power Co. The WTI crude oil price index was derived from the USA Energy Information 

Administration. Specifically, we used these firms' stock data (daily closing prices). To ensure that the 

selected firms are representative, we selected firms based on the following three constraints: 1) the selected 

firms should play a leading role within a certain type of clean energy industry and have a large size (with 

high total assets); 2) the firm’s stock data should be available and should have been listed before 2016 to 

ensure an adequate sample size; 3) the main business is clean energy. Also, considering the estimated cost 

of the model, the eight firms mentioned above are the ones that best met our requirements. In terms of 

international crude oil data selection, based on the results of the study of Foglia and Angelini [23], we 

chose to use the WTI as a representative data source for international crude oil to study its impact on clean 

energy firms. The sampling period was from January 4, 2016, to March 7, 2022, excluding the time when 

all firms did not open at the same time, leaving 1447 samples. At the same time, considering the existence 

of dividends and allotment of shares in individual stocks, the closing price on the dividend date is treated 

as ex-rights and ex-dividends in this paper, and the treated closing price can reflect a more realistic stock 

price. In this work, the log returns were set as follows: 

 , , , 1(ln ln ) 100i t i t i tr P P −= −   (19) 

where 
,i jP

 
is the closing price of the firm i  on the day t . 

Table 2 provides a descriptive analysis of the returns of each firm and shows that the mean of the 

returns of all eight clean energy firms and the WTI were close to 0. The returns of XGST, GGEP, LGET, 

and TW had a left-skewed distribution, while TEAS, CNNP, CGNP, and CYP were right-skewed. The 

kurtosis of all Clean Energy and WTI returns are all above 3 for High Kurtosis. 
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Table 1. Symbol descriptions. 

Firm Name Xinjiang Goldwind Science 

And Technology Co., Ltd. 

Tebian Electric 

Apparatus Stock Co., 

Ltd. 

China National Nuclear 

Power Co., Ltd. 

China General Nuclear 

Power Group 

Self-name 

abbreviation 

XGST TEAS CNNP CGNP 

Main business 

type 

Wind Power Wind Power Nuclear Power Nuclear Power 

Firm Name China Yangtze Power Co., 

Ltd. 

Guangxi Guiguan 

Electric Power Co., Ltd. 

LONGi Green Energy 

Technology Co., Ltd. 

Tongwei Co., Ltd. 

Self-name 

abbreviation 

CYP GGEP LGET TW 

Main business 

type 

Hydropower Hydropower Photovoltaic (PV) Photovoltaic (PV) 

Table 2. Description statistics. 

Firm Mean Median Maximum Minimum S.D. Skewness Kurtosis 

XGST −0.02  −0.07  11.00  −28.09  2.82  −0.55  11.64  

TEAS 0.04 0.00 9.95 −10.61 2.30 0.28 7.20 

CNNP −0.01 0.00 13.15 −9.06 1.63 0.24 10.64 

CGNP −0.02 0.00 13.04 −10.58 1.70 0.15 8.58 

CYP 0.04 0.00 6.59 −6.07 1.12 0.08 5.86 

GGEP −0.01 0.00 12.07 −30.20 1.92 −2.68 50.19 

LGET 0.13 0.08 9.56 −36.75 3.26 −1.70 21.28 

TW 0.08 0.00 10.74 −67.84 3.71 −4.15 80.34 

WTI 0.12 0.25 46.56 −28.22 3.37 1.52 47.25 

4. Impact effect analysis 

Since non-stationary time series cannot be directly used to build TVP-SV-VAR models, the results 

obtained were biased and suffered from spurious regression problems. Therefore, the selected variables 

needed to be tested for smoothness, i.e., via the unit root test. In this study, the ADF (Augmented Dickey-

Fuller) test, which is most commonly used in empirical studies, was used to test the smoothness of each 

variable. The test results show that, after calculating the log returns, all variable series were smooth at the 

5% level, and that a TVP-SV-VAR model can be constructed for the returns. 

4.1. Parameter estimation results  

In this study, the lag order of the VAR model was selected according to the AIC (Akaike Information 

Criterion), HQ (Hannan-Quinn criterion), SC (Schwarz Criterion), and FPE (Final Prediction Error) 

criteria. The results all show that the lag order was optimal when set to 1, so the model lag order was set 
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to 1. In this study, MATLAB software was used for simulation testing, and the number of Markov Monte 

Carlo algorithm sampling runs was set to 10,000 considering the computational volume and other issues. 

Meanwhile, to ensure that the obtained samples did not depend on the selection of the initial values, the 

burn-in samples of the first 1,000 draws were discarded in the simulation process. The posterior means, 

standard deviations, Geweke values, and inefficiency factors (Inef.) of the parameters to be estimated are 

shown in Table 4. As can be seen in Table 3, the posterior means of each parameter were within the 95% 

confidence interval, and the Geweke values were all below 1.96, which indicates that the parameters 

converged to the posterior distribution; so, the parameters estimated by the model are more stable. Burn-

in sampling in the iteration cycle can effectively make the Markov chain converge. 

Table 3. TVP-SV-VAR model parameter estimation. 

Parameter Mean S.D. 
Upper 95%  

confidence interval 

Lower 95%  

confidence interval 
Geweke Inef. 

sb1 0.0023 0.0002 0.0018 0.0028 0.663 53.05 

sb2 0.0023 0.0003 0.0018 0.0029 0.365 66.75 

sa1 0.0153 0.0043 0.0097 0.0246 0.019 203.05 

sa2 0.0059 0.0016 0.0038 0.0095 0.055 185.96 

sh1 0.3593 0.0353 0.2940 0.4306 0.760 73.39  

sh2 0.2904 0.0276 0.2395 0.3492 0.000 77.67 

4.2. Impulse response analysis 

First, this paper will describe the effect of unit shocks of the independent variable on the dependent 

variable at fixed time intervals based on the equal-interval impulse responses. Here, the lags of the equal-

interval impulse responses were set to 0, 1, and 2 periods, respectively. Accordingly, we were able to 

analyze the impact of short-term international crude oil volatility shocks on the volatility of clean energy 

firms (the long-term impact is smaller, so we did not analyze it specifically in this study). The impulse 

response results are shown in Figure 1. The impulse response results show that shocks from international 

crude oil volatility have a mostly positive impact on the volatility of every clean energy firm. Using 

February 4, 2020, as the opening date of the COVID-19 outbreak, we found a few things. After the 

outbreak of COVID-19, the impact of international crude oil on most clean energy firms tended to be 

positive. Wind-type firms performed more significantly, while PV-type firms performed more moderately. 

Also, since the equal-interval impulse response has been varying with time, we can understand that the 

impact of international crude oil on the clean energy industry is susceptible to changes due to various 

macroeconomic events. By comparing the effects of international crude oil shocks on clean energy firms 

at different time intervals, it can be seen that the effects of international crude oil shocks on clean energy 

firms are stronger at 1-period ahead than at 2-periods ahead, indicating that the effects of international crude 

oil on clean energy firms are very short-term, and that clean energy firms need to be wary of sudden shocks 

from international crude oil in the event of macroeconomic turbulence like the COVID-19 epidemic. This is 

consistent with the findings of Ferrer et al. [33]. Moreover, the shock from international crude oil to itself 

comes mainly from its current period, and its impact has remained almost unchanged up to 2022. 
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Next, we used the time-sharing impulse responses to analyze the impact of international energy prices 

on each clean energy firm at a specific time. Specifically, we selected May 6, 2019 (USA tariff hike), 

February 3, 2020 (China COVID-19 outbreak), and February 24, 2022 (China stock market turmoil) as 

specific time points. After giving a one-unit shock to international crude oil, we analyzed the response of 

each firm to it. As shown in Figure 2, it can be seen that, when international crude oil was hit by a major 

macroeconomic event, all firms responded in the short term, but almost all firms returned to flatness within 

five periods. This indicates that international crude oil volatility will only have a short-term impact on 

individual clean energy firms in the event of a major event. It is also easy to see that the response of the 

same firm to international crude oil prices tended to take the same form in all three events. This situation 

suggests that the three major events in recent years have had a relatively similar impact. Comparing the 

situation of each firm, only the hydropower type of firm had a more obvious negative response, while all 

other firms had a positive response; and, the event that produced a negative response was the USA tariff 

hike on May 6, 2019. Therefore, when major events occur, clean energy firms need to be aware of the 

stronger short-term impact of international crude oil. Hydropower-type firms need to develop better 

countermeasures because the form of response is not easily determined. 

 

Figure 1. Equal-interval impulse response plots of international crude oil for eight clean 

energy firms. 
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Figure 2. Time-sharing impulse response plots for international crude oil to clean energy firms. 

4.3. Robustness test 

In this section, to illustrate the robustness of the model and the representativeness of the selected 

firms, we added four other large clean energy firms to the TVP-SV-VAR model and constructed the 

impulse response functions again. These four firms are Shanghai Huitong Energy Co., Ltd. (HT, wind 

power), Sufa Technology Industry Co., Ltd. (STI, nuclear power), SDIC Power Holdings Co., Ltd.  (SDIC, 

hydropower), and Shenzhen Topray Solar Co., Ltd. (TS, photovoltaic). From the equal-interval impulse 

response and time-sharing impulse response results, we found that the original eight clean energy firms’ 

impulse results did not change, which indicates the robustness of our results. As for the four new firms 

added to our model, we found that the previous findings also apply here. After the outbreak of COVID-

19, the impact of international crude oil on most clean energy companies tended to be positive. The wind 

energy types reacted more strongly, while the PV types reacted more moderately. When international crude 

oil is hit by a major macroeconomic event, all firms will respond in the short term, but almost all firms 

return to flatness within five periods. All firms of the hydropower type responded significantly negatively. 

Thus, our conclusions based on the impulse responses of the eight firms are representative. And, since 

these eight firms have higher market capitalization, larger sizes, and better earnings, which are difficult 

for other firms to surpass, it will be more convincing to continue the analysis using the eight firms in this 

paper. Therefore, for the next analysis, we did not replace the data but still used these eight firms to 

represent the operation of different types of clean energy industries for analysis. 
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Figure 3. Equal-interval impulse response plots of international crude oil for 12 clean energy 

firms. 

 

Figure 4. Time-sharing impulse response plots of international crude oil for 12 clean energy 

firms. 
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5. Analysis of time-varying spillover effects  

In this section, we will describe a further study of volatility connectedness by calculating a spillover 

index. The spillover index was used to compare volatility spillovers between international crude oil firms 

and clean energy firms, and likewise to demonstrate spillover connectivity within the clean energy market. 

To identify periods of high inter-market spillover, we first plotted the TOTAL index to identify periods of 

high inter-market spillover, and then plotted the related images based on the TO spillover index, FROM 

spillover index, and NET spillover index for each firm to visualize the related spillover. 

The TOTAL spillover index has been volatile with significant fluctuations since the beginning of 

2016. At the end of 2017, the spillover index dropped to its lowest point, and then the TOTAL spillover 

effect for international crude oil and clean energy firms increased to its first extreme point of about 35% 

when the USA began imposing foreign tariffs. In late 2018, USA stock prices fell sharply, causing the 

spillover index for crude oil and clean energy firms to increase once again to more than 40%. As the USA 

continued to impose tariffs, the TOTAL spillover index continued to increase, continuing to reach a new 

extreme point. In early 2020, following the COVID-19 outbreak, the TOTAL spillover index rose again, 

reaching over 50% and peaking at nearly 55% throughout the COVID-19 outbreak. Notably, the decline 

in crude oil prices that occurred in 2019 also contributed to the increase in the total volatility spillover. A 

possible explanation is that low oil prices stimulated investors to sell “clean energy products” and buy oil. 

According to the substitution effect theory mentioned by Uddin et al. [34], low oil prices reduce the 

efficiency of the use of clean energy products due to the high cost of building these clean energy facilities, 

which means less revenue for clean energy firms. By early 2021, the TOTAL spillover index began to 

decline because all aspects of the market stabilized and the TOTAL spillover index gradually returned to 

its pre-COVID-19 epidemic level. 

In Figure 5, we can see very clearly that there were two high spillover periods after 2019 and 2020, 

where the highest spillover index was close to 55%. In the rest of the time, the TOTAL premium index 

tended to be no higher than 40%. These two periods just covered the two major events mentioned in the 

previous subsection (the USA foreign tariff increase on May 6, 2019, and the COVID-19 outbreak on 

February 3, 2020). Accordingly, we highlight the TO spillover index, the FROM spillover index, and the 

NET spillover index for each firm for both periods in Figure 6. 

 

Figure 5. Dynamic total connectedness. 
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Figure 6. TO spillover index. 

Here, we can analyze the main recipients by using Figure 7. After some macroeconomic events, the 

value of the FROM spillover index for the hydropower-type firms increased significantly. However, it did 

not have a high FROM spillover index compared to other firms. Such a situation shows that, in some 

major macro events, the hydropower industry is more vulnerable than other firms and has a heightened 

risk of being impacted. Among the other firms, PV and wind power firms had higher FROM spillover 

indexes over time, indicating that they are the main recipients of volatility shocks. Again, we obtained 

relevant conclusions by comparing the FROM spillover indexes between the firms. Here, we found a 

similar situation to the TO spillover index. Firms of the same type had similar levels of the FROM spillover 

index, and even their trends were very similar. The firms of nuclear power type had similar trends of 

change, although they also had differences in the level of the spillover index. The level of the FROM 

spillover index was also significantly higher in the shaded regions of each firm than in the other regions. 

This also indicates that clean energy firms will experience more volatility than other firms due to major 

macroeconomic events. The FROM spillover index for the hydropower-type firms did not rise too much 

during major macroeconomic events, again showing that the volatility connectedness between the 

hydropower-type firms and other firms is more stable. As can be seen in Figure 7, the level of WTI's 

FROM spillover index was also not high, but its FROM spillover index increased very significantly during 

major macroeconomic events as well. Combined with the trend of WTI's TO spillover index, we show that 

the volatility connectedness between the clean energy market and the international crude oil market is 

enhanced by major macroeconomic events. This has also been echoed by the findings of Peng et al. [35]. 

The influence mechanism of crude oil price fluctuation is asymmetric when the crude oil price is at 

different positions and under different trends. 
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Figure 7. FROM spillover index. 

Next, we can get the actual impacted situation of each firm from the NET spillover index. The Net 

volatility spillover shows information about the direction of volatility, i.e., from one firm to all other firms. 

A negative (positive) value means that a market receives (sends) more volatility than it sends (receives). 

By subtracting the FROM spillover index from the TO spillover index, we can obtain the NET spillover 

index and analyze each firm's situation. Wind power firms were mainly in the positive spillover situation, 

while hydropower firms were mainly in the negative spillover situation. This situation indicates that the 

fluctuations in market spillover may end up being absorbed by hydropower firms. Combined with the 

assets of each firm, the larger the total market capitalization, the more likely the firm is to be the sender 

of volatility spillover, while the smaller market capitalization is likely to be the receiver. 

In each figure, we can find that the WTI spillover index was also affected by major macro events. Its 

TO spillover index did not change much during the USA foreign tariff increase on May 6, 2019, but it has 

fluctuated more significantly since the COVID-19 outbreak, reaching 4%, which was an extreme value 

throughout the period; and, it took a year to fall back to its usual value. It’s FROM spillover index had a 

more similar situation, also reaching an extreme value after the COVID-19 outbreak. This shows that the 

impact of the COVID-19 outbreak was much larger than the impact of the USA foreign tariff increases on 

May 6, 2019. Regarding the WTI's NET spillover index, its value was mainly positive until 2018, while 

its value was negative for a long time after 2018; and, the WTI became a recipient of volatility spillover, 

with the price of international energy sources having a diminishing impact on China with the development 

of clean energy in China. 

Now, we present Table 4, which gives the average volatility spillover indices for the full-time period 

to summarize the situation for the full-time period, and “FROM” shows the total share of volatility shocks 

received by other firms, which can be obtained by summing the spillover indices of other firms in the peer 

group. This value shows that TEAS was the main recipient of volatility shocks, while the WTI received 
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less volatility, which indicates that shocks in the Chinese clean energy market have less impact on 

international energy prices. “TO” is the sum of the firm’s share of volatility shocks to other clean energy 

firms and international crude oil, and its maximum value remained at 59.2% of TEAS, indicating that it 

was also the main sender of volatility; “NET” shows the net spillover of a firm to other clean energy firms 

and international crude oil, with a maximum value of 8.4% for TEAS and a minimum value of −8.2% for 

CGNP. The “TCI” shows the total spillover index for a market, which is 38.2% in the table; this indicates 

that the average spillover index over the full time period was 38.2%, and that, on average, each firm 

received 38.2% of its volatility shocks from other firms. 

 

Figure 8. NET spillover index. 

Table 4. Average volatility spillover index over the full time period (%). 

 XGST TEAS CNNP CYP GGEP CGNP LGET TW WTI FROM 

XGST 54.9 13.1 7.7 1.4 3.1 3.3 6.7 8.9 0.9 45.1 

TEAS 11.4 49.2 11 1.1 5.3 3.6 7.4 9.9 1 50.8 

CNNP 7.4 11.3 53 4.4 8.6 6.4 3.9 3.9 1 47 

CYP 2.2 2 6.3 73.6 5.7 4.3 2.6 1.9 1.4 26.4 

GGEP 3.7 6.6 10.5 4.9 64.6 4.7 2.5 1.3 1.2 35.4 

CGNP 4.2 5.2 8.2 4 4.6 63.2 3.5 4 3.2 36.8 

LGET 7 8.1 4.1 1.2 2.3 2.1 55.7 18.9 0.6 44.3 

TW 8.3 10.3 3.8 0.9 1.2 2.7 17.8 54 1 46 

WTI 1.4 2.6 1.8 1.1 0.9 1.4 1.2 2.2 87.5 12.5 

TO 45.6 59.2 53.5 19 31.7 28.5 45.6 50.9 10.3 TCI 

NET  0.5 8.4 6.5 −7.4 −3.8 −8.2 1.3 4.9 −2.2 38.2 



4612 

Electronic Research Archive  Volume 30, Issue 12, 4593-4618. 

6. Dynamic correlation and portfolio management analysis 

In this section, we analyze the relationship between international crude oil and clean energy firm 

stock prices from the perspective of portfolio diversification and risk management. First, we calculated 

the dynamic conditional correlation; second, we used the results of the DCC-GARCH model to construct 

the optimal portfolio diversification strategy. 

 

Figure 9. Dynamic conditional correlation coefficient. 

6.1. Dynamic conditional correlation analysis 

Figure 9 shows the conditional correlation between international crude oil and clean energy firms. 

February to April 2020 was the higher correlation time period. We can see that the correlation between 

international crude oil and the various clean energy firms was not constant, and even had some fluctuations. 

After the COVID-19 outbreak, the correlation coefficient between each firm and international crude oil 

reached an extreme value, while the minimum value in the extreme value was 0.134 (WTI-LGET) and the 

maximum value was 0.648 (CNNP-WTI). Regardless of the size of the values, it can be observed in Figure 

9 that, at the time of the COVID-19 outbreak (February 3, 2020), there was a significant increase in the 

dynamic conditional correlation coefficient for each firm and international crude oil. This finding is 

consistent with the findings of Naeem et al. [36]. 

Combined with the results of the previous part of the study, the volatility connectedness, as well as 

the correlation between clean energy firms and international crude oil, can change significantly over time 

due to extreme events; therefore, it was important to investigate whether there was an optimal 

diversification strategy during the epidemic. Here, we calculate the optimal portfolio weights as a 

diversification strategy. 
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6.2. Optimal weighting analysis 

In this section, we calculate the optimal portfolio weights for international crude oil prices and clean 

energy firm stock prices. According to Kroner and Ng [37], we define 
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where 
,of tg  is the conditional covariance of WTI volatility and clean energy firm volatility, 

,ff tg  is the 

conditional variance of clean energy firm volatility, 
,of t

   is the weight of WTI volatility in a USD 1 

portfolio of WTI volatility and one clean energy firm stock price volatility at time t . The weight of the 

one clean energy firm volatility is equal to
 ,
1

of t
− . 

According to Timonina-Farkas [38], in the financial sector, the ongoing COVID-19 pandemic has 

demonstrated the lack of robust multi-stage investment strategies in terms of non-stationary returns. Here, 

we consider the different stages of the portfolio. In order to give portfolio recommendations for different 

periods, we have combined the results of the analysis in the previous section and the calculation of the 

optimal weights, and we have deliberately given the results of the average of the weights for the COVID-

19 outbreak period (February 2020 to June 2020) for reference. 

As can be seen in Table 5, the mean values of the optimal weights of international crude oil prices 

for the full time period ranged from a minimum of 0.355 for TW to a maximum of 0.831 for CYP. These 

values can be interpreted as meaning that, for a portfolio of USD 1, 0.645 (0.169) should be invested in 

TW (CYP) and 0.355 (0.831) in WTI. Once again, we can see the significant impact of the COVID-19 

outbreak. The optimal weights of all portfolios calculated in this study increased. The average for the 

COVID-19 outbreak period was significantly higher than the full time period average. This situation 

suggests that clean energy firms have become important in a diversified investment strategy. Finally, we 

can observe that the optimal portfolio weights for all sectors of clean energy changed significantly again 

over time as the COVID-19 outbreak has eased, all dropping to a lower level, or even to a zero weight, 

i.e., a zero-dollar investment in WTI, which means that the portfolio was obtained by using one asset (i.e., 

one clean energy firm). 

In summary, short-term investors can create profits from the high volatility spillover of international 

crude oil shocks to clean energy firms based on the findings in this paper. The results of the full sample 

and subsamples provide important evidence of the role of different clean energy firms as diversification 

switching and safety preserving assets for oil shocks. For policy-makers, the findings in this paper suggest 

that policy formulation should distinguish between short-term and long-term policies. For example, in the 

short term, they need to consider the relationship between oil shocks and nuclear-type clean energy firms. 

In the long run, they should focus on the relationship between oil shocks and hydropower-type clean 
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energy firms. Time-varying spillover effects or connectivity would be helpful in developing regulations related 

to clean energy investments. This finding was also confirmed by the research results of Yahya et al. [15]. 

 

Figure 10. Optimal portfolio weighting line charts. 

Table 5. Time-varying portfolio weight mean values by time period. 

Portfolio Full time period COVID-19 era 

WTI/XGST 0.420 0.766 

WTI/TEAS 0.585 0.787 

WTI/CNNP 0.731 0.918 

WTI/CGNP 0.696 0.877 

WTI/CYP 0.813 0.940 

WTI/GGEP 0.633 0.865 

WTI/LGET 0.369 0.736 

WTI/TW 0.355 0.647 

7. Conclusions 

This study empirically analyzed the volatility connectedness between international crude oil and 

Chinese clean energy firms and included a portfolio analysis based on daily closing price data from 

January 4, 2016 to March 7, 2022. 

In terms of shock effects, we analyzed the responses of eight clean energy firms to international crude 

oil volatility from a dynamic perspective through the use of a TVP-SV-VAR model. In general, the impact 
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of WTI volatility shocks on different clean energy firms had a strong time-varying effect. The equal-

interval impulse response results show that the impact of international crude oil shocks is stronger at Lag 1 

than at Lag 2, indicating that the impact of international crude oil on clean energy firms is extremely short-

term. The time-phased impulse response results show that most clean energy firms need to be aware of 

strong positive shocks from international crude oil when a major macroeconomic event occurs. This 

impact is mainly short-term, and most firms will return to a steady state within five periods. Only the 

hydropower firms will experience a significant negative response. Therefore, when major events occur, 

clean energy firms need to be aware of the stronger short-term impact from international crude oil. And, 

hydropower firms need to develop a better strategy for their response because the way that they respond 

is not easy to determine. 

In terms of the time-varying spillover analysis, the TOTAL spillover index showed two distinct 

periods of high spillover after 2019 and 2020, with the highest spillover values approaching 55% during 

this period, while the market spillover index tended to be no higher than 40% in the other periods. These 

two periods covered two major events (i.e., the USA foreign tariff increase on May 6, 2019 and the 

COVID-19 outbreak on Feb. 3, 2020). Based on the TO spillover index for each firm, it can be seen that 

wind power firms are generally the main senders of volatility shocks, but nuclear power firms may also 

be the main senders after major macroeconomic events. The FROM spillover index shows that 

hydropower firms are at higher risk of being hit during major macroeconomic events (i.e., the increase in 

the FROM spillover index is higher for hydropower firms). PV and wind power firms had chronically 

higher levels of the FROM spillover index, indicating that they were the main recipients of volatility 

shocks. Considering the assets of each firm, firms with large total assets are prone to be senders of 

volatility spillovers, while firms with small total assets are prone to be receivers. In the previous analysis, 

we found that the WTI's spillover index is also influenced by major macroeconomic events. Regarding the 

NET spillover index for WTI, its value was mainly positive before 2018, while its value was negative for 

a long time after 2018; and, WTI became a receiver of volatility spillover; such a situation can indicate 

that the impact of international crude oil prices on China gradually decreases. 

Regarding dynamic correlation and portfolio management analysis, we focused on asset management 

through the use of a DCC-GARCH model. The following conclusions can be drawn from the correlation 

analysis. First, the correlations between international crude oil and individual clean energy firms are 

volatile. Taking the COVID-19 epidemic as an example, the dynamic conditional correlation coefficient 

between each firm and international crude oil always increased after such a major macroeconomic event. 

Second, the analysis of the optimal portfolio weights shows that the optimal weights of all international 

crude oil and clean energy firms increased at the time of the COVID-19 outbreak. Over time, the optimal 

portfolio of all clean energy firms decreased to a lower level. 

In this study, we selected different types of clean energy firms to study the volatility linkage between 

international crude oil and Chinese clean energy firms. Through the use of impulse response functions and 

spillover indexes, policy-makers can have a clearer understanding of the forms of shocks and spillover 

effects between international crude oil and clean energy firms, which allows for more targeted policy 

formulation for clean energy development. Meanwhile, the heterogeneity within the clean energy market 

is emphasized in this paper. Different clean energy industries will have different levels of portfolio stability. 

This will have important implications for investor decision-making and clean energy investment policy 
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formulation. Investors should give more consideration to portfolios based on the relationship between the 

type of clean energy firm and international crude oil. The policies to promote clean energy investments 

should take into account the characteristics of each clean energy industry and ensure stock price stability 

in the event of major macroeconomic events. 
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