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Abstract: This paper considers the maneuvering penetration methods of missile which do not know
the intercepting strategies of the interceptor beforehand. Based on reinforcement learning, the online
intelligent maneuvering penetration methods of missile are derived. When the missile is locked by
the interceptor, in terms of the tracking characteristics of the interceptor, the missile carries out ten-
tative maneuvers which lead to the interceptor makes the responses respectively, in the light of the
information on interceptor responses which can be gathered by the missile-borne detectors, online
game confrontation learning is employed to increase the miss distance of the interceptor in guidance
blind area by reinforcement learning algorithm, the results of which are used to generate maneuvering
strategies that make the missile to achieve the successful penetration. The simulation results show that,
compared with no maneuvering methods or random maneuvering methods, the methods proposed not
only present higher probability of successful penetration, but also need less overload and lower com-
mand switching frequency. Moreover, the effectiveness of this maneuvering penetration methods can
be realized under the condition of limited number of training.
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1. Introduction

The study of maneuvering penetration technologies which can improve the combat effectiveness
of missiles is a hot topic in the research field of guidance and control, there are many methods about
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midpiece maneuvering penetrations, such as pre-procedural maneuvering penetration strategies [1];
actively evasive maneuvering penetration methods [2]; penetration methods based on flying around the
detection interception area [3] and so on.

In the process of pre-procedural maneuvering penetration methods, the trajectories of penetration
are preset before launching, the missiles can not make any responses with respect to strategies of the
interceptor, alternatively, the missile flies along the preconcerted trajectories and is abided by the pre-
concerted maneuvering timing. Compared with the pre-procedural maneuvering penetration strategies,
the actively evasive maneuvering penetration strategies, which can obtain the the optimal penetration
strategies based on the parameters of interceptor detected by missile-borne computer, can increase the
rate of successful penetration. There are two mainly maneuvering guidance strategies in the actively
evasive maneuver penetrations, one is differential game type [3], the other is matrix game type [4].
From the mathematical standpoint, to derive the differential game typical guidance strategies is equiv-
alent to solve a bilateral extremum problems for the associated functionals, but it is very hard to find
the analytical solutions for these kinds of functionals. With respect to achieve the numerical solu-
tions, it costs a lot of computing resource of the missile-borne computer to keep the high precision and
real-time performance. In light of the finite two-person zero-sum game theory, matrix game typical
guidance strategies consider the missile and interceptor as the players, the target-missing quality and
its negative value are regraded as their payments. This method needs a lot of information on the motion
of the interceptor, for more details, one can refer to [5].

Recently, with the improvement of the computing ability of computer, the artificial intelligence
have been developed rapidly [6], investigations on theory and applications of reinforcement learning
(RL) [7–13] is very important. In order to obtain the best operating action of the whole system, the
RL can make the intelligent agent to select the behaviors which can gain the maximum reward of the
environment state by learning the mappings from the environmental states to the behaviors. There
are many literatures on the theory and application of RL. For instance, Bradtke and Duff [14] consid-
ered the continuous-time Markov decision problems by using RL. Taking advantage of the RL, some
problems in transport were studied by Abdulhai and Kattan [15]. Based on the RL, Lewis et al. [16]
designed optimal adaptive controllers by using natural decision methods. In the achievements on dy-
namics and control problem of robotics, the RL was also employed wildly [17]. As for the applications
of RL in economics, one can refer to [18]. With respect to literatures on dynamics and control of mis-
siles or aircrafts by RL, Shalumov [19] proposed cooperative online guide-launch-guide policy for the
target-missile-defender engagement. The computational guidance problem of missile was considered
in [20]. A homing-phase guidance law of missile was considered in [21]. The scenarios of avoid-
ing Obstacles via missile real-time inference belong to Hong and Park [22]. Gaudet et al. gave an
angle-only intercept guidance of maneuvering targets [23]. missile guidance for head-on interception
of maneuvering target was established by Li et al. [24]. A planar evasive maneuvering strategy of
aircrafts was derived in [24], too name but a few. For more detail, one can refer to [11, 25–28].

Actually, RL is a kind of self-regulated learning method driven by experiences, the maneuvering
penetration technologies based on RL are nearly trained with predictable intercepting strategies, which
means that the maneuvering penetration technologies are useless if the intercepting strategies can not
be acquired beforehand. In order to overcome this obstacle, this paper is devoted to propose online
intelligent maneuvering penetration methods with respect to non-predictable intercepting strategies
based on RL, the main idea is that: let the tentative maneuvers of missile and line of sight rates (LOS)
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rate between missile and interceptor be actions and states respectively. Inducing the interceptor to gen-
erate the responses with respect to the actions, which can be captured by the missile-borne detectors.
In the light of the increment of LOS rates, the reward function can be designed. Thus, by means of
the information gathered by missile-borne detectors, the the maneuvering penetration strategies can be
derived by missile-borne computer based on RL.

The rest of this paper is organised as follows. The preliminaries are given in Section 2. Section
3 is devoted to demonstrate the main results, in which the online intelligent maneuvering penetration
methods are proposed and some numerical results are accomplished to validate this new method. In
Section 4, the conclusions are listed.

2. Preliminaries

For brevity, some symbols are introduced firstly, let D and M be the interceptor and the missile
respectively, r = (rx, ry, rx) is the relative distance between the missile and the interceptor. Based
on the kinematic theory, the relationship between the missile and the interceptor in attack-defense
confrontation can be described by Figure 1. θ1 is the ballistic inclination angle of the interceptor, the
ballistic declination angle of the interceptor is denoted by φ1. θ2, φ2 are the ballistic inclination angle
and the ballistic declination angle of missile respectively. vM is the velocity of missile, and the velocity
of interceptor is signified by vD, thus vr = vD − vM is the relative velocity between the missile and the
interceptor. q = (qx, qy, qz) is LOS angle in the ground coordinate system, the horizontal and vertical
LOS angle are denoted by qφ and qθ. Let (xM, yM, zM) and (xD, yD, zD) be the positions of missile and
interceptor in ground coordinate system respectively.
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Figure 1. The relative motion of the missile and the interceptor.

By [29], the mathematical model of relative motion between the missile and the interceptor can be
described as follows
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
drx
dt = vD cos θ1 cosφ1 − vM cos θ2 cosφ2

dry

dt = vD cos θ1 sinφ1 − vM cos θ2 sinφ2
drz
dt = vM sin θ2 − vD sin θ1,

(2.1)

the equation governing the dynamics of LOS angle is

 dqφ
dt = cosφ2

qy

dt − sinφ2
dqx
dt

dqθ
dt = sin θ2

(
cosφ2

dqx
dt + sinφ1

dqy

dt

)
+ cos θ1

dqz
dt ,

(2.2)

the position of missile can be described by


dxM
dt = vM cos θ2 cosφ2

dyM
dt = −vM cos θ2 sinφ2

dzM
dt = vM sin θ2,

(2.3)

the following equations model the position of the interceptor


dxD
dt = vD cos θ1 cosφ1

dyD
dt = −vD cos θ1 sinφ1

dzD
dt = vD sin θ1.

(2.4)

Next, it is turned to give the description on interceptor guidance blind area.
In general, exoatmospheric kill vehicle (EKV), which consists of guidance systems, transferring

orbital control systems, propulsion systems and so on (for more detail, see Figure 2), destroys the
missile by collision. The homing guidance system should be interrupted when the distance between
EKV and missile is less than or equal to a certain quantity R which is referred as guidance blind area.
Obviously, the EKV is uncontrollable in guidance blind area, in addition, the interceptor guidance blind
area is about 30 m to 500 m in practice. Figure 3 indicates the graphical representation on instantaneous
miss distance d of EKV [30, 31] which can be determined as following,

d =
R2

|Ṙ|
∥q̇∥ (2.5)

where R is the instantaneous distance between the missile and the interceptor, Ṙ denotes the instan-
taneous relative velocity when both the missile and the interceptor just enter the guidance blind area,

∥q̇∥ =
√

q̇2
φ + q̇2

θ . Clearly, the instantaneous miss distance is proportional to ∥q̇∥, R and is inversely

proportional to |Ṙ|. Since the time of both missile and EKV are in guidance blind area is so short that
the missile can not maneuver, thus, the instantaneous miss distance can be regarded as the actual miss
distance.
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Figure 2. EKV schematic.
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Figure 3. Graphical representation on instantaneous miss distance.

Reward r
Action a

State s’

State sCurrent moment

Next moment

Agent

Environment

Figure 4. Interaction between agent and environment.

The RL can be divided into two kinds, one is using the same strategy to update the value function
and select a new action, such as Sarsa method. The other is utilizing the different strategies to do these
things, for instance, Q-learning (QL) method. In QL, the interactions between agent and environment
are modelled by the markov decision process (S,A ,P,R, γ), where S is the states, A is a σ− algebra
generated by the sets which is composed of all possible actions, P is the transition probability of one
state to another state, R is the reward function, γ is discount factor. Let S t ∈ S be the state at time t,
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At ∈ A (S t) is the action, here A (S t) is the set of actions available in state S t, for simplicity, we use
A (t) instead of A (S t). Rt ∈ R is the reward, and S t+1 is the next state of the agent (see Figure 4). Let

Gt = Rt+1 + γRt+2 + γ
2Rt+3 + · · · =

∞∑
k=0

γkRt+k+1, (2.6)

where 0 ≤ γ ≤ 1 is the discount rate. For all s′, s ∈ S, r ∈ R and a ∈ A (s), let

p(s′, r|s, a) = P{S t = s′,Rt = r|S t−1 = s, At−1 = a}, (2.7)

suppose π is the policy, π∗ is the optimal policy, π(a|s) is the probability of getting the action a at time
s, then the associated state-value function is given as following

vπ(s) = Eπ[Gt|S t = s], (2.8)

the action-value function is
qπ(s, a) = Eπ[Gt|S t = s, At = a]. (2.9)

Together with (2.6)–(2.9) and the markov property, we have

vπ(s) =
∑

a∈A (s)

π(a|s)
∑

s′∈S,r∈R

p(s′, r|s, a)[r + γvπ(s′)], (2.10)

and
qπ(s, a) =

∑
s′∈S,r∈R

p(s′, r|s, a)[r + γ
∑

a∈A (s)

π(a′|s′)qπ(s′, a′)], (2.11)

thus, the optimal state-value function is

vπ∗(s) = max
a∈A (s)

∑
s′∈S,r∈R

p(s′, r|s, a)[r + γvπ∗(s′)], (2.12)

and the optimal action-value function is

qπ∗(s, a) =
∑

s′∈S,r∈R

p(s′, r|s, a)[r + γ max
a′∈A (s)

qπ∗(s′, a′)]. (2.13)

Generally, the following ϵ − greedy strategy is employed in QL

A =

arg max
a∈A

Q(s, a) with probability 1 − ε

a random action with probability ε
,

where Q(s, a) is the estimated value of the action value function qπ∗(s, a)).
The flow chart of QL algorithm is as following, where S+ is the state space containing the termina-

tion state, and
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Algorithm 1. (Q-learning (off-policy TD control) for estimating π ≈ π∗)
Q-learning (off-policy TD control) for estimating π ≈ π∗
Algorithm parameters: step size α ∈ (0, 1], small ϵ > 0
Initialize Q(s, a), for all s ∈ S+,a ∈ A(s),arbitrarily except that Q(terminal, ·) = 0
Loop for each episode:

Initialize S
Loop for each step of episode:

Choose A from S using policy derived from Q(e.g., ϵ − greedy)
Take action A, observe R, S ′

Q(S , A)← Q(S , A) + α[R + γmaxaQ(S ′, a) − Q(S , A)]
S ← S ′

until S is terminal

3. Main results

3.1. Design on the intelligent maneuvering penetration strategy

Firstly, we propose the flow chart of the maneuvering penetration methods of the missile with
respect to unknown intercepting strategies by QL methods (see Figure 5).

Training stage Level flight stage Penetration stage

Figure 5. The flow chart of the intelligent maneuvering penetration strategies proposed.

Dividing the combat process between the missile and the interceptor into three stages. After the
missile is locked by the interceptor, let the missile make tentative maneuvers to induce the interceptor
to correspondingly generate the responses, based on the information of responses of the interceptor,
maneuvering penetration strategies of the missile are trained by QL method. This is the training stage.
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After that, the missile do not make any tentative maneuver, thus, the second stage is named as level
flight stage. The third stage is referred to as penetration stage, the missile produces the maneuvering
penetration strategies in terms of the training results and calculate instantaneous miss distance of EKV
in guidance blind area to implement successful penetration.

It is emphasized the maneuvering penetration strategies indicated above do not need to know the
law of the interceptor beforehand, alternatively, the necessary information for QL training is acquired
by missile-borne detectors, and the maneuvering penetration strategies based on QL training is done by
the missile-borne computer. Thus, the maneuvering penetration strategies are intelligent and real-time.

In the following, we realize the flow chart described by Figure 5. To begin with, the following
markov decision process model is established.

1) The states space: the instantaneous antagonistic states between the missile and the interceptor are
depended on the LOS rates, thus, let the LOS rates be the state with the following form

S = [−0.8,−0.4,−0.06,−0.03,−0.02,−0.01,−0.009,−0.006,−0.00188,
− 0.00162,−0.00138, 0.00138, 0.00162, 0.00188, 0.006, 0.009, 0.01,
0.02, 0.03, 0.06, 0.1, 0.4, 0.8],

(3.1)

the unit is rad/s.
2) The actions space: the offense-defense confrontation between the missile and the interceptor can

be formulated by pursuit-evasion game, the actions of which consist of up, down, left and right.
In order to consider the penetration ability of missile with lower maneuverability, we set the
optional overloads are 2 and 3.5 along with each direction of the up, down, left and right, the
ultimate overload of interceptor is supposed to be 8, thus, we establish the actions of missile as
follows

A = [2, 3.5,−2,−3.5, 2, 3.5,−2,−3.5]. (3.2)

3) The reward function: the purpose of the test maneuvers of missile is to find the sequences which
can result in the increasing of LOS rates. In order to generate a large value of LOS rate during
the penetration, which can lead to the failure of proportional guidance method of EKV, the value
of reward should be big when LOS rate is big and vice versa. Together with (2.5) and the amount
of instantaneous off-target required, the critical value of LOS rate can be derived. If the LOS rate
is larger than this critical value, the bigger value of reward function should be given. In practice,
the LOS rates is very small (its magnitude is less than 10−1), thus, the rewards are set to be the
absolute value of the LOS rates when the LOS rates are less than the critical value. In other cases,
let the value of reward be 10. As indicated above, the reward function is designed as the following
form

r =
{
|q̇|, if q̇ < 0.6rad/s
10, i f q̇ ≥ 0.6rad/s.

(3.3)

4) The behavioral strategies: following the ε− greedy strategy, the behavioral strategies of missile
can be set up.

3.2. Numerical results

This subsection is devoted to list the numerical results to validate the intelligent maneuvering pene-
tration strategies proposed. Let the initial velocity of both the missile and the interceptor are 900 m/s,
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the initial positions are (120, 000 m,−120, 000 m, 0 m) and (0 m, 0 m, 120, 000 m) respectively. Suppose
strategy of the interceptor is proportional navigation method [32], the coefficient of which is Ne = 3,
it is mentioned that the missile is not trained with respect to this strategy before launching. We can
get tangential acceleration of interceptor by proportional navigation method, and the tangential accel-
eration of missile can be derived from the actions in QL. Set the learning rate α = 0.5, discount rate
γ = 0.9 in QL, the initial of ε in ε−greedy strategy is 0.6, which is decreased with the increasing of the
frequency of training.

From the missile is locked by interceptor to the relative distance is 100, 000 m is the training stage,
the relative distance between 25, 000 m to 100, 000 m is the level flight stage, the penetration stage is
ended at the missile enter to the guidance blind area and calculate out the instantaneous miss distance
or the relative distance is less than or equal to 300 m. In order to make comparison, the no maneuver-
ing strategies and random maneuvering strategies with the same initial condition for missile are also
considered. With these two strategies, dividing the combat process between missile and interceptor
into two stages: from the missile is locked by interceptor to the relative distance is 25, 000 m is the
level flight stage, after that, the missile enter the penetration stage.

Table 1. Comparison of miss distance of three penetration strategies.

Strategy Miss Distance (m) horizontal/vertical overload of EKV (g) Horizontal/vertical Los-rate (rad/s)

No maneuver 0.09 4.8/6.6 0.02/0.19
Random maneuver 0.14 5.7/4.6 0.02/0.18
QL maneuvera 64.04 8/8 0.29/0.49

a The strategies derived in this paper, for convenience, we call it QL maneuver in the rest of this paper.

From Table 1, we can assert that, under the QL maneuver, the missile produces large LOS rates to
induce the overload of the interceptor to exceed the ultimate value, which gives rise to that the miss
distance is 64.04 m. The Figure 6 illustrates the flight trajectory of the missile and the interceptor
EKV with QL maneuver. Figures 7 and 8 show the variations of the overloads for the missile and
the interceptor. Figure 7(a) interprets that, in the case of no maneuver, the missile can be effectively
intercepted by switching the overload of EKV smoothly. In the circumstance of random maneuver,
although the maneuvers produced by missile induce the associated responses of the interceptor, the
overload of the interceptor do not over the ultimate value, which indicates that the interceptor have
enough residual capacity to intercept the missile and the instantaneous miss distance is small, see
Figure 7(b). By the lateral and longitudinal overload in the case of QL maneuver painted in Figure 8,
the overload of EKV can exceed the ultimate value in the case of QL maneuver and the instantaneous
miss distance is large, which means that the interceptor can not intercept missile.

The changes of LOS rates are described by Figures 9 and 10. With the QL maneuvering strategies,
we see that the LOS rates increase dramatically in the penetration stage, increasing the overload of
interceptor to the ultimate value can not restrain the divergence of the LOS rates, which results in
the off-target of the interceptor, see Figure 10. From Figure 9, we find that the LOS rates are almost
unchanged, thus, the miss distance is small.
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Longitudinal section
projection path

Ballistic ground path

(a) Attack-defense confrontation process
between the missile and the EKV.
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Figure 6. Flight trajectory of the missile and the interceptor EKV with QL maneuver.
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Figure 7. Transverse overload in the cases of no maneuver and random maneuver.
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Figure 8. Transverse and longitudinal overload in the case of QL maneuver.
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Figure 9. Transverse LOS rates in the cases of no maneuver and random maneuver.
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Figure 10. Transverse and longitudinal LOS rates in the case of QL maneuver.
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In order to formulate the probability of successful penetration with the three maneuvering strategies,
let d1 = 6.5, here d1 is the critical value of miss distance, if the miss distance d0 > d1, it accounts for the
penetration is successful, otherwise, the penetration is failed. With the same initial condition, take 1000
numerical results as a group, 10 groups of numerical simulation are accomplished for each strategy.
The numerical results state that the probability of successful penetration with no maneuvering strategies
or random maneuvering strategies is 0, the probability of successful penetration with QL maneuvering
strategies is about 80% (see Table 2).

Table 2. The probability of successful penetration with QL maneuver strategies.

Group of numerical simulation The probability
1–5 81.95% 82.3% 81.5% 84.6% 82.3%
6–10 81.6% 81.7% 81.9% 80.6% 81.7%

From Figure 11, we obtain the mean of miss distances with random maneuver is about 0.2 m, the
variance is small, it is the reason that the probability of successful penetration is nearly 0 when we
set the critical value of miss distance is 6.5 m. When the missile with the QL maneuvering strategy,
the mean of miss distance is about 60 m, although the variance of miss distance is larger than in
random maneuver, combined with Table 2, we can assert that the QL maneuvering strategies can
produce effective penetration with high probability. Furthermore, the Figure 12 describes that the
miss distances are distributed in [0, 200 m] and concentrated around 50 m, thus, we can guarantee that
the QL maneuvering strategy can leads the missile to realize successful penetration steady.

The Figure 13 illustrates the target chart of miss distances in the cases of random maneuvering
strategies and QL maneuvering strategies. In the case of random maneuver, the distribution of target
points are random, no obvious regularity can be found intuitively, see Figure 13(a). Because of the
limit on the times of training, the most of target points are around one of the coordinate axis under the
QL maneuvering strategies.
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Figure 11. Mean and variance of the miss distance under random maneuver and QL maneuver.
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Figure 12. Miss distance and its probability density under QL maneuver.
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Figure 13. The target figure of miss distances under random maneuver and QL maneuver.

In order to illustrate the intensively effectiveness of maneuvering strategies proposed, we set pro-
portional guidance coefficients Ne of EKV to be 2.3, 2.5, 2.7 and 3.3 respectively, under which the
similar numerical investigations are considered. The related results are given in Table 3.

Table 3. The probability of successful penetration under QL maneuver strategies with respect
to the different Ne.

Ne = 2.3 Ne = 2.5 Ne = 2.7 Ne = 3.2
Probability 94.24% 91.27% 88.35% 75.25%

As indicated above, we can conclude that, in the confrontation between the missile and the inter-
ceptor, the missile trained by QL maneuver based on the information of tentative maneuver of missile
and the responses of interceptor induced can autonomously select a suitable maneuvering strategy to
implement penetration successfully.
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4. Conclusions

When the intercepting manners are unknown in the confrontation between the missile and the in-
terceptor, this paper proposes the intelligent maneuvering penetration strategies of the missile based
on reinforcement learning, which is referred as QL maneuver. Compared with the no maneuvering
and random maneuvering methods, the QL maneuver possesses the advantage of high probability of
successful penetration. To be important, it is only needed the information of positions and LOS rates
in the process of training the QL maneuvering strategies, furthermore, the time of training is not very
long and all the training is done by the missile-borne computer when the missile are flying.
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