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Abstract: Among various aviation accidents, bird collision is one of the most common accidents for 
civil passenger aircraft in recent years. With the significant breakthrough of deep convolutional neural 
networks in the field of target detection, this paper proposes a target detection method to prevent bird 
collision accidents. The algorithm in this paper integrates different attention mechanisms on the 
YOLOv5s network to solve the problems of small target detection miss, false detection and insufficient 
feature extraction capability. The trend-aware loss (TAL) and trend factor (Wi) are used to solve the 
drift of the prediction frame. After comprehensive ablation experiments, the improved algorithm shows 
significant improvement on the detection accuracy and speed. Results indicate that mean average 
precision (mAP) value reaches 99.8%, which is 6.3 percentage points higher than the original algorithm. 

Keywords: bird collision accident; flight safety; YOLOv5s improvement; SE module; CBAM module; 
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1. Introduction 

With the development of national information technology, aircraft has become a key methods of 
transportation. In recent years, with the occurrence of low-altitude passenger aircraft accidents and 
low-altitude traffic management has become more and more strict, and the prevention of risks in civil 
passenger aircraft in advance has gradually become a new research hot spot for scholars. Among 
various aviation accidents, bird collision [1] is one of the most dangerous threats to civil airliners. In 
scenarios such as airports, the use of ultrasound to repel birds prior to incident [2] is the basis for 
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preventing bird collisions. Using infrared surveillance to capture multiple airfield scenes, using 
surveillance video to obtain the flight paths of birds and aircraft in real time to detect and identify them 
has practical research significance and scenario application value. 

The traditional algorithms focus on the motion information of birds, detection methods, and object 
tracking. The literature [3,4] proposes a skeleton-based FBD method from the aspect of motion 
information in order to overcome the versatility of birds by describing the motion information of birds 
through a set of key poses. Based on the geometric topological relationship between key parts of the 
bird body, a set of key poses is described by extracting skeleton features, combining the flying bird 
skeleton features with the extracted keyword set, and the final detection results are verified using the 
consistency of the key frame poses variation set and the sequence image classification results. In terms 
of detection method, to control the cost, dedicated bird detection using 94 GHz millimeter wave radar 
is proposed in literature [5] during aircraft takeoff and landing, which can be scanned without gimbal 
or phased array components, but cannot be detected in real time. From the aspect of object tracking, a 
novel filtering method for fast and effective multi-scale and fast-connected speckle extraction is 
proposed in literature [6] for fast and accurate segmentation of moving objects in video sequences to 
handle various scene change sources. An intelligent video surveillance system is developed to test the 
performance of the algorithm by analyzing the properties of object motion in image pixels and time 
frames and combining two constraint levels to accomplish this for moving target localization. 
Therefore, in preventing bird collision accidents and precise control of birds and aircraft, research on 
more efficient, accurate and fast intelligent detection and identification methods for flight element 
information has become a key research direction at this time. 

To address the detection of arbitrary directional targets and fine-grained recognition of aircraft 
types, a cascade framework based on convolutional neural networks for arbitrary directional and multi-
type aircraft detection in remote sensing images is proposed in literature [7]. A fine-grained recognition 
sub-network with integrated learning and Fisher discriminant regularization is used to identify aircraft 
types in images for more accurate recognition. An edge-based hatch recognition and tracking method 
is proposed in literature [8,9] for identifying different hatches with similar shapes in order to solve the 
difficulties encountered when different replicas are covered. By means of simple geometrically 
constrained image contours, a new compound cover descriptor composed of edge features and position 
description vectors is used to identify those different compound covers with similar shapes. To solve 
the problem of high miss detection rate and false alarm rate when complex and dense targets, a Faster 
R-CNN based multi-angle feature driven and majority voting strategy is proposed in literature [10,11]. The 
multi-angle transform module is used to transform the input image to achieve multi-angle feature 
extraction of targets in the image. 

There are many problems with the existing detection results, such as missed detection, false 
detection and insufficient feature extraction capability due to birds being too small relative to aircraft, 
drift and delay of the prediction frame due to the excessive flight speed of birds and aircraft. This paper 
proposes the following solutions based on YOLOv5s: introduces the attention mechanism SE and 
CBAM modules to solve the problem of missed detection of small targets such as birds; introduces a 
new loss function TAL and Wi to solve the prediction frame drift and delay problems. Comprehensive 
ablation experiments reveal that the improved YOLOv5s_SE&CBAM_TAL algorithm has 
significantly improved detection precision and detection speed. 
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2. The improved network structure of this paper 

In this paper, we improve each component of YOLOv5s: introduce different attention 
mechanisms [12,13] in backbone and head to solve the problems of small target detection miss, false 
detection and insufficient feature extraction capability. The channel attention mechanism SE module [14] 
is introduced in the backbone for posterior improvements to form YOLOv5s_SEA. The hybrid domain 
attention mechanism CBAM module [15] is added in the head for channel domain and then spatial 
domain improvements to form YOLOv5s_CBAMA. The head output is changed to decoupled head 
approach and a new loss function, TAL, is introduced [16] to form YOLOv5s_SE&CBAM_TAL. The 
decoupled head approach increases the complexity of the operation, but the precision is improved and 
the convergence of the network is accelerated. The improved Intersection over Union (IoU) loss 
function is used to train the reg branch and the Binary Cross Entropy (BCE) loss function to train the 
cls branch. The data set is put into the improved network for training, and its structure is shown in 
Figure 1. 

 

Figure 1. Improved YOLOv5s network structure. 

3. Experimental results and analysis 

3.1. Improvements based on backbone 

This paper introduces the channel attention mechanism Squeeze-and-Excitation (SE) networks [17], 
aiming at autonomous learning to establish the mutuality among channels, and employs a dynamic 
weighting approach to rescale the channel weights. As over increases of the depth and breadth of the 
network can bring problems such as gradient disappearance and over-fitting. Based on the design 
principle of combination construction between similar modules, this paper embeds the SE module into 



4404 

Electronic Research Archive  Volume 30, Issue 12, 4401–4415. 

the backbone of YOLOv5s to produce a variety of combinations with rear, front, external rear, external 
front. The new network model YOLOv5s_SE is generated, as shown in Figure 2, as YOLOv5s_SEA, 
YOLOv5s_SEB, YOLOv5s_SEC, and YOLOv5s_SED, respectively. 

   

(a) Original network (b) SE rear (c) SE front 

  

 

(d) SE external rear (e) SE external front  

Figure 2. Various combinations of SE module and network. 

Different combinations of SE modules are combined with untreated YOLOv5s for comprehensive 
ablation experiments. In this paper, three performance indexes: precision, recall and mAP are applied 
to the experiment; and the specific calculation formula can be expressed as below. 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛  (1) 

 𝑅𝑒𝑐𝑎𝑙𝑙  (2) 

 𝑚𝐴𝑃 ∑ 𝐴𝑃  (3) 

TP is the number of positive samples detected correctly. FP is the number of negative samples detected 
as positive. FN is the number of backgrounds incorrectly detected as positive, and N is the total number 
of categories. 

A series of detection index data are obtained after 300 epochs of training for both training and 
testing phases, results as shown in Table 1. Based on the data and the structural analysis, the SE 
posterior is applied. The experimental results indicate that adding the SE module to the last layer of 
the backbone of YOLOv5 works best. 
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Table 1. Performance metrics data for the SE module and four different models. 

Network model Precision Recall mAP 
YOLOv5s 84.1% 97.9% 0.935 
YOLOv5s_SEA 85.2% 98.5% 0.955 
YOLOv5s_SEB 84.5% 98.2% 0.945 
YOLOv5s_SEC 84.8% 98.4% 0.949 
YOLOv5s_SED 84.3% 97.9% 0.939 

Based on the comprehensive ablation experimental results, YOLOv5s_SEB and YOLOv5s_SED 
can be excluded since the change of precision or recall rate are unobvious, while the other two models 
all have a large improvement. The most representative index mAP changes are analyzed again. As 
shown in Figure 3, the trend of the change of mAP obtained by training 300 epochs for different 
combinations of network models. The dark blue line represents YOLOv5s_SEA, whose mAP finally 
improved to 0.955, a 2-percent increase. 

 

Figure 3. Variation trend of mAP between SE module and four different models. 

3.2. Improvements based on head 

The introduction of the SE module brings only a small improvement in network performance, 
leading to the introduction of the hybrid domain attention mechanism Convolutional Block Attention 
Module (CBAM) [18]. CBAM is the attention module that integrates both channel and spatial 
dimensions in two different dimensions. This paper generates a new network model YOLOv5s_CBAM 
by embedding these two modules into the head of YOLOv5s in parallel or sequentially. They are: 
YOLOv5s_CBAMA, channel domain and then spatial domain; YOLOv5s_CBAMB, spatial domain 
and then channel domain; and YOLOv5s_CBAMB, channel domain and spatial domain in parallel. 
We conducted comprehensive ablation experiments with the above three networks and the unmodified 
YOLOv5s, as shown in Table 2. Based on the data and structural analysis, this paper adopts 
YOLOv5s_CBAMA as it saves parameters and computational power to some extent, and it is easy to 
apply to the new network architecture. 
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Table 2. Combination comparison of CAM and SAM in CBAM. 

Network model Precision Recall mAP 
YOLOv5s 84.1% 97.9% 0.935 
YOLOv5s_CBAMA 87.2% 98.6% 0.981 
YOLOv5s_CBAMB 86.9% 98.4% 0.975 
YOLOv5s_CBAMC 84.8% 98.2% 0.966 

Based on the comprehensive ablation experimental results YOLOv5s_CBAMC can be excluded 
since the change of precision or recall rate are unobvious, while the other two models have a large 
improvement. The most representative metric mAP changes are analyzed again. As shown in Figure 4, 
the trend of the change of mAP obtained by training 300 epochs for different combinations of network 
models. The dark blue line represents the YOLOv5s_CBAMA and its mAP finally improves to 0.981, 
a 4.6-percent increase. 

 

Figure 4. Combination of CAM and SAM in CBAM to compare mAP variation trends. 

3.3. Integrating SE and CBAM modules 

The improved YOLOv5s algorithm is introduced in different attention mechanisms here. The 
optimal SE module YOLOv5s_SEA is introduced in backbone; the optimal CBAM module 
YOLOv5s_CBAMA is introduced in head. Combined ablation experiments with the previous two sets 
of experiments are shown in Table 3. 

Table 3. Analysis of performance index results of improved algorithm. 

Network model Precision Recall mAP 
YOLOv5s 84.1% 97.9% 0.935 
YOLOv5s_SE 85.2% 98.5% 0.955 
YOLOv5s_CBAM 87.2% 98.6% 0.981 
YOLOv5s_SE & CBAM 90.5% 98.9% 0.995 
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The next trend of mAP obtained by training 300 epochs of different improved algorithm network 
models is shown in Figure 5. The dark blue line represents YOLOv5s_SE&CBAM, and its mAP finally 
improves to 0.995, a 6-percent increase. 

 

Figure 5. Trend of mAP for different improved algorithms. 

3.4. Improvement based on prediction 

The loss function can affect the detection performance of the network by influencing the learning 
of the network parameters. Due to the flexibility of bird movement, the requirements for the delay of 
the network model are extremely high. By the time of the detection of the target in the current frame 
completes, the next frame has already changed, thus bird collisions are not effectively prevented. Since 
the stream sensing is the result of the current frame, the calibration is always matched and evaluated 
by the next frame, and the performance gap makes the inconsistency between the current processing 
frame and the next matching frame. As shown in Figure 6(a), the green box indicates the actual object, 
while the red box indicates the predicted object, and the red arrow indicates the drift of the predicted 
frame due to the processing time delay. The improved schematic is shown in Figure 6(b). In order to 
solve the drift of the prediction frame, a TAL and a Wi are proposed in this paper, considering the delay 
and accuracy to measure the movement speed quantitatively. 

  
(a) before improvement (b) after improvement 

Figure 6. Before-and-after visualization results. 
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Based on YOLOv5s_SE&CBAM, a decoupled head approach is changed at the head output in 
this paper. Although it increases the complexity of the operation, the precision is improved and the 
convergence speed of the network is accelerated. The improvement uses the IoU loss function to train 
the reg branch and the BCE loss function to train the cls branch. YOLOv5s is used in this article as the 
Baseline. Using the GT boxes of the previous frame, the current frame and the next frame (Ft-1, Ft, 
Gt+1), a triplet is constructed for training. Two adjacent frames (Ft-1, Ft) are taken as input to train the 
model to predict the GT boxes of the next frame. The GT boxes of Gt+1 are supervised by the real GT 
boxes of Ft frames. Based on the input and supervised triples, this paper reconstructs the training data 

set into the form of （F , F , G ） , as shown in Figure 7. 

 

Figure 7. Training process. 

The matching IoU of the detected object between two frames is obtained by calculating the IoU 
matrix between two GT boxes, and then performing the maximization operation on the dimensionality. 
A small value of this matching IoU means that the object moves fast, and vice versa. If a new object 
appears in the frame, there is no matching frame with it, at this time a threshold τ is set to deal with 
this situation, and the specific calculation formula can be expressed as below. 

 𝑚𝐼𝑜𝑈 𝑚𝑎𝑥 𝐼𝑜𝑈 𝑏𝑜𝑥 , 𝑏𝑜𝑥  (4) 

 𝑤
, 𝑚𝐼𝑜𝑈 𝜏

,     𝑚𝐼𝑜𝑈 𝜏
 (5) 

𝑀𝑎𝑥  is the maximum operation value t between boxes in Ft, and ν is the constant weight of the new 
object. 

Trend-aware loss parameters are mainly set by two parameters τ and ν. Then the parameter 
selection is crucial. In order to better evaluate the parameters good or bad. An accuracy streaming 
Average Precision (sAP) is proposed here to evaluate the accuracy by simultaneously evaluating the 
time delay and the accuracy of the detection. In order to determine an optimal set of τ and ν suitable 
for the bird collision prevention phenomenon for this paper, several different sets of τ and ν are selected 
for experiments in this paper. Where τ is denoted as a threshold to monitor the new object, and ν is 
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denoted to control the degree of attention to the new object. In this paper, ν is set to be greater than 1.0, 
and the grid search data is performed for these two hyperparameters, and the results are shown in Table 4. 
Considered together, the optimal values of τ = 0.3 and ν = 1.4 for the two parameters are chosen to 
ensure a high sAP value and achieve the best performance. 

Table 4. Parameter settings for TAL. 

τ Ν sAP 
0.2 1.3 33.5 
0.2 1.4 33.7 
0.2 1.5 33.7 
0.3 1.3 33.7 
0.3 1.4 34.1 
0.3 1.5 33.8 
0.4 1.3 33.2 
0.4 1.4 33.6 
0.4 1.5 33.3 

In this paper, the task of processing delayed streams is focused. Under this task, TAL is proposed 
in this paper to alleviate the processing lag problem in stream perception. This paper uses a large 
number of approximation calculations based on deep reinforcement learning to obtain a better detection 
equilibrium. Compared with Baseline, YOLOv5s_SE&CBAM_TAL improves the mAP by 4.5% and 
achieves robust prediction at different birdie speeds. Next, the different improved algorithm network 
models are subjected to a comprehensive ablation experiment to train 300 epochs to obtain the trend 
of mAP, as shown in Figure 8. The dark blue line represents YOLOv5s_SE&CBAM_TAL, whose 
mAP is finally improved to 0.998, a 6.3-percent increase. 

 

Figure 8. The changing trend of mAP with different improved algorithms. 

3.5. Experimental data set and experimental environment deployment 

There are two main sources of anti-bird collision detection datasets: on the one hand, the airfield 
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scene is captured by infrared surveillance shooting, and then the video is sliced and processed using 
python code [19]; on the other hand, valuable data are obtained in the Internet by python web crawlers [20]. 
Data cleaning is performed on the acquired large number of images in batch to remove the invalid 
images with low resolution and no detection target among them. The algorithm in this paper is to 
prevent the occurrence of bird collisions by identifying two major categories from representative small 
birds and airplanes, and adding difficult samples to improve the accuracy of detection. Labeling 
annotation software is used to annotate the cleaned data, and there are more than 5000 images in the 
annotated dataset. 

As deep learning research progresses, the YOLOv5s algorithm tends to generate a large number 
of parameters during training and inference, thus requiring a computer with powerful computing power. 
Therefore, in this paper, the GeForce RTX 3070 Lite Hash Rate graphics card is selected for 
environment construction, and the YOLOv5s algorithm is deployed on Ubuntu 20.04 operating system. 
By configuring CUDA and CUDNN environments, we not only realize the parallel computing 
capability of GPU for data, but also speed up the training speed and improve the model accuracy. The 
system hardware and software configurations are shown in Table 5. 

Table 5. System hardware and software configuration. 

Operating System Ubuntu 20.04.4 LTS 
CPU 11th Gen Intel(R) Core (TM) i7-11700 @ 2.50 GHz × 16 
Video Cards GeForce RTX 3070 Lite Hash Rate 
Memory 15.5 GiB 
Graphics NVIDIA Corporation 
CUDA 11.4 

This paper implements the training and testing of neural networks by porting the trained pt files 
on YOLOv5 to the Jetson Nano platform, a Linux system that includes advantages such as small size, 
powerful performance, and support for a range of popular AI algorithms. It has better application 
prospects in target detection. Therefore, Jetson Nano provides powerful support to enable real-time 
detection of flying birds, and the technical features of the embedded system in this paper are shown in 
Table 6. The trained pt weight file of YOLOv5s is only about 15 MB, and this greatly reduces the 
storage and processing capacity of the model. The platform can effectively detect small flying bird 
targets in different complex low-altitude traffic scenarios, and reduce the problem of insufficient real-
time detection effect brought by delay. It has practical research significance and scenario 
application value. 

Table 6. Technical characteristics of embedded systems. 

Device Technical features 

NVIDIA 
Jetson Nano 

Processor ARM Cortex A57, 1.42 GHz 
GPU 128 CUDA cores, 472 GFLOPS 
Memory 4 GB 64-bit LPDDR4 @ 25, 6 GB/s 
Power supply 20 Watt, 5V/4 A 
Size 100 × 80 × 29 mm 
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3.6. Visualization experiment analysis 

The results are visualized in this paper and shown in Figure 9. For the baseline detector, the 
predicted bounding box encounters a severe lag. The faster a small bird moves, the greater the change 
in prediction. For small 5 × 5 objects like sparrows, the overlap between the prediction frame and the 
GT boxes becomes small or even absent. In contrast, the method in this paper mitigates the mismatch 
between the prediction frame and the moving object and fits the results accurately. 

  

(a) before improvement (b) after improvement 

Figure 9. Detection results of the improved algorithm. 

3.7. Experimental validation of YOLOv5s_SE&CBAM_TAL 

In order to verify the performance of the algorithm here, this paper finds the difficult samples as 
the images of small sparrows and eagles as the test set for testing. Large number of valuable samples 
and difficult samples are selected here, and the image size is 960 × 576, with the number of samples 
totaling 500. The sample sizes are: 5 × 5 for 75; 10 × 10 for 124; 15 × 15 for 123; 20 × 20 for 97; 25 × 25 
for 79; 30 × 30 for 2. The samples are very small compared to the image size, and the results are shown 
in Table 7. 
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Table 7. Aggregate experimental results. 

Sample sizes 5 × 5 10 × 10 15 × 15 20 × 20 25 × 25 30 × 30 
Number of samples 75 124 123 97 79 2 
YOLOv5s 42 65 72 55 41 2 
YOLOv5s_CBAMA 55 95 102 70 58 2 
YOLOv5s_SE & CBAM 65 102 100 92 64 2 
YOLOv5s_SE&CBAM_TAL 69 107 105 87 65 2 

In summary, among the 500 detected samples, the original network YOLOv5 detected only 277, 
and the improved YOLOv5s_SE & CBAM_TAL detected 435, which is 158 more than the original 
network, as shown in Figure 10. 

 

Figure 10. Experimental verification results. 

3.8. Comparison of several classical networks 

In order to verify the advantages of the YOLOv5s_SE&CBAM_TAL model over other networks 
in this paper, commonly used models are selected for comparative performance analysis, and the 
training results are shown in Table 8. 

Table 8. Comparison of the effects of different models. 

Network model Model volume /MB FPS mAP 
Faster-RCNN 335 21.5 75.88% 
SSD 315 57.5 79.72% 
YOLOv3 256 34.6 76.38% 
YOLOv4 [21] 253 36.8 86.15% 
YOLOv5s 17 46.3 93.50% 
YOLOv5s_SE&CBAM_TAL 15 65.5 99.80% 

The result above shows that the mAP of the algorithm proposed in this paper improves by 6.3% 
over the original YOLOv5s, outperforming comparing to other network models in the same situation. 
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The improved algorithm, with a trained pt weight file of only about 15 MB and an FPS of 65.5, greatly 
reduces the storage and processing capacity of the model, thus allowing for real-time and fast detection 
of traffic elements on road traffic. 

4. Conclusions 

In scenarios such as airports, advance use of ultrasound to drive away birds is the basis for 
preventing bird collisions in presence. Real-time acquisition of flight paths of birds and aircraft using 
infrared surveillance photography, detection and identification are performed. A target detection 
method for bird collision prevention is proposed here. Different attention mechanisms SE and CBAM 
are integrated in the algorithm of this paper on YOLOv5s network to solve the problems of small target 
miss detection, false detection and insufficient feature extraction capability. TAL and Wi are used to 
solve the drift of the prediction frame. After comprehensive ablation experiments, the improved 
YOLOv5s_SE&CBAM_TAL algorithm has significantly improved the detection accuracy and speed, 
as the mAP value reaches 99.8% and a 6.3-percent increase compared with the original algorithm. 
Finally, the trained weights are deployed on the embedded system Jetson Nano platform. The platform 
is able to effectively detect small flying bird targets in different complex low-altitude traffic scenarios 
and reduce the problem of insufficient real-time detection effect due to delay. The platform has 
practical research significance and scenario application value. 
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