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Abstract: The paper initially develops the semi-Jordan curve theorem on the digital plane with the
Marcus-Wyse topology, i.e., MW-topological plane or (Z2, γ) for brevity. We first prove that while
every simple closed MW-curve is semi-open in (Z2, γ), it may not be semi-closed. Given a simple
closed MW-curve with l elements, denoted by S Cl

γ, after establishing a continuous analog of S Cl
γ

denoted by A(S Cl
γ), we initially show that A(S Cl

γ) is both semi-open and semi-closed in (R2,U),
where (R2,U) is the 2-dimensional real plane R2 with the usual topology U. Furthermore, we find
a condition for A(S Cl

γ) to separate (R2,U) into exactly two non-empty components, compared to
a typical Jordan curve theorem on (R2,U). Since not every S Cl

γ always separates (Z2, γ) into two
nonempty components, we find a condition for S Cl

γ, l , 4, to separate (Z2, γ) into exactly two
components. The semi-Jordan curve theorem on the MW-topological plane plays an important role
in applied topology such as digital topology, mathematical morphology as well as computer science.

Keywords: semi-Jordan curve theorem; semi-open; semi-closed; Alexandroff space; Marcus-Wyse
topology; Marcus-Wyse (MW-, for brevity) topological plane; semi-homeomorphism; continuous
analog of a digital object; digital-topological group; digital topology

1. Introduction

In this paper, we use the notation Z (resp. N and R) to indicate the set of integers (resp. natural
numbers and real numbers). Besides, since we will often use the name “Marcus-Wyse” in this paper,
we will take the term “MW-” instead of “Marcus-Wyse”, if there is no danger of ambiguity. Besides,
Zo (resp. Ne) means the set of odd integers (resp. even natural numbers) and further, we will use the
notation “⊂” (resp. X]) to denote a ‘proper subset or equal’ (resp. the cardinality of the given set X).
The notation “ :=” will be used to introduce a new notion or a terminology. In addition, let us denote a
simple closed MW-curve with l elements by S Cl

γ, 4 ≤ l ∈ Ne \ {6} (see Definition 2.1(3) in detail).
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Indeed, the well-known Jordan curve theorem on the 2-dimensional real space [1] has some
limitations of dealing with digital objects on Z2 from the viewpoints of applied sciences such as
digital topology and digital geometry. Thus, in relation to the establishment of several types of Jordan
curve theorems in digital topological settings, there are many works including the papers [2–12]. In
the literature, to do this work, digital graph theory [7–9] and several types of topologies have been
used such as Khalimsky, Marcus-Wyse, Alexandroff topology, pretopology, and so on. However,
given a certain topological space (Z2,T ), the earlier works did not examine topological features of J
and Z2 \ J, where J is a simple closed digital curve in (Z2,T ). Since both J and Z2 \ J may not be
either a closed or an open set in (Z2,T ), we need to intensively study some topological features of
both J and Z2 \ J. Furthermore, with a certain topological space (Z2,T ), since the number of the
components of Z2 \ J can be very important from the viewpoint of mathematics, we need to
intensively investigate this topic. For instance, on the MW-topological plane, i.e., (Z2, γ), the present
paper clearly shows that the number of the components of the complement of S Cl

γ in (Z2, γ) depends
on the situation. Besides, we also find that topological features of the sets S Cl

γ and Z2 \ S Cl
γ are so

related to the semi-closedness and semi-openness in (Z2, γ). In detail, see [13, 14] or Section 3 in the
present paper. Indeed, there are lots of works studying various properties of semi-closed and
semi-open subsets of a topological space [13–19]. Based on this approach, the present paper will
partially use these works.

The aim of the present paper is initially to propose the semi-Jordan curve theorem on the digital
plane with the MW-topology (or (Z2, γ)) because it has something quite independent from the earlier
results in the literature including the papers [3, 4, 6, 8, 9, 11, 12]. To propose this theorem and support
some utilities, we will mainly deal with the following topics.
• Examination of many types of S Cl

γ with respect to the semi-closedness and semi-openness in (Z2, γ).
• Establishment of a method for making a continuous analog of S Cl

γ and an investigation of some
topological features of A(S Cl

γ) with respect to the semi-openness and semi-closedness in (R2,U),
where (R2,U) is the 2-dimensional real space with the usual topology.
• Given an S Cl

γ, l , 4, how to separate (R2,U) in terms ofA(S Cl
γ) ?

• Assume the two subspaces (X, γX) and (Y, γY) that are MW-homeomorphic to S Cl
γ. Then we will

examine if the number of the components of R2 \ A(X) is equal to that of R2 \ A(Y). Besides, we
strongly need to further compare the number of the components of Z2 \ X and that of Z2 \ Y .
• Given an S Cl

γ, we need to examine if the number of the components of Z2 \ S Cl
γ is a topological

invariant.
• Under what condition, does S Cl

γ separate (Z2, γ) into exactly two components?
• Development of the semi-Jordan curve theorem on the MW-topological plane. Besides, given an
S Cl

γ, we investigate how to separate (Z2, γ) with respect to the semi-Jordan curve theorem.
• Investigation of some properties of many kinds of S Cl

γ relating to the semi-Jordan curve theorem.
After addressing these topics with a success, we can confirm that the semi-Jordan curve theorem has

strong advantages and some utilities compared with the earlier works in the literature because it does
not have any paradox raised in the Rosenfeld’s approach and further, it proceeds with the topological
structures, which makes a distinction from the Rosenfeld’s approach.

This paper is organized as follows: Section 2 provides some basic notions related to the digital
k-connectivity on Z2 and the MW-topology. Section 3 studies some tools discriminating between
semi-open and semi-closed sets in (Z2, γ) and further, investigates various properties of semi-closed or
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semi-open subsets in (Z2, γ). In Section 4, after examining if a simple closed MW-curve is semi-open
and semi-closed in (Z2, γ), we prove the semi-openness of each S Cl

γ and further, the semi-closedness
of it is related to the number of l. Section 5 suggests a method for establishing a continuous analog
of an S Cl

γ denoted by A(S Cl
γ) by using the local rule in [20, 21] considered on R2. Besides, we

find some conditions for A(S Cl
γ) to separate (R2,U) into exactly two components, compared to the

typical Jordan curve theorem in (R2,U) that is the 2-dimensional real plane. Furthermore, we prove
that A(S Cl

γ) is both a semi-open and a semi-closed subset of (R2,U). Meanwhile, every semi-closed
S Cl

γ, l , 4, is proved to separate (Z2, γ) into many semi-open components whose number depends on
the number l of S Cl

γ. Section 6 proposes the semi-Jordan curve theorem on the MW-topological plane.
Besides, a semi-open S Cl

γ is also proved to separate (Z2, γ) into semi-closed or semi-open components
whose number depends on the situation. More precisely, after proving that S Cl

γ separates (Z2, γ) into
many semi-closed or semi-open components depending on the situation, we find a condition for S Cl

γ

to separate (Z2, γ) into exactly two components. Besides, given two simple closed MW-curve with l
elements X and Y , we first prove that the number of components of Xc need not be equal to that of
Yc. Section 7 refers to some advantages and utilities of MW-topological structure and the semi-Jordan
curve theorem on (Z2, γ). Section 8 concludes the paper with summary and a further work.

2. Preliminaries

To study digital objects in Z2, many basic notations will be used such as a digital 4- and
8-neighborhood of a point p ∈ Z2 [7, 8], as follows:
Based on the digital 4- and 8-connectivity in [7, 8, 22], for a point p = (x, y) ∈ Z2, the following
notations will be often used later [7, 8].N4(p) = {(x ± 1, y), p, (x, y ± 1)}

N8(p) = {(x ± 1, y), p, (x, y ± 1), (x ± 1, y ± 1)}


which is respectively called the 4-neighborhood and 8-neighborhood of a point p.
Then we recall that distinct points p, q ∈ Z2 are 4-(resp. 8-)adjacent if and only if p ∈ N4(q) \ {q} (resp.
p ∈ N8(q) \ {q}) or q ∈ N4(p) \ {p} (resp. q ∈ N8(p) \ {p}) [7, 8].

We now recall an Alexandroff topological structure using the study of some properties of MW-
topological spaces. More precisely, a topological space (X,T ) is called an Alexandroff space if every
point x ∈ X has the smallest open neighborhood in (X,T ) [24]. As an Alexandroff topological space
[24, 25], the Marcus-Wyse topological space, denoted by (Z2, γ), was established and there are many
studies including the papers [5,6,26]. Indeed, the MW-topology, denoted by (Z2, γ), is generated by the
set of all U(p) in (2.2) below, i.e., {U(p) | p ∈ Z2}, as a base [27], where for each point p = (x, y) ∈ Z2

U(p) :=

N4(p) if x + y is even, and
{p} : else.

 (2.2)

In the paper we call a point p = (x1, x2) doubly even if x1 + x2 is an even number such that each xi is
even, i ∈ {1, 2}; even if x1 + x2 is an even number such that each xi is odd, i ∈ {1, 2}; and odd if x1 + x2

is an odd number [12].
In all subspaces of (Z2, γ) of Figures 1–7 the symbols ♦ and • mean a doubly even point or even

point and an odd point, respectively. In view of (2.2), we can obviously obtain the following: Under
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(Z2, γ), the singleton {♦} is a closed set and {•} is an open set. Besides, for a subset X ⊂ Z2, the subspace
induced by (Z2, γ) is obtained, denoted by (X, γX) and called an MW-topological space. Hereinafter,
for our purpose, we will use the notations(Z2)e := {p ∈ Z2 | p is a doubly even or even point in Z2}, and

(Z2)o := {p ∈ Z2 | p is an odd point in Z2}.

 (2.3)

In terms of this perspective, it turns out that the minimal (open) neighborhood of the point p :=
(p1, p2) of Z2, denoted by S Nγ(p) ⊂ Z2, is obtained, as follows [26, 28]:

S Nγ(p) =

{p} if p ∈ (Z2)o, and
N4(p) if p ∈ (Z2)e.

 (2.4)

Hereinafter, in (X, γX), for p ∈ X we use the notation S Nγ(p) := S Nγ(p) ∩ X for short if there is no
danger of ambiguity. Using the smallest open set of (2.4), the notion of an MW-adjacency in (Z2, γ) is
defined, as follows: For distinct points p, q in (Z2, γ), we say that p is MW-adjacent to q [26] if

p ∈ S Nγ(p) or q ∈ S Nγ(q)

In view of the properties of (2.2) and (2.4), we obviously obtain the following:
Based on the structure of (2.4), for a point p := (p1, p2) of Z2, the closure of the singleton {p} is

denoted by Clγ{p}) ⊂ Z2 as follows [26]:

Clγ({p}) =

{p} if p ∈ (Z2)e, and
N4(p) if p ∈ (Z2)o.

 (2.5)

Hereinafter, in relation to the study of MW-topological spaces, we will use the term Cl for brevity
instead of Clγ if there is no danger of confusion.

Definition 2.1. [26] Let X := (X, γX) be an MW-topological space. Then we define the following:
(1) An MW-path from x to y in X is defined as a sequence (pi)i∈[0,l]Z ⊂ X, l ∈ N, in X such that p0 = x,
pl = y and each point pi is MW-adjacent to pi+1 and i ∈ [0, l − 1]Z. The number l is the length of this
path. In particular, a singleton in (Z2, γ) is assumed to be an MW-path.
(2) Distinct points x, y ∈ X are called MW-path connected if there is a finite MW-path (pi)i∈[0,m]Z on X
with p0 = x and pm = y. For arbitrary points x, y ∈ X, if there is an MW-path (pi)i∈[0,m]Z ⊂ X such that
p0 = x and pm = y, then we say that X is MW-path connected (or MW-connected).
(3) A simple closed MW-curve (resp. simple MW-path) with l elements in X means a finite MW-path
(pi)i∈[0,l−1]Z , 4 ≤ l ∈ Ne \ {6} in Z2 such that the points pi and p j are MW-adjacent if and only if
| i − j | = ±1(mod l) (resp. | i − j | = 1). Then we use the notation S Cl

γ to denote a simple closed
MW-curve with l elements.

As for some properties of S Cl
γ, it is clear that S Cl1

γ is MW-homeomorphic to S Cl2
γ if and only if

l1 = l2 [26].
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3. Some properties of semi-open and semi-closed sets

This section first recalls the concepts of a semi-open and a semi-closed set. Namely, a subset A
of a topological space (X,T ) is said to be semi-open if there is an open set O in (X,T ) such that
O ⊂ A ⊂ Cl(O). Besides, we say that a subset B of a topological space (X,T ) is semi-closed if the
complement of B in X, i.e., Bc, is semi-open in (X,T ). Then it turns out that a subset A of (X,T )
is semi-open if and only if A ⊂ Cl(Int(A)) [13] and a subset B of (X,T ) is semi-closed if and only if
Int(Cl(B)) ⊂ B [29]. Hence, in (X,T ), it is clear that each of the empty set and the total set is both semi-
open and semi-closed. Besides, “open” (resp. “closed”) is stronger than “semi-open” (resp. “semi-
closed”). The notions of semi-openness and semi-closedness enable us to get the following [13,19,31]:
(?1) The intersection of two semi-open sets need not be semi-open.
(?2) The union of two semi-closed sets need not be semi-closed.
(?3) The union of two semi-open sets is semi-open.
(?4) The intersection of two semi-closed sets is semi-closed.

(1)


(2)


(3)


(4)


(a)
 (b)


(a)
 (b)
 (a)
 (b)


(a)
 (b)


(c)
 (d)


Figure 1. Examples of several types of S Cl
γ, where l ∈ {4, 8, 10, 12}. Namely, (1) S C4

γ is
both semi-open and semi-closed in (Z2, γ). (2) As for S C8

γ, while the object of (a) is not
semi-closed but semi-open, the object of (b) is both semi-closed and semi-open in (Z2, γ).
(3) As for S C10

γ , the objects of (a) and (b) are both semi-open and semi-closed in (Z2, γ). (4)
As for S C12

γ , while the object of (a) is not semi-closed but semi-open, each of (b)–(d) is both
semi-open and semi-closed in (Z2, γ).
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Remark 3.1. [30, 31] In (Z2, γ), the following are obtained:
(1) The singleton {p} is both semi-closed and semi-open, where p ∈ (Z2)o. Namely, Z2 \ {p} is both
semi-closed and semi-open, where p ∈ (Z2)o.
(2) The singleton {q} is not semi-open but semi-closed, where q ∈ (Z2)e. Namely, Z2 \ {q} is semi-open,
where q ∈ (Z2)e.

Let us further establish some techniques to examine if a set in (Z2, γ) is semi-open or semi-closed.
In (Z2, γ), for a set X ⊂ Z2, we will take the following notation [31].

Xop := {x | x is an odd point in X}. (3.1)

Besides, the topological structure of (Z2, γ) enables us to get the following [31]:

Remark 3.2. [31] In (Z2, γ), we have the following:
(1) For x, y ∈ Z2, x ∈ S Nγ(y) if and only if y ∈ Cl(x), i.e., y ∈ Clγ(x)(see the properties of (2.4) and
(2.5) in the present paper).
(2) If X is an open set in (Z2, γ), then there is at least an odd point x in X (see the property of (2.3)).
(3) The set Xop of (3.1) is an open set in (Z2, γ).

Given a set X in (Z2, γ), to further examine if the set X is semi-open or semi-closed in (Z2, γ), we
now introduce the following two theorems that will be strongly used in discriminating against subsets
based on the semi-openness and semi-closedness of the MW-topological space.

Theorem 3.3. [31] In (Z2, γ), a (non-empty) set X(⊂ Z2) is semi-open if and only if each x ∈ X,
S Nγ(x) ∩ Xop , ∅, where S Nγ(x) is assumed in (Z2, γ).

Since this theorem strongly plays an important role in studying many results in the present paper,
to make Theorem 3.3 self-contained, we suggest a proof briefly, as follows: In case X = ∅, the proof is
straightforward. Let us assume that X is not an empty set.
(⇒) According to the choice of a point x ∈ X, we can consider the following two cases.
(Case 1) Assume that x(∈ X) is an odd point. From the hypothesis, we have x ∈ X ⊂ Cl(Int(X)) so that
we obtain

S Nγ(x) ∩ Int(X) , ∅. (3.2)

Since S Nγ(x) = {x}, we obtain x ∈ Int(X) and further, x ∈ Xop. Hence, owing to (3.2), we have
S Nγ(x) ∩ Xop , ∅.

(Case 2) Assume that x ∈ X is a doubly even or even point. Owing to the hypothesis, we obtain
x ∈ Cl(Int(X)) that leads to the following property as mentioned in (3.2).

S Nγ(x) ∩ Int(X) , ∅.

Since S Nγ(x)∩ Int(X) is a non-empty open set in (Z2, γ), by Remark 3.2(2), we now take an odd point
z in (Z2, γ) such that

z ∈ S Nγ(x) ∩ Int(X). (3.3)

By the property of (3.3), since z ∈ Int(X) ⊂ X, we have z ∈ Xop (see Remark 3.2(2)) so that z ∈
S Nγ(x) ∩ Xop , ∅. In addition, we see that the point z is indeed MW-adjacent to x.
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(⇐) According to the choice of a point x ∈ X, we can consider the following two cases.
(Case 1) For an arbitrary point x ∈ X, assume that x is an odd point in (Z2, γ). Since {x} = S Nγ(x),
owing to the hypothesis of S Nγ(x)∩ Xop , ∅, we have x ∈ Xop, i.e., {x} ∩ Xop , ∅. Furthermore, owing
to the identity S Nγ(x) = {x}, by Remark 3.2(3), it is clear that

x ∈ Xop ⇒ {x} ⊂ Int(X)⇒ x ∈ Cl(Int(X)). (3.4)

(Case 2) For an arbitrary point x ∈ X, assume that x is a doubly even or even point in (Z2, γ). Owing
to the hypothesis, since S Nγ(x) ∩ Xop , ∅, by Remark 3.2(2) and (3), there is an odd point z in (Z2, γ)
such that z ∈ S Nγ(x) ∩ Xop because S Nγ(x) ∩ Xop is an open set in (Z2, γ). Hence we get z ∈ S Nγ(x),
by Remark 3.2(1), we have

x ∈ Cl({z}) ⊂ Cl(Int(X))⇒ x ∈ Cl(Int(X)). (3.5)

Owing to both (3.4) and (3.5), we obtain X ⊂ Cl(Int(X)) which prove the assertion.

Owing to the notion of semi-closedness, using Theorem 3.4, we obtain the following:

Theorem 3.4. [31] In (Z2, γ), B(⊂ Z2) is semi-closed if and only if each x ∈ Z2\B, S Nγ(x)∩(Z2\B)op ,

∅, where S Nγ(x) is assumed in (Z2, γ).

As examples for Theorems 3.3 and 3.4, see the cases referred to in Remark 3.1(1)–(3).
In view of Theorems 3.3 and 3.4, we have the following:

Remark 3.5. In (Z2, γ), assume a connected subset X with X] ≥ 2. Then it is semi-open and it may not
be semi-closed.

4. Classification of simple closed MW-curves with respect to the semi-closedness

To classify all types of S Cl
γ with respect to the semi-openness and semi-closedness, based on the

topological features of S Cl
γ, it suffices to consider the only case of l ∈ {2m |m ∈ N \ {1, 3}} because no

S C6
γ exists. Hereinafter, when studying semi-topological features of a set X ⊂ Z2, we assume that the

set X is considered in (Z2, γ).

Theorem 4.1. Given an S Cl
γ, 4 ≤ l ∈ Ne \ {6}, the semi-topological features of S Cl

γ in (Z2, γ) are
determined according to the number l, as follows:
(1) S Cl

γ is always semi-open for any l, where l ∈ {2m |m ∈ N \ {1, 3}}.
(2) S Cl

γ is always both semi-open and semi-closed whenever l ∈ {4, 10}.

Proof: (1) Given an S Cl
γ := (xi)i∈[0,l−1]Z , take any element xi ∈ S Cl

γ. Then S Nγ(xi) in (Z2, γ) has the
following property,

S Nγ(xi) ∩ (S Cl
γ)op , ∅.

By Theorem 3.3, we conclude that S Cl
γ is semi-open in (Z2, γ).

(2) (2-1) In the case of S C4
γ, let Y := Z2 \ S C4

γ. Then, for any p ∈ Y we have

S Nγ(p) ∩ (Y)op , ∅,
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which implies that Y is semi-open in (Z2, γ) (see Theorem 3.3). Hence S C4
γ is semi-closed in (Z2, γ).

Also, using a method similar to the proof of (1), it is clear that S C4
γ is semi-open in (Z2, γ).

(2-2) In the case of S C10
γ (see the objects in Figure 1(3)(a),(b)), let W := Z2 \ S C10

γ . Using a method
similar to the proof of (2-1) above, by Theorems 3.3 and 3.4, we prove that S C10

γ is both semi-open
and semi-closed in (Z2, γ).

Remark 4.2. In the case of l < {4, 10}, S Cl
γ may not be semi-closed. The semi-closedness of S Cl

γ

depends on the situation.

Proof: In the case of S Cl
γ, where l < {4, 10}, the semi-closedness of S Cl

γ depends on the situation.
More precisely, given an S Cl

γ := (xi)i∈[0,l−1]Z , l < {4, 10}, assume that S Cl
γ does not have the

subsequence
X1 := (xt−3(mod l), xt−1(mod l), xt+1(mod l), xt+3(mod l))

whose each element is an odd point (i.e., X1 ⊂ S Cl
γ ∩ (Z2)o) and X1 ⊂ N4(x), x ∈ Z2 \ S Cl

γ. Then, by
Theorem 3.4, S Cl

γ is semi-closed. For instance, since no S C6
γ exists, it suffices to mention that S Cl

γ,
l < {4, 10}, is semi-closed depending on the situation. As suggested in Figure 1(2), while the object
S C8

γ of (a) is not semi-closed (see Theorem 3.4) but semi-open, the object of (b) is both semi-closed
and semi-open.

In view of Theorem 4.1, we obtain the following:

Proposition 4.3. There are two types of S Cl
γ, l < {4, 10}, with respect to the semi-closedness.

Proof: Using Theorems 3.3 and 3.4, we prove the assertion. As mentioned in the proof of Theorem
4.1, we need to consider the following two cases:
(Case 1) Assume an S Cl

γ := (xi)i∈[0,l−1]Z , l < {4, 10}, such that S Cl
γ does not have the subsequence

X1 := (xt−3(mod l), xt−1(mod l), xt+1(mod l), xt+3(mod l)) (4.1)

whose each element is an odd point and X1 ⊂ N4(x), x ∈ Z2 \ S Cl
γ. Then, by Theorem 3.4, S Cl

γ is
semi-closed.
(Case 2) Assume an S Cl

γ := (xi)i∈[0,l−1]Z , l < {4, 10}, in which there is the subsequence X1 of (4.1)
whose each element is an odd point and X1 ⊂ N4(x), x ∈ Z2 \ S Cl

γ. Then, by Theorem 3.4, S Cl
γ

is not semi-closed but only semi-open owing to Theorem 3.3. For instance, since S C12
γ in Figure

2(a) does not satisfy the condition of Theorem 3.4, it is not semi-closed in (Z2, γ) (see the points
p1 := (0, 0), p2 := (1, 1) in Z2 \ S C12

γ as in Figure 2(b)).

Example 4.1. In Figure 1, some examples for several types of S Cl
γ are shown for l ∈ {4, 8, 10, 12}. In

view of Theorems 3.3, 3.4 and 4.1, and Proposition 4.3, we obtain the following:
(1) S C4

γ in Figure 1 is both semi-open and semi-closed.
(2) As for the S C8

γ in Figure 1(2), the object of (a) is semi-open instead of semi-closed because it
satisfies only the condition of Theorem 3.3 instead of that of Theorem 3.4. However, the object of (b) is
both semi-open and semi-closed (see also Theorems 3.3 and 3.4).
(3) As for the S C10

γ in Figure 1(3), each of (a) and (b) is both semi-open and semi-closed (see Theorems
3.3 and 3.4).
(4) As for the S C12

γ in Figure 1(4), the object of (a) is semi-open instead of semi-closed because it
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(b)
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(2, 2)


(0, -1)
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(0, -1)


(-1, 0)
 (1, 0)


(0, 1)


p

1


2

p


(1, 1)


(0, 0)


(2, 2)


Figure 2. In (Z2, γ), consider the S C12
γ in Figure 2(a). As shown in Figure 2(b), owing to the

two points p1, p2 in Z2 \ S C12
γ in Figure 2(a), we conclude that S C12

γ is not semi-closed in
(Z2, γ) because Int(Cl(S C12

γ )) * S C12
γ (see the points p1 and p2 in (b)). However, we obtain

S C12
γ ⊂ Cl(Int(S C12

γ )) that implies the semi-openness of S C12
γ .

satisfies only the condition of Theorem 3.3 instead of that of Theorem 3.4. To be specific, based on
an S C12

γ in Figure 2(a), consider the object in Figure 2(b). Since the set Cl(S C12
γ ) contains the open

sets N4(pi) = S Nγ(pi), i ∈ {1, 2}, p1 = (0, 0) and p2 = (1, 1), so that Int(Cl(S C12
γ )) * S C12

γ , which
implies the non-semi-closedness of S C12

γ (see the proof of Proposition 4.3). However, the object of
Figure 1(4)(b) is both semi-open and semi-closed.

5. Establishment of a continuous analog of S Cl
γ,A(S Cl

γ) ⊂ R
2, with respect to the MW-topology

This section introduces a method for establishing a continuous analog of an object on Z2 with
respect to the MW-topology. The local rule introduced in Definition 5.1 below will be used in this
work and has been widely used in digitization and digital-based rough set theory [20].

Definition 5.1. [20] For each point p := (p1, p2) ∈ Z2, the continuous analog of the given point p ∈ Z2

with respect to the MW-topology, denoted by Ap, is defined by:

Ap =



[p1 − 0.5, p1 + 0.5] × [p2 − 0.5, p2 + 0.5],
if p is a doubly even point (see Figure 3(1));
[p1 − 0.5, p1 + 0.5] × [p2 − 0.5, p2 + 0.5] \ {q1, q2, q3, q4},

where qi, i ∈ [1, 4]Z
such that q1 = (p1 − 0.5, p2 − 0.5), q2 = (p1 − 0.5, p2 + 0.5),
q3 = (p1 + 0.5, p2 + 0.5), q4 = (p1 + 0.5, p2 − 0.5),
if p is an even point (see Figure 3(2)); and

(p1 − 0.5, p1 + 0.5) × (p2 − 0.5, p2 + 0.5),
if p is an odd point (see Figure 3(3)-(4)).



(5.1)

Hereinafter, we assume the set Ap to be a subspace of (R2,U). Using the local rule around a point
p ∈ Z2 as in Definition 5.1, we define the following:
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(4)


(2m+1, 2n)


p


(3)


(2m, 2n+1)


p


(1)


(2m, 2n)


p


(2)


(2m+1, 2n+1)


p


Figure 3. Configurations of Ap(⊂ R2), p ∈ Z2 in Definition 5.1, according to the point p ∈ Z2

as stated in (5.1), where the point p of (1) is a doubly even point, the point p of (2) is an even
point, and each of the points p of (3) and (4) is an odd point.

Definition 5.2. A continuous analog of X(⊂ Z2) is defined as
A(X) =

⋃
p∈X

Ap by taking the following way.
A : P(Z2)→ P(R2) for X(⊂ Z2) defined by

A(X) :=
⋃
p∈X

Ap.


Then we assumeA(X) to be (A(X),UA(X)) as a subspace of (R2,U).

In particular, the setA(Z2) is defined asA(Z2) =
⋃

p∈Z2
Ap = R2 by taking the following way.

Z2 → A(Z2) :=
⋃
p∈Z2

Ap = R2.

Then we assumeA(Z2) to be (A(Z2),U), i.e., (A(Z2),U) = (R2,U).

Remark 5.3. The operator A need not preserve an M-homeomorphism into a homeomorphism in
(R2,U).

Definitions 5.1 and 5.2 enable us to get the following:

Lemma 5.4. (1) In case X is a connected subset of (Z2, γ),A(X) is also a connected subset of (R2,U).
(2) In case Y is a disconnected subset of (Z2, γ), A(Y) may not be a disconnected subset of (R2,U).
Namely, the connectedness ofA(Y) in (R2,U) depends on the situation.

Proof: (1) Given a connected subset X of (Z2, γ), we obtain A(X) =
⋃
p∈X

Ap that is a connected

subset of (R2,U) (see Definition 5.1).
(2) As an example, consider the set {p, q}, where p, q ∈ (Z2)e, p , q, and q ∈ N8(p). While the set {p, q}
is a disconnected subset of (Z2, γ),A({p, q}) = Ap∪Aq is a connected subset of (R2,U) (see Definition
5.1). For instance, in Figure 4(1), consider the two points p := (0, 0) and q := (1,−1) in S C4

γ. Then the
set {p, q} supports the assertion.

Theorem 5.5. Given an S Cl
γ,A(S Cl

γ) is both semi-open and semi-closed in (R2,U).

Proof: SinceA(S Cl
γ) ⊂ Cl(Int(A(S Cl

γ))), the proof of the semi-openness ofA(S Cl
γ) is completed.

Besides, since we obtain Int(Cl(A(S Cl
γ)) ⊂ A(S Cl

γ), the proof of the semi-closedness of A(S Cl
γ) is

also completed.
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To support Theorem 5.5, we can suggest the following examples. The setA(S C4
γ) is both semi-open

and semi-closed in (R2,U). Similarly, each of the sets A(S C8
γ) and A(S C10

γ ) is also both semi-open
and semi-closed in (R2,U).

Proposition 5.6. Given an S Cl
γ, we obtain the following:

(1) In the case of S C4
γ, A(S C4

γ) does not separates (R2,U) into two non-empty components. Namely,
R2 \ A(S C4

γ) has the only one non-empty component.
(2) In the case of S Cl

γ, l ∈ {8, 10},A(S Cl
γ) separates (R2,U) into exactly two non-empty components.

(3) For any l of S Cl
γ, l < {4, 8, 10},A(S Cl

γ) separates (R2,U) into more than or equal to two non-empty
components.

Proof: (1) Given an S C4
γ, we obtainA(S C4

γ) =
⋃

p∈S C4
γ

Ap as shown in Figure 4(1)(b) that is a subspace

of (R2,U), whereA(S C4
γ) is both semi-open and semi-closed in (R2,U) (see Figure 4(1)(a),(b)). Then

it is clear thatA(S C4
γ) does not separate (R2,U) into two nonempty components.

(2) In the case of l ∈ {8, 10}, we obtainA(S Cl
γ) as a subspace of (R2,U) whose complement ofA(S Cl

γ)
in R2 consists of only two non-empty components. See the process of obtainingA(S C8

γ) in Figure 4(2)
from (a) to (b) and (c) to (d).
(3) For any l of S Cl

γ, l < {4, 8, 10},A(S Cl
γ) separates (R2,U) to obtain that R2 \A(S Cl

γ) has more than
or equal to two non-empty components. For instance, as shown in each of the objects S C12

γ in Figure
4(4)(a),(b), we see that R2 \ A(S C12

γ ) has only two non-empty components.
Meanwhile, as for the S C12

γ as in Figure 4(c) and S C18
γ in Figure 5(a), each of R2 \ A(S C12

γ ) and
R2 \ A(S C18

γ ) has more than two components. To be specific, we need to strongly recognize that the
set R2 \A(S C12

γ ) of Figure 4(4)(b) has only two components, i.e., we have C(p1) = C(p2), where C(pi)
means the component containing the given point pi in (R2,U), i ∈ {1, 2}. Similarly, R2 \ A(S C18

γ ) of
Figure 5(d) has only two components. However, as shown in Figure 4(4) from (c) to (d), we see that
R2 \ A(S C12

γ ) has three disjoint non-empty components such as

C(q1),C(q2), and R2 \ (C(q1) ∪C(q2) ∪A(S C12
γ )).

Example 5.1. (1) Given the S C4
γ in Figure 4(1)(a),A(S C4

γ) is obtained as in Figure 4(1)(b).
(2) Given the S C8

γ in Figure 4(2)(a),A(S C8
γ) is obtained as in Figure 4(2)(b) which leads thatA(S C8

γ)
separates (R2,U) into two components.
(3) Given the S C10

γ in Figure 4(3)(a),A(S C10
γ ) is obtained as in Figure 4(3)(b).

(4) Consider the S C12
γ in Figure 4(4)(a),A(S C12

γ ) is obtained as in Figure 4(4)(b). Note that in Figure
4(4)(b) the set Ap1 ∪ Ap2 is connected in (R2,U).
However, as for the S C12

γ in Figure 4(4)(c), we see R2 \ A(S C12
γ ) has three non-empty components

because Cq1 , Cq2 as in Figure 4(4)(c),(d), where q1 = (1, 0) and q2 = (2, 1) (see Definition 5.1).
(5) Given the S C12

γ in Figure 4(5)(a),A(S C12
γ ) is obtained, as in Figure 4(5)(b) to show thatA(S C12

γ )
separate (R2,U) into exactly two disjoint components.

In view of Proposition 5.6, we have the following query.
Under what condition, does R2 \ A(S Cl

γ) have exactly two non-empty components?
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Figure 4. Given several types of S Cl
γ, configuration of A(S Cl

γ) according to the given
S Cl

γ, l ∈ {4, 8, 10, 12} mentioned in Proposition 5.6. More precisely, (1) S C4
γ → A(S C4

γ)
(2) S C8

γ → A(S C8
γ) (3) S C10

γ → A(S C10
γ ) (4) Two types of processes for obtainingA(S C12

γ )
from the non-semi-closed S C12

γ of (a) and the semi-closed S C12
γ of (c) (5) S C12

γ → A(S C12
γ ).

Theorem 5.7. Assume an S Cl
γ := (di)i∈[0,l−1]Z , l , 4, satisfying the following property:

There are no distinct elements dt1 , dt2 in S Cl
γ ∩ (Z2)e

such that dt2 ∈ N8(dt1) and Con(dt1) ∩ {dt2} = ∅,

where Con(dt1) is the connected maximal subset of N8(dt1) ∩ S Cl
γ

containing the point dt1 .


(5.2)

(1) Then A(S Cl
γ) separates (R2,U) into exactly two components in (R2,U) that are both semi-open

and semi-closed.
(2) One of the components of R2 \ A(S Cl

γ) is bounded and the other is unbounded in R2.

Before proving the assertion, we need to recognize that the hypothesis requires that S Cl
γ always

satisfies the property of (5.2). In particular, we need to focus on the part “S Cl
γ ∩ (Z2)e” of (5.2).
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Proof: Owing to the hypothesis, assume an S Cl
γ := (di)i∈[0,l−1]Z , l , 4, that does not contain the subset

X1 := {dt1 , dt2}(⊂ S Cl
γ ∩ (Z2)e) (5.3)

having the following property:

dt2 ∈ N8(dt1) and Con(dt1) ∩ {dt2} = ∅,

where Con(dt1) is the connected maximal subset of N8(dt1) ∩ S Cl
γ containing the point dt1 . Then,

owing to the notion of (5.1) and the features of S Cl
γ, A(S Cl

γ) separates (R2,U) into exactly two both
semi-open and semi-closed components in (R2,U).

For instance, consider the case of S C12
γ given in Figure 4(4)(a). Then we obtain A(S C12

γ ) to
separate (R2,U) into exactly two both semi-open and semi-closed components in (R2,U). More
precisely, as in Figure 4(4)(a),(b), owing to the property of (5.1), the set Ap1 ∪ Ap2 is a connected
subset of (R2,U).

Meanwhile, without the hypothesis, we can consider the following case. Assume an
S Cl

γ := (di)i∈[0,l−1]Z , l , 4, in which there is a subset X1(⊂ S Cl
γ ∩ (Z2)e) of (5.3) such that dt2 ∈ N8(dt1)

and Con(dt1) ∩ {dt2} = ∅. To be specific, see the two points r1 and r2 in Figure 5(a). Then, A(S Cl
γ)

does not separate (R2,U) into exactly two both semi-open and semi-closed components in (R2,U).
As another example, see the objects in Figure 4(4)(c),(d). To be specific, in Figure 4(4)(c),(d), the set
Aq1 is not connected with Aq2 (see the property of (5.1)).
(2) With the hypothesis, it is clear that one of the components of R2 \ A(S Cl

γ) is bounded and the
other is unbounded in R2.

Example 5.2. Consider the object S C18
γ in Figure 5(c). Then we observe that the S C18

γ of Figure 5(c)
satisfies the property of (5.2) andA(S C18

γ ) separates (R2,U) into exactly two components such as

C(q1) and R2 \ (C(q1) ∪A(S C18
γ ))

because C(q1) = C(q2) = C(q3) = C(q4) in R2 \ A(S C18
γ ) of Figure 5(d).

Theorem 5.8. Assume the subspaces (X, γX) and (Y, γY) that are MW-homeomorphic to S Cl
γ. Then the

number of the components of R2 \ A(X) need not be equal to that of R2 \ A(Y).

Proof: It suffices to prove it by suggesting a counterexample. Given the two types of S C18
γ as in

Figure 5(a),(c), we obtain the corresponding two types ofA(S C18
γ ) as in Figure 5(b),(d).

For our purpose, let A1 (resp. A2) be the set R2 \ A(S C18
γ ), where S C18

γ is the object in Figure 5(a)
(resp. Figure 5(c)). Then it is clear that A1 has four components and A2 has the only two components
as in Figure 5(b),(d).

Remark 5.9. The number the components of R2 \ A(S Cl
γ) need not be equal to that of Z2 \ S Cl

γ.

Proof: As a counterexample, see the objects in Figure 5(c),(d). As shown in Figure 5(c), consider
the given S C18

γ in Figure 5(c). While Z2 \ S C18
γ has four components as in Figure 5(c) in (Z2, γ) such

as
C(qi) = {qi}, i ∈ {1, 2},C(q3) = {q3, q4}, and Z2 \ (∪i∈[1,3]ZC(qi) ∪ S C18

γ ),
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Figure 5. Assume the two types of S C18
γ in (a) and (c) in Example 5.2. The set in (b) is the

set A(S C18
γ ) obtained from the object of (a) and the set A(S C18

γ ) in (d) is derived from the
object of (c).

the set R2 \ A(S C18
γ ) has exactly two components as in Figure 5(d) because C(q1) = C(q2) = C(q3) as

the subspaces of (R2,U), i.e., C(q1) is connected with C(q2) and C(q2) is also connected with C(q3).
To be specific, see the cases of S C18

γ in Figure 5(c) andA(S C18
γ ) in Figure 5(d) stated in Example 5.2,

which completes the proof.

Lemma 5.10. Assume an S Cl
γ := (di)i∈[0,l−1]Z , l ∈ {4, 8, 10}. Then the number of the components of

R2 \ A(S Cl
γ) in (R2,U) is equal to that of Z2 \ S Cl

γ in (Z2, γ).

Proof: (Case 1) Consider an S C4
γ := (di)i∈[0,3]Z . As proved in Proposition 5.6, R2\A(S C4

γ) in (R2,U)
has one component. Besides, Z2 \ S C4

γ also has one component in (Z2, γ).
(Case 2) Consider an S C8

γ := (di)i∈[0,7]Z . As proved in Proposition 5.6, R2 \ A(S C8
γ) in (R2,U) has

exactly two components. Besides, Z2 \ S C8
γ also has exactly two components in (Z2, γ).

(Case 3) Consider an S C10
γ := (di)i∈[0,9]Z . As proved in Proposition 5.6, R2 \ A(S C10

γ ) in (R2,U) has
exactly two components. Besides, Z2 \ S C10

γ also has exactly two components in (Z2, γ).
Unlike Lemma 5.10, owing to Remark 5.9, let us now find a condition for comparing between the

number of the components of R2 \ A(S Cl
γ) in (R2,U) and that of Z2 \ S Cl

γ in (Z2, γ), as follows:

Proposition 5.11. Assume an S Cl
γ := (ci)i∈[0,l−1]Z , l < {4, 8, 10}, having the following property:

There are no distinct elements ct1 , ct2 in S Cl
γ ∩ (Z2)o

such that ct2 ∈ N8(ct1) and Con(ct1) ∩ {ct2} = ∅,

where Con(ct1) is the connected maximal subset of N8(ct1) ∩ S Cl
γ

containing the point ct1 .


(5.4)
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Then the number of the components of R2 \ A(S Cl
γ) in (R2,U) is equal to that of Z2 \ S Cl

γ in (Z2, γ).

Proof: First of all, without the hypothesis, we need to show that the assertion does not hold. Suppose
an S Cl

γ := (ci)i∈[0,l−1]Z , l < {4, 8, 10}, that does not satisfy the property of (5.4). For instance, as shown
in Figure 5(c),(d), the given S C18

γ in Figure 5(c) does not satisfy the property of (5.4), i.e., see the two
points s1 and s2 in Figure 5(c). Based on the S C18

γ , we find that R2 \A(S C18
γ ) has only two components

in (R2,U) (see Example 5.2). Meanwhile, Z2 \ S C18
γ has four components in (Z2, γ).

Next, owing to the property of (5.1), the topological feature of R2 \ A(S Cl
γ) in (R2,U), and that of

Z2 \ S Cl
γ in (Z2, γ), the proof is completed.

Example 5.3. Let us consider S C18
γ in Figure 5(a). Then it is clear that it satisfies the property of

(5.4) so that we obtain R2 \ A(S C18
γ ) consisting of four components in (R2,U) (see Figure 5(b)) and

Z2 \ S C18
γ is composed of four components in (Z2, γ) (see Figure 5(a)).

6. Semi-Jordan curve theorem on the MW-topological plane

In 1970, Rosenfeld [9–11] initially considered the digital topological version of the typical Jordan
curve theorem (see also [22]). Consider S C2,l

k in a binary digital picture D := (Z2, k, k̄, S C2,l
k ). Then

the k̄-components are called white components of D and S C2,l
k is said to be a black component (or

equivalently, k-component) of the digital picture [22], where we say that a k-component of a non-
empty digital image (X, k) is a maximal k-connected subset of (X, k) [22]. To be precise, given an
S C2,4

8 on Z2, to evade from the so-called “digital connectivity paradox” [10, 11], the papers [7–9]
considered it in a binary digital picture D := (Z2, 8, 4, S C2,4

8 ) instead of (Z2, 8, 8, S C2,4
8 ). In the digital

picture (Z2, 8, 4, S C2,4
8 ), to avoid the digital connectivity paradox, it turns out that S C2,4

8 should be
considered to be an (8, 4)-binary digital image in the given digital picture D above. Namely, the part
Z2 \S C2,4

8 should be considered with 4-connectivity. Then the given set S C2,4
8 separates Z2 into the two

4-components A and B [22] such thatZ2 \ S C2,4
8 = A ∪ B such that A ∩ B = ∅ and further,

each element of A is not 4-adjacent to that of B.

 (6.1)

Based on this approach, it is clear that one of the sets A and B is finite and the other is infinite.
Then we call a finite set A the interior of the given set B := S C2,4

8 ∪ A in the digital picture (Z2, 8, 4, B).
Similarly, as a general case of S C2,4

8 , we can consider S C2,l
k (, S C2,4

4 ) in the digital picture D :=
(Z2, k, k̄, S C2,l

k ) as mentioned above, where (k, k̄) ∈ {(4, 8), (8, 4)}. Then, it also separates Z2 into two
non-empty k̄-components A and B such thatZ2 \ S C2,l

k = A ∪ B such that A ∩ B = ∅ and further,
each element of A is not k̄-adjacent to that of B.

 (6.2)

Meanwhile, unlike this approach followed from Rosenfeld’s work, in the category of
MW-topological spaces, given an S Cl

γ in (Z2, γ), we now raise the following queries.
(Q1) How can we propose an MW-topological version of the typical Jordan curve theorem?
(Q2) What differences are there between an MW-topological version of the well-known Jordan curve
theorem and the typical Jordan curve theorem on (R2,U) ?
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(Q3) What differences are there between the Jordan curve theorem in an MW-topological setting and
the digital Jordan curve theorem established by Rosenfeld?

The paper [12] also studied several types of digital Jordan curve theorems with nine pretopologies
on Z2. Besides, the paper [3] also proposed a computational topological version of the curve and
surface theorem. In addition, there are some studies on the digital versions of the Jordan curve theorem
in digital spaces including the papers [6, 12, 22]. However, to study this topic more intensively from
the viewpoint of the MW-topology, we strongly need to have an approach using semi-topological
structures. To study some properties of the semi-closedness or semi-openness of Z2\S Cl

γ, we first recall
that S C4

γ does not separate (Z2, γ) into exactly two non-empty components (see Figure 1(1)(a),(b)).
Furthermore, we have the following (see Figure 4(1)(a), (2)(a), (3)(a)).

Remark 6.1. Z2 \ S C4
γ has the only one non-empty component that is both semi-open and semi-closed

in (Z2, γ).

Lemma 6.2. (1) S C8
γ separates (Z2, γ) into exactly two semi-closed components. One of these

components need not be semi-open in (Z2, γ).
(2) S C10

γ separates (Z2, γ) into exactly two components that are both semi-open and semi-closed.

Proof: Based on the S C8
γ in Figure 1(2)(a),(b), and S C10

γ in Figure 1(3)(a),(b), by Theorems 3.3 and
3.4, the proof is clearly completed. In particular, note that the components of Z2 \ S C8

γ are obviously
semi-closed in (Z2, γ). Indeed, in the case of S C8

γ in Figure 1(2)(a), one of them is not semi-open.
To be specific, consider S C8

γ in Figure 1(2)(a), the finite component of Z2 \ S C8
γ is not semi-open.

Meanwhile, the components of Z2 \S C10
γ are both semi-open and semi-closed in (Z2, γ) (see Theorems

3.3 and 3.4).
Unlike the case of S Cl

γ := (ci)i∈[0,l−1]Z , l ∈ {4, 8, 10}, motivated by Theorem 5.7 and Proposition
5.11, we obtain the following:

Proposition 6.3. Assume S Cl
γ := (ci)i∈[0,l−1]Z , l , 4, satisfying the following property:

There are no distinct elements ct1 , ct2 in S Cl
γ

such that ct2 ∈ N8(ct1) and Con(ct1) ∩ {ct2} = ∅,

where Con(ct1) is the connected maximal subset of N8(ct1) ∩ S Cl
γ

containing the point ct1 .


(6.3)

Then S Cl
γ separates (Z2, γ) into exactly two semi-closed components, e.g., A and B. Namely, a partition

{A, B, S Cl
γ} of (Z2, γ) exists.

Proof: First of all, we need to strongly point out an importance of the given hypothesis. Without
the hypothesis, as shown in Figure 4(4)(a),(c), since the given S C12

γ in Figure 4(4)(a),(c) do not satisfy
the hypothesis of (6.3), they do not separate (Z2, γ) into exactly two components. Besides, some
components of Z2 \ S C12

γ cannot be semi-open. To be specific, in the S C12
γ of Figure 4(4)(a), each of

C(pi) = {pi}, i ∈ {1, 2}, is not semi-open in (Z2, γ).
As another case, since the given S C12

γ in Figure 4(4)(c) does not satisfy the property of (6.3) either,
it does not separate (Z2, γ) into exactly two components. Besides, note that none of the objects in
Figure 5(a),(c), Figure 6, and Figure 7(1),(2) satisfies the property of (6.3) either.

In addition, the condition of (6.3) does not support the semi-openness of the component of Z2 \S Cl
γ.
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For instance, consider S C8
γ in Figure 1(2)(a), one component of Z2 \ S C8

γ is not semi-open in (Z2, γ) as
mentioned in the proof of Lemma 6.2.

Meanwhile, with the hypothesis of (6.3), owing to the features of S Cl
γ, it is clear that S Cl

γ separates
(Z2, γ) into exactly two components (see Figure 1(4)(c),(d)) which are semi-closed in (Z2, γ).

Owing to Remark 6.1, based on Theorem 5.7, we can define the notions of Definition 6.4 below
because given an S Cl

γ satisfying the hypothesis of (5.2), R2 \ A(S Cl
γ) has exactly two components

in (R2,U) and further, one of them is bounded and the other is unbounded (see the cases of S C38
γ in

Figure 7(1) and S C28
γ in Figure 7(3)).

Definition 6.4. Assume an S Cl
γ satisfying the property of (5.2), l , 4. Then we define the following

two notions.
(1) I(S Cl

γ) := B(R2 \ A(S Cl
γ)) ∩ Z

2, where B(R2 \ A(S Cl
γ)) means the bounded component of R2 \

A(S Cl
γ).

(2) O(S Cl
γ) := Ub(R2 \ A(S Cl

γ)) ∩ Z
2, where Ub(R2 \ A(S Cl

γ)) stands for the unbounded component
of R2 \ A(S Cl

γ).

Comparing the condition of Proposition 6.3 and that of Definition 6.4, we can note that the former
is stronger than the latter. Hereinafter, the two notions I(S Cl

γ) and O(S Cl
γ) in Definition 6.4 are called

“inside” and “outside” of S Cl
γ in (Z2, γ), respectively. In particular, note that these notions are not

related to the notions of interior and exterior of a set of (Z2, γ).

Remark 6.5. (1) In Definition 6.4, the hypothesis of (5.2) is strongly required to establish both I(S Cl
γ)

and O(S Cl
γ) because it supports the assertion of Theorem 5.7 so that the set R2 \ A(S Cl

γ) has exactly
two components of which one of them is bounded and the other is unbounded.
(2) Without the hypothesis of (5.2), we have some difficulties in establishing the notions of I(S Cl

γ) and
O(S Cl

γ). For instance, consider the case of S C42
γ in Figure 6. In particular, see the points c2 and c38,

and c4 and c36. Then, owing to these points, it is clear that this S C42
γ does not satisfy the property of

(5.2). Hence we have some difficulties in establishing I(S C42
γ ) because R2 \ A(S C42

γ ) does not have
exactly two components. As another case, consider the case of S C28

γ in Figure 7(2). In particular,
consider the two points c19 and c25. Then they clearly does not satisfy the property of (5.2) so that
R2 \ A(S C28

γ ) has three components, e.g., two bounded components and one unbounded component.
More precisely, since the set Aq2 is a bounded component of R2 \ A(S C28

γ ), Aq2 is not related to the set
Ub(R2 \ A(S C28

γ )) ∩ Z2 which comes across some difficulties in establishing O(S C28
γ ).

(3) As a good example for Definition 6.4, consider the S C38
γ in Figure 7(1). First, see the two points d29

and d35 of the S C38
γ in Figure 7(1). Then they can be admissible to establish O(S C38

γ ). Besides, see the
two points d11 and d17 of the S C38

γ in Figure 7(1). Then they can be admissible to establish the notion
of I(S C38

γ ) because Aq1 is connected with Aq2 .
Similarly, the S C28

γ in Figure 7(3) also a good example for Definition 6.4.

Example 6.1. (1) As for the S C42
γ in Figure 6, it does not satisfy the property of (5.2) (see the points c2

and c38, and c4 and c36). Hence, as mentioned in Theorem 5.7,A(S C42
γ ) does not separate (R2,U) into

two components. Indeed, R2 \A(S C42
γ ) consists of four components as follows: C(pi) = Api , i ∈ [1, 2]Z,

C(p3) = C(p4) and C(q1) = C(q2).
Furthermore, the set Z2 \ S C42

γ has six components such as C(pi), i ∈ [1, 4]Z and C(q j), j ∈ [1, 2]Z.
(2) Given the S C38

γ in Figure 7(1), it satisfies the property of (5.2). Hence the set R2 \A(S C38
γ ) consists
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of the exactly two components. Hence we obtain

I(S C38
γ ) = C(q1) ∪C(q2) and O(S C38

γ ) = C(q3) ∪C(q4), where

C(qi) is the component of qi in (Z2, γ) containing the given point qi, i ∈ [1, 4]Z.
Meanwhile, the set Z2 \ S C38

γ consists of four components in (Z2, γ), e.g., C(qi), i ∈ [1, 4]Z.
(3) Given the S C28

γ in Figure 7(2), it does not satisfy the property of (5.2). Indeed, the set Z2 \ S C28
γ

consists of three components as follows: C(qi), i ∈ [1, 3]Z and C(q1) consists of eleven elements as in
Figure 7(2). In particular, C(q2) = {q2} and (C(q3))] = ℵ0 that is the cardinal number of the set of
natural numbers.
(4) Given the S C28

γ in Figure 7(3), it is clear that this object satisfies the hypothesis of Definition 6.4.
Hence we obtain I(S C28

γ ) = C(q1) and O(S C28
γ ) = C(q2) ∪C(q3).
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Figure 6. In (Z2, γ), based on the non-satisfaction of the property of (5.2) of S C42
γ , there are

some difficulties in establishing I(S C42
γ ).

Owing to Definition 6.4, we have the following:

Theorem 6.6. Assume an S Cl
γ, l , 4, satisfying the property of (5.2).

Then, a partition {I(S Cl
γ),O(S Cl

γ), S Cl
γ} of Z2 exists.
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Figure 7. In (Z2, γ), (1) based on the S C38
γ := (di)i∈[0,37]Z satisfying the property of (5.2),

Z2 \ S C38
γ has four non-empty components which implies that I(S C38

γ ) = C(q1) ∪ C(q2)
and O(S C38

γ ) = C(q3) ∪ C(q4) such that C(q1) ∩ C(q2) = ∅ and C(q3) ∩ C(q4) = ∅, where
C(q4) = Z2 \ (I(S C38

γ ) ∪C(q3) ∪ S C38
γ ) and each of C(qi), i ∈ [1, 4]Z, is not an empty set.

(2) Based on the S C28
γ := (ci)i∈[0,27]Z in Figure 7(2), Z2 \ S C28

γ indeed has three components.
However, since it does not satisfy the property of (5.2), both I(S C28

γ ) and O(S C28
γ ) are not

considered.

Proof: Owing to Definition 6.4, the proof is completed.

Remark 6.7. (1) Each of I(S Cl
γ) and O(S Cl

γ) need not be connected.
(2) The number of the components of I(S Cl

γ) depends on the situation.
(3) Each of the sets I(S Cl

γ) and O(S Cl
γ) need not be an open set or a closed set in (Z2, γ).

Proof: (1) As an example, consider the S C38
γ in Figure 7(1). It is clear that the given S C38

γ satisfies
the hypothesis of Definition 6.4. While each of I(S C38

γ ) and O(S C38
γ ) exists, they are not connected in

(Z2, γ). To be specific, it turns out that

I(S C38
γ ) = C(q1) ∪C(q2) and O(S C38

γ ) = C(q3) ∪C(q4)

such that C(q1) ∩C(q2) = ∅, C(q3) ∩C(q4) = ∅, and each of C(qi), i ∈ [1, 4]Z is not an empty set.
(2) From the above (3) of Example 6.1, it is clear that the number of the components of I(S Cl

γ) depends
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on the number l.
(3) As an example, consider the S C8

γ in Figure 4(2)(a). Then I(S C8
γ) is not an open set. Besides,

consider the S C38
γ in Figure 7(1). Then O(S C38

γ ) is not an open set.
Let us now investigate the semi-openness or semi-closedness of I(S Cl

γ) and O(S Cl
γ).

Example 6.2. Given any S C8
γ, there is a partition of (Z2, γ), i.e., {I(S C8

γ), S C8
γ,O(S C8

γ)} such that each
of I(S C8

γ) and O(S C8
γ) is semi-closed and both of them are connected. Namely, S C8

γ separates (Z2, γ)
with exactly two components.

Lemma 6.8. I(S C10
γ ) is both semi-open and semi-closed in (Z2, γ).

Proof: As shown in Figure 1(4)(c),(d), owing to Theorems 3.3 and 3.4, I(S C8
γ) is clearly both

semi-open and semi-closed in (Z2, γ).

Remark 6.9. The semi-openness or semi-closedness of I(S Cl
γ) depends on the situation, l < {4, 10}.

Proof: The semi-topological features of I(S C8
γ) is determined according to the two types of S C8

γ

in Figure 1(2)(a),(b). To be specific, based on the S C8
γ in Figure 1(2)(a), we have I(S C8

γ) that is only
semi-closed instead of semi-open in (Z2, γ). Meanwhile, for the case of S C8

γ in Figure 1(2)(b), I(S C8
γ)

is proved to be both semi-open and semi-closed in (Z2, γ).
Next, let us consider the case S Cl

γ, 12 ≤ l ∈ Ne. Then the semi-openness or semi-closedness of
I(S Cl

γ) depends on the situation (see Figure 5(c) and 7(1),(3)). For instance, the S C18
γ in Figure 5(c)

has I(S C18
γ ) that is not semi-open but semi-closed.

Corollary 6.10. Let X and Y be simple closed MW-curves with l elements in (Z2, γ) and each of them
satisfies the property of (6.3). Then the number of the components of Xc is equal to that of Yc.

Proof: By Proposition 6.3, the proof is completed.
Let E be the S C28

γ in Figure 7(3) and F be the S C28
γ satisfying the property of (6.3). While O(E) is

not connected and O(F) is connected. Thus we obtain the following.

Remark 6.11. Without the condition relating to the property (6.3), each of I(S Cl
γ) and O(S Cl

γ) may
not be connected.

Theorem 6.12. Assume that the subspaces (X, γX) and (Y, γY) are MW-homeomorphic to S Cl
γ.

(1) (I(X), γI(X)) need not MW-homeomorphic to (I(Y), γI(X)).
(2) (O(X), γO(X)) need not MW-homeomorphic to (O(Y), γO(X)).

Proof: To disprove these assertions (1) and (2), we will use some examples.
(1) Consider the two S C12

γ in Figures 4(4)(a) and 5(a). For our purpose, let A be the S C12
γ in Figure

4(4)(a) and B be the S C12
γ in Figure 4(5)(a). While I(A) is not connected and I(B) is connected, which

completes the proof.
(2) For our purpose, let C be the S C28

γ in Figure 7(3) and D be the S C28
γ satisfying the property of (6.3).

While O(C) is not connected and O(D) is connected, which completes the proof.

Corollary 6.13. (1) O(S Cl
γ) need not be semi-open.

(2) The number of the components of O(S Cl
γ) need not depend on the number l.
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Proof: To disprove these assertions (1) and (2), we will use some examples.
(1) Let us consider the S C28

γ in Figure 7(3). Then it is clear that O(S C28
γ ) is not semi-open.

(2) In view of the S C28
γ in Figure 7(3), the proof is completed. To be specific, let A be the S C28

γ in
Figure 7(3) and B be the S C28

γ satisfying the property of (6.3). Then O(A) has two components and
O(B) has the only one component.

Unlike Theorem 6.6, let us find a condition to separate (Z2, γ) into exactly two components, as
follows:

Theorem 6.14. Let S Cl
γ satisfy the property of (6.3), l , 4. Under (Z2, γ), we obtain the following:

(1) There is a partition {I(S Cl
γ),O(S Cl

γ), S Cl
γ} such that each of I(S Cl

γ) and O(S Cl
γ) is connected.

(2) Each of I(S Cl
γ) and O(S Cl

γ) is semi-closed. While O(S Cl
γ) is semi-open, I(S Cl

γ) need not be semi-
open.

Proof: (1) It suffices to prove the connectedness of both I(S Cl
γ) and O(S Cl

γ). Owing to the
hypothesis of the property of (6.3), each of I(S Cl

γ) and O(S Cl
γ) is proved to be connected because

there are not two points ct1 , ct2 ∈ S Cl
γ := (ci)i∈[0,l−1]Z , l , 4 such that

ct2 ∈ N8(ct1) and Con(ct1) ∩ {ct2} = ∅.

 (6.4)

Indeed, this property of (6.4) supports the connectedness of both I(S Cl
γ) and O(S Cl

γ).
(2) With the hypothesis, using Theorems 3.3 and 3.4, we prove that both I(S Cl

γ) and O(S Cl
γ) are semi-

closed. To be specific, for any point x ∈ Z2 \ I(S Cl
γ), owing to the hypothesis, we always obtain

S Nγ(x) ∩ (Z2 \ I(S Cl
γ))op , ∅,

which implies the semi-closedness of I(S Cl
γ).

Similarly, for any point x ∈ Z2 \ O(S Cl
γ), owing to the hypothesis, we also obtain

S Nγ(x) ∩ (Z2 \ O(S Cl
γ))op , ∅,

which implies the semi-closedness of O(S Cl
γ).

Besides, by Theorem 3.3, owing to the hypothesis, O(S Cl
γ) is proved to be semi-open. However, I(S Cl

γ)
need not be semi-open. For instance, for the S C8

γ in Figure 4(2)(a). Then I(S C8
γ) is not a semi-open in

(Z2, γ).

7. Advantages and utilities of MW-topological structure and the semi-Jordan curve theorem on
(Z2, γ)

When studying digital objects X in Z2, the properties of (2.4) and (2.5) enable us to get the following
utilities of the MW-topological structure of X.

Remark 7.1. (Utilities of the MW-topological structure)
(1) When studying a self-homeomorphism of (Z2, γ), we should consider the following map [31]
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

h : (Z2, γ)→ (Z2, γ) defined by:

for each point x := (x1, x2) ∈ Z2,

h(x) = (x1 + t1, x2 + t2),
where ti ∈ Zo for each i ∈ [1, 2]Z, or

h(x) = (x1 + 2m1, x2 + 2m2),
for some mi ∈ Z, i ∈ M ⊂ [1, 2]Z.


(7.1)

Since the modern electronic devices are usually operated on the finite digital planes with more than ten
million pixels to support the high-level display resolution, the mapping of (7.1) can be very admissible.
At the moment, note that the following map g cannot be a homeomorphism, where

g : (Z2, γ)→ (Z2, γ) defined by:

for each point x := (x1, x2) ∈ Z2,

g(x) = (x1 + t1, x2 + t2)
such that there is at least ti ∈ Zo, i ∈ M ( [1, 2]Z.


(7.2)

(2) Since the MW-topological structure is one of the fundamental frames, motivated by this structure,
some more generalized topological structures on Zn can be established.
(3) Based on the MW-topological structure of Z2, we can obtain the 4-digital adjacency induced by the
given topological structure [26]. In detail, for distinct elements x, y ∈ (Z2, γ), they are MW-adjacent
if x ∈ S Nγ(y) or y ∈ S Nγ(x) [26]. Namely, the MW-adjacency is equivalent to the 4-adjacency of Z2

as in (2.2).

Example 7.1. The map g : (Z2, γ)→ (Z2, γ) defined by g(x1, x2) = (x1 + 2m1 + 1, x2 + 2m2),m1,m2 ∈ Z

cannot be a homeomorphism. Meanwhile, it is clear that the map h : (Z2, γ) → (Z2, γ) defined by
h(x1, x2) = (x1 + 2m1 + 1, x2 + 2m2 + 1) or (x1 + 2m1, x2 + 2m2), m1,m2 ∈ Z, is a homeomorphism.

Remark 7.2. (Advantages of the semi-Jordan curve theorem)
(1) Unlike the typical Jordan curve theorem in a digital topological setting estabsihed by
Rosenfeld [22], no paradox exists in the semi-Jordan curve theorem in the MW-topological structure.
(2) Based on the semi-Jordan curve theorem in the MW-topological structure, we can consider a
digital topological version of the typical Jordan curve theorem in terms of a simple closed 4-curve in
the digital plane (Z2, 4, 8).
(3) When digitizing a set X in the 2-dimensional real space with respect to the MW-topological
structure, we can use a local rule in [20] to obtain a digitized set Dγ(X) ⊂ Z2 from X which is used in
the fields of mathematical morphology, rough set theory, digital geometry, and so on [20, 21].

8. Concluding remark and further work

After developing the semi-Jordan curve theorem in the MW-topological setting, we have studied
various properties of it. In particular, we have found a condition for S Cl

γ to separate (Z2, γ) with
exactly two components, Furthermore, we studied many semi-topological properties of both I(S Cl

γ)
and O(S Cl

γ). As a further work, we can compare among several kinds of digital versions of the typical
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Jordan curve theorem and the combinatorial version of the Jordan curve theorem in [3]. Besides, based
on the digital-topological group structure in [32], we can further examine a topological group structure
of S Cl

γ. In addition, based on the established structure in [33], we can study covering spaces in the
category of MW-topological spaces.
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