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Abstract: Traditional vertical vibration models of rail vehicle usually have high degrees of freedom, 
which affects the efficiency of numerical simulation. Regardless of the coupling effect between the 
vehicle and rail, a six degree of freedom (6DOF) quarter model with vertical displacement and rotation 
angle is selected as the dynamic model. This accomplished by comparing the simulation results of half 
model and quarter model of the railway freight wagon, and the vertical vibration characteristics of the 
railway freight wagon when the wagon speed is changed. To further illustrate the nonlinear vibration 
characteristics and evolution laws of the car body and bogie frame of the freight wagon, the bifurcation 
diagrams, maximum Lyapunov exponent curves, axis trajectory curves, phase plane plots, Poincaré 
sections, and amplitude spectras are drawn and adopted to research the dynamic responses. The 
simulations reveal the complex vibration behavior such as periodic, quasi-periodic, multi-periodic, and 
chaotic motion. Some research results can help the industry to better design the speed limits of such 
railway freight wagons, and deeply understand or utilize the vertical vibration law of railway freight 
wagon in future research. 
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1. Introduction  

Railway freight transportation is developing toward large power and heavy loads, the research on 
railway freight car dynamics has become a research hotspot. With the development of railway speed-
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up freight cars, the vibration response of the car body and bogie frame of the freight wagon also 
becomes more intense, which seriously affects the stability and safety of railway freight wagons. To 
reduce the violent vibration of railway vehicle caused by speeding operation of train, it is necessary to 
deeply understand the vibration characteristics of the car body and bogie frame of vehicle when freight 
train is in the sped-up state. The main methods to obtain the vibration characteristics of rail freight 
wagon are experimental methods and numerical simulation methods. Compared with the expensive 
cost of experiments, the numerical simulation methods can also obtain the vibration response of freight 
wagon efficiently, safely and cheaply. At present, many scholars have carried out a large number of 
studies on the dynamics of railway freight wagons.  

Bruni et al. [1] summarized the application status of multi-body dynamics in railway vehicle 
dynamics, Iwnicki et al. [2] also summarized some improvements in the techniques used to simulate 
the dynamic behavior of a railway vehicle. To study the dynamic properties of the rail freight car under 
wheel flat condition, Ding et al. [3] established a railway wagon model with K6 bogie and studied the 
responses of wheel-rail forces and adapter vibration under flat fault. To study the dynamic behavior 
caused by wheel tread defects, Esteban et al. [4] modelled the wheel flat defect and introduced it into 
the multi-body dynamics simulation. Considering the vertical, pitch, and roll motions of the wagon 
system, Naeimi et al. [5] developed a model of the railway wagon and tested the dynamic 
characteristics under arbitrary track irregularity. Gialleonardo et al. [6] constructed a multibody model 
of a railway wagon and presented a numerical analysis of the steady-state solution reached after the 
transition through a curve. To study the influence of the wheel diameter difference on the wheel tread 
wear, Sui et al. [7] established a freight car model considering wheel-rail non-Hertzian contact. True 
and Asmund [8] also investigated the dynamic characteristics of a simple wheelset model, which 
supported one end of a freight car by springs with dry friction dampers. Zou et al. [9] improved a 
dynamic model by using polygonal contact model, in which the adjacent freight cars was incorporated 
into the longitudinal model of combined heavy haul trains, and the dynamic response of the coupler 
and its influence on the running safety were simulated. Hoffmann [10] analyzed the dynamic 
characteristics of European two-axle freight cars by using the multi-body model specially developed 
for UIC standard suspension.  

Wheel-rail interaction of rail vehicle is an important research topic, Wu et al. [11] once modelled 
the railway vehicles in conventional longitudinal train dynamics as 2D models that considers 
suspensions and wheel-rail contact. Bian et al. [12] developed a 3D finite element model for the impact 
analysis induced by the wheel flat using ANSYS and investigated the effect of wheel flats on impact 
forces. Di et al. [13] analyzed the dynamic behavior of train sets and the impact of freight train 
composition on derailment risk and performed numerical simulations to determine the most critical 
conditions. Zhou et al. [14] adopted two types of container trucks to investigate the collision and 
derailment of railway trucks and found that the possibility of derailment was small when freight trains 
collided on a large radius curve. Xu et al. [15] presented a framework for modelling the railway freight 
car-ballast track interactions and established a motion equation by the linear and nonlinear 
characteristics of the system components. To analyze the dynamic characteristics of a heavy haul 
railway wagon in curve condition, Zhang et al. [16] built the freight wagon models by using 
ADAMS/Rail and VI-Rail. Meanwhile, the simulation was carried out on curve tracks with different 
radius. To study the dynamics of freight cars, Jozef et al. [17] adopted the training module to simulate 
the dynamic multicomponent system of UM software. Three-piece bogies with friction wedge 
suspensions are the most widely used bogies in heavy haul trains, and Wu et al. gave a review of 
dynamics modelling of friction wedge suspensions to improve general wagon dynamics simulations [18]. 
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Proposing a methodology to optimize wedge suspensions using white-box suspension models, 
dynamic simulations of railway vehicle systems [19]. 

With the increase of freight cars length, the longitudinal dynamics become a key problem. 
Krishna et al. [20] developed a tool based on 3D multibody simulation to provide longitudinal 
compressive force limits and allowable longitudinal compressive force passing through curves. Based 
on the non-smooth dynamic theory, Oprea et al. [21] defined an alternative model for braking train, 
where the set-valued friction of Coulomb’s law was considered, while Matej [22] analyzed the lateral 
dynamic behavior of a four-axle rail freight wagon with Union Internationale des Chemins de fer (UIC) 
suspension. Serajian et al. [23] investigated the length’s effect on train dynamics during brake 
application, which was used in railways of Islamic Republic of Iran. Ghazavi and Taki [24] modelled 
a nonlinear system of freight car with two three-piece bogies, and the simulation results were compared 
with ADAMS/Rail model. Deng et al. [25] established a numerical model integrating fluid solid 
coupling, container loading model and high-speed freight train by LS-DYNA. Based on the rail 
vehicle–track coupling model, Zhai et al. [26] analyzed the dynamic impact of train speed increase on 
track structure. Rezvani and Mazraeh [27] studied the effects of wheel/rail friction coefficient and 
track curve radius on the nonlinear critical speed. By comparing the models of three piece and Y25 
bogie, Kovalev et al. [28] discussed a numerical method of simulating the vehicle model in the 
presence of friction contact and gave the derailment safety analysis. Stichel [29] studied the 
nonlinearity of the two-axle freight car, especially the influence of friction damping on the running 
behavior of the freight wagon and gave the bifurcation curve and the limit cycle diagrams. Mark and 
Hans [30] investigated the nonlinear dynamics of a two-axle freight car with UIC suspension, Zhang 
et al. [31] proposed a new method to solve the large-scale vehicle-track coupling model with nonlinear 
wheel/rail contact, where the vehicle was treated as a multi-rigid body model, and the track was 
regarded as a three-layer beam model, and the numerical simulation examples demonstrated the 
accuracy of the proposed method. 

As mentioned above, reviews of existing literatures show that many methods have been adopted 
to analyze the longitudinal and lateral dynamics of freight wagon, but the research on the influence of 
vertical vibration characteristics on rail freight wagon is relatively limited. The structural 
characteristics of railway freight wagons and the increase of running speed as well as other factors 
make the train generate complex vibration in the running process, which also has an important impact 
on the safety of the freight train. Ignoring the coupling effect between the vehicle and the track, how 
to apply the theory and method of large system to establish the vertical dynamic model of railway 
freight car body, bogie and wheel set coupling system, analyze and discover the vertical vibration law, 
and even make better use of the vibration characteristics is a research work with important engineering 
application value. At present, the traditional vertical vibration models of railway vehicle usually have 
high degrees of freedom, which affect the efficiency of numerical simulation. In this study, a 6DOF 
quarter model with vertical displacement and rotation angle is selected as the dynamic model by 
comparing the simulation results of half model and quarter model of the freight wagon, in which 
includes one car-body, two secondary suspensions, two bogie frames, four primary suspensions and 
four wheelsets. To further illustrate the nonlinear characteristics, the vertical vibration characteristics 
and evolution laws are analyzed by using bifurcation diagrams, maximum Lyapunov exponent curves, 
axis trajectory curves, phase plane plots, Poincaré sections, and amplitude spectras when the train 
speed is changed. The simulations reveal the complex vibration behavior such as periodic, quasi-
periodic, multi-periodic, and chaotic motion. It is expected that the simulation data can provide a 
theoretical basis for designing the running speed of railway freight wagon, utilizing or controlling the 
dynamic behaviors of the freight wagon in the future. 
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This paper is organized as follows: Section 2 gives the modelling process of half model and 
quarter model of the railway freight wagon. Meantime the vibration responses of the two models are 
compared, and it is found that the difference between the simulations is very small. Based on the 
quarter model, the influences of train speed on the vertical vibration of car body and bogie frame are 
studied in Section 3. In the end the conclusions are summarized in Section 4. 

2. Modelling of the railway freight wagon 

2.1. Half model of the railway freight wagon 

 
    (a) 

 
        (b) 

 

     (c) 

Figure 1. Dynamic model of railway freight wagon: (a) Photograph of railway freight; (b) 
Half model of rail freight wagon; (c) Quarter model of rail freight wagon. 
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A certain type of railway freight wagon has two bogies as shown in Figure 1(a), the vehicle model 
is considered as a multi-rigid body model which includes one car-body, two secondary suspensions, 
two bogie frames, four primary suspensions and four wheelsets. Figure 1(b) shows a half model of rail 
freight wagon, in which the car body and the bogie frame are assigned with vertical displacement and 
rotation angle, only the vertical displacement of the four wheelsets is considered. Therefore, there are 
ten degrees-of-freedoms (10DOF) in the half model without considering the coupling effect of vehicle 
and rail. The mechanical model of the proposed vehicle system can be expressed as follow: 

( )g wM X C X KX H F F
 

                                                 (1) 

where M, C and K are the generalized mass, damping coefficient and stiffness coefficient matrices, 
respectively, X



, X


 and X are generalized acceleration, velocity and displacement vectors, 
respectively. H is the sign matrix of the external forces, and its value is taken either 0 or 1, Fg and Fw 
are the gravity force and wheel/rail force, respectively. 

If m1, m2 and m3 are the masses of half of the car body, the left and right of bogie frame, m4, m5, 
m6 and m7 are the masses of four wheelsets in Figure 1(b), respectively, J1 , J2 and J3 are moments of 
inertia of car body, the left and right of bogie frame, respectively; k1 and k2 are the stiffness coefficients 
of secondary and primary suspensions, respectively, c1 and c2 are the damping coefficients of secondary 
and primary suspensions, respectively; x1, x2 and x3 are the vertical displacements of the car body, the 
left and right of bogie frame, x4, x5, x6 and x7 are the vertical displacements of four wheelsets, 
respectively, θ1, θ2 and θ3 are pitching rotations of car body, the left and right of bogie frame 
respectively, L and l are the distances between the two axles centres position of bogie frame and 
between the two bogie frame centres. In Eq (1), there exists the following formula  
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1 1 2 2 3 3 4 5 6 7( , , , , , , , , , )TX x x x x x x x                                      (5) 

The wheel–rail force in Eq (1) can be described by the Hertzian theory, if ( ) 0wi ri iix x x    then 
3 2[( ) ]wi wi ri iiF x x x G   , else 0wiF  . Here G is Hertzian coefficient, 0.115 83.86 10G R   , i = 1 and 2 

indicate the first wheel-pair and the second wheel-pair, respectively, wix and rix  are the vertical 
displacements of the wheelset and rail, respectively, and iix  represents the track irregularity. The rail 
irregularity is described as an ideal cosine function as [31] 

1 2
( ) (1 cos )

2ii

V
x t a t

d


                                      (6) 

where V is the running speed of railway freight train, a and d represent the wave depth and amplitude 
value of track irregularity, respectively, a = 11.2 mm and d = 10.8 m. 

2.2. Quarter model of railway freight wagon 

The car body and the bogie frame are assigned with vertical displacement and rotation angle, only 
the vertical displacement of the two wheelsets is considered. Without considering the coupling effect 
of vehicle and rail, there are six degrees-of-freedoms (6DOF) in the quarter model. 

If m1 and m2 are the masses of quarter of the car body and bogie frame, m3 and m4 are the masses 
of left wheelset and right wheelset in Figure 1(c), respectively, J1 and J2 are moments of inertia of car 
body and bogie frame, respectively; k1 and k2 are the stiffness coefficients of secondary and primary 
suspensions, respectively, c1 and c2 are the damping coefficients of secondary and primary suspensions, 
respectively. x1, x2, x3 and x4 are the vertical displacements of the car body, bogie frame, left wheelset 
and right wheelset, respectively, θ1 and θ2 are pitching rotations of car body and bogie frame, 
respectively, L and l are the distances between the two axles centres position of bogie frame and 
between the two bogie frame centres. In Eq (1), there exists the following formula 

1 1 2 2 3 4( , , , , , )M diag m J m J m m                                     (7) 
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1 1 2 2 3 4( , , , , , )TX x x x x                                                   (10) 

The calculation formulas of the wheel–rail force and rail irregularity are the same as that of half 
model mentioned above. 
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3. Influence of train speed on vertical vibration of car body and bogie frame 

3.1. Comparison of two vertical vibration models 

Table 1. Parameters of system simulation. 

Parameters Values
Mass of the car body (kg) 9.03105

Pitch moment of inertia of the car body (kg m2) 9.84107

Mass of the bogie frame (kg) 1575
Pitch moment of inertia of the bogie frame (kg m2) 257
Mass of the wheelset (kg) 1100
Stiffness of the primary suspension (N/m) 2.5107

Damping of the primary suspension (N s/m) 4.36104

Stiffness of the secondary suspension (N/m) 5.87106

Damping of the secondary suspension (N s/m) 2.25104

Distance between the two bogie frame centers (m) 8.20
Distance between two axles of bogie frame (m) 1.80
Wheelset rolling radius (m) 0.42
Rail mass per unit length (kg/m) 60.64
Sleeper spacing (m) 0.545
Sleeper width (m) 0.273
Mass of half sleeper (kg) 125.5

    
                      (a1)                               (a2) 

    
                     (b1)                               (b2) 

Figure 2. Bifurcation diagrams of vertical displacement of car body and bogie frame for 
half model. (a) Global bifurcation diagram; (b) Local bifurcation diagram.  
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Based on the half model and quarter model of the car body and bogie frame, the Runge-kutta 
method is adopted to solve the system equation, and some simulation parameters are given in Table 1. 

Figures 2(a) to 3(a) illustrate the global bifurcation diagrams of vertical displacement of the car body 
and bogie frame for half model and quarter model when the train speed is changed. For the proposed 
railway freight wagon, the designed maximum running speed of the train is 120 km/h, hence, Figures 2(b) 
to 3(b) illustrate the local bifurcation diagrams for two models. It can be seen that the vertical displacement 
of both models is very small when the speed is less than 75 km/h, in which the maximum vertical 
displacement of the car body and bogie frame for half car model is less than 0.03 and 0.02 mm, while the 
corresponding displacement of quarter model is less than 0.04 and 0.02 mm, respectively.  

With the increase of the train speed, the vertical vibration displacement also increases, but the errors 
of the two models are very small too and can be ignored. For instance, when train speed equals 90 km/h 
and 120 km/h respectively, the maximum vertical displacement of car body and bogie frame for half model 
is 0.12 and 0.05 mm, 0.65 and 0.45 mm, while the corresponding displacement of quarter model 
is about 0.14 and 0.055 mm, 0.6 and 0.4 mm, respectively. Since the simulation time of drawing 
bifurcation diagram of the quarter model (t = 16,247 s) is far less than that of the half model (t = 25,936 s), 
the quarter model above is then selected as the vertical vibration model of the railway freight wagon 
in this study. 

     
(a1)                              (a2) 

      
                     (b1)                              (b2) 

Figure 3. Bifurcation diagrams of vertical displacement of car body and bogie frame for 
quarter model. (a) Global bifurcation diagram; (b) Local bifurcation diagram.  

3.2. Nonlinear vertical vibration characteristics of the quarter model 

To further illustrate the nonlinear characteristics of vertical vibration of car body and bogie frame 
for the quarter model, Figure 4 shows the maximum exponential curve of the car body and bogie frame 
varying with train speed. Meantime, Figures 5–10 also display the nonlinear vertical vibration 
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responses of the car body and bogie frame. Here, a1, b1, c1 and d1 represent the dynamic response of 
the car body in the x1 direction, a2, b2, c2 and d2 represent the dynamic response of the bogie frame in 
the x2 direction, respectively. As shown in Figures 3 and 5, when the train speed does not exceed 75 
km/h, i.e., V = 70 km/h, Poincaré section has a single point, phase plane diagram is only one closed 
circle, time domain response diagram shows a sine wave, and amplitude-frequency spectrum has only 
one peak amplitude, hence the system responses of the car body and bogie frame enter stable period-1 
motion. Where the Lyapunov exponents are negative, and the maximum vertical displacement of the car 
body and bogie frame is very small, which is approximately equal to 0.04 and 0.02 mm, respectively.   

      

(a)                                (b) 

Figure 4. Maximum Lyapunov exponent diagram of quarter model varying with train 
speed: (a) Car body; (b) Bogie frame. 

In Figure 5 and other figures below, the units of displacement x1 and x2, velocity dx1 and dx2 
are mm and mm/s, and the units of time t and frequency f are second (s) and hertz (Hz) respectively. 

      
(a1)                              (a2) 

     

(b1)                              (b2) 
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(c1)                               (c2) 

      

(d1)                               (d2) 

Figure 5. Dynamic response of car body and bogie frame when V = 70 km/h: (a) Phase 
plane plot; (b) Poincaré section; (c) Axis trajectory curve; (d) Amplitude spectra. 

With the increase of wagon speed, the vibration responses of car body and bogie frame have 
changed significantly. When the speed V = 75 km/h, the vertical vibration responses of the car body 
and bogie frame leave period-1 motion, enter periodic-6 motion and periodic-4 motion, respectively. 
As displayed in Figure 6, six and four return points are shown in the Poincaré maps, respectively, 
phase plane diagrams have six and four closed circles, time domain response diagrams show a period 
motion, and the amplitude-frequency spectrums reveal numerous excitation frequencies, hence the 
vertical vibration responses of the car body and bogie frame are period-6 and period-4 motion, 
respectively, in which the Lyapunov exponents are negative, and the maximum vertical displacements 
of car body and bogie frame have almost no change. 

When wagon speed continues to increase, i.e., V = 85 km/h, the vertical vibration responses of 
the car body and bogie frame enter multi-periodic motion. As displayed in Figure 7, eighteen return 
points are shown in Poincaré sections, phase plane diagrams have multiple closed circles, time domain 
response diagrams show multi-period motion, and amplitude-frequency spectrums also reveal 
numerous excitation frequencies. It is obvious that the vertical vibration response of the freight wagon 
is multi-periodic motion. Meanwhile the Lyapunov exponents are negative, and the maximum vertical 
displacements of the car body and bogie frame increase to about 0.05 and 0.022 mm.  

x1 x2

x1 x2



4392 

Electronic Research Archive  Volume 30, Issue 12, 4382–4400. 

     

(a1)                              (a2) 

     

(b1)                              (b2) 

      

(c1)                              (c2) 

       

(d1)                              (d2) 

Figure 6. Dynamic response of the car body and bogie frame when V = 75 km/h: (a) Phase 
plane plot; (b) Poincaré section; (c) Axis trajectory curve; (d) Amplitude spectra. 
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(a1)                              (a2) 

     
(b1)                              (b2) 

     

(c1)                               (c2) 

       
(d1)                               (d2) 

Figure 7. Dynamic response of the car body and bogie frame when V = 85 km/h: (a) Phase 
plane plot; (b) Poincaré section; (c) Axis trajectory curve; (d) Amplitude spectra. 
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Figure 8. Dynamic response of the car body and bogie frame when V = 100 km/h: (a) 
Phase plane plot; (b) Poincaré section; (c) Axis trajectory curve; (d) Amplitude spectra. 
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Figure 9. Dynamic response of the car body and bogie frame when V = 110 km/h: (a) 
Phase plane plot; (b) Poincaré section; (c) Axis trajectory curve; (d) Amplitude spectra. 
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Figure 10. Dynamic response of the car body and bogie frame when V = 120 km/h: (a) 
Phase plane plot; (b) Poincaré section; (c) Axis trajectory curve; (d) Amplitude spectra. 
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The nonlinear wheel rail contact forces exist in the system model, which is the reason for the 
nonlinear vertical vibration of the wagon system. Especially when the wagon speed increases to 100 
km/h, chaos occurs in the wagon system, and the vertical vibration amplitude also increases. As seen 
in Figure 8, the vertical vibration responses of the car body and bogie frame contain chaotic state and 
quasi period motion, respectively. As shown in Figure 4(a), the Lyapunov exponent of the car body is 
positive, and in Figure 8(a1)–(d1), the Poincaré section shows the finite points, phase plane curve and 
axis trajectory curve are closed, and amplitude spectrum is discrete, the vertical vibration response of 
the car body is then regarded as chaotic motion. At the same time, the Lyapunov exponent of the bogie 
frame is negative as shown in Figure 4(b), the phase plane curve becomes regular, and the attractor of 
Poincaré section has closed curve as displayed in Figure 8(a2)–(d2), it is clear that the vertical vibration 
response of bogie frame is only the quasi-periodic motion, not chaotic motion. On the other hand, with 
the increase of train speed, the vertical vibration amplitude of the car body and bogie frame obviously 
began to increase, and the maximum vertical displacements of the car body and bogie frame, x1 and x2, 
increase to close to 0.14 and 0.055 mm, respectively. 

4. Conclusions 

The vertical dynamic model mainly studies the vibration performance of railway freight wagon 
in the vertical plane during the operation, so that the vertical vibration can be reduced or controlled in 
future research. Without considering the coupling effect of vehicle and rail, a 6DOF generalized mass 
model with vertical displacement and rotation angle is established, which includes one car-body, two 
secondary suspensions, two bogie frames, four primary suspensions and four wheelsets. The nonlinear 
vertical vibration characteristics and evolution laws of the car body and bogie frame are analyzed by 
using bifurcation diagrams, maximum Lyapunov exponent curves, axis trajectory curves, phase plane 
plots, Poincaré sections, and amplitude spectras when the train speed is changed. The simulations 
reveal the complex vibration behavior of the railway freight car such as periodic, quasi-periodic, multi-
periodic, and chaotic motion. Some conclusions can be summarized as follows:  

Since the simulation time of the quarter model is far less than that of the half model, and the 
difference between the simulation results of the quarter model and the half model is very small, 
therefore, the 6DOF quarter model can replace the half model as the vertical vibration dynamic model 
of the railway freight wagon. 

When the wagon speed is not greater than 75 km/h, the Lyapunov exponents are negative, the 
vertical vibration responses of the car body and bogie frame is in stable period-1 motion, and the 
corresponding vertical vibration displacement is also very small, especially when V = 70 km/h, the 
maximum vibration displacement is equal to 0.04 and 0.02mm, respectively. For the proposed railway 
freight wagon, the designed maximum running speed of the train is 120 km/h, hence the recommended 
running speed of the railway freight wagon can be chosen near 70 km/h. 

The nonlinear wheel rail contact forces exist in the system model, which is the reason for the 
nonlinear vertical vibration of the wagon system. Especially when the wagon speed increases to 100 
km/h, chaos occurs in the wagon system, and the vertical vibration amplitude also increases. 
Meanwhile, with the increase of the wagon speed, the vertical vibration of the car body and bogie 
frame undergoes the changes from multi-period to the chaotic motion and from multi-period to quasi 
period motion, respectively. When wagon speed equals 85, 10, 110 and 120 km/h, respectively, the 
vertical amplitude of the car body is 0.05, 0.1, 0.42 and 0.6 mm, while the vertical amplitude of the 
bogie frame is relatively small, which is equal to 0.022, 0.055 mm, 0.22 to 0.4 mm respectively. 
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Therefore, as the wagon speed increases, the vertical vibration of the car body must be monitored in 
real time. 
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