

ERA, 30(11): 4232–4237. DOI: 10.3934/era.2022215 Received: 18 June 2022 Revised: 01 September 2022 Accepted: 03 September 2022 Published: 22 September 2022

http://www.aimspress.com/journal/era

Research article

Normalizer property of finite groups with almost simple subgroups

Jingjing Hai^{1,*}and Xian Ling²

¹ College of Quality and Standardization, Qingdao University, Qingdao 266071, China

² College of Mathematics and Statistics, Qingdao University, Qingdao 266071, China

* Correspondence: Email: haijingjing@aliyun.com.

Abstract: In this paper, we prove that all Coleman automorphisms of extension of an almost simple group by an abelian group or a simple group are inner. Using our methods we also show that the Coleman automorphisms of 2-power order of an odd order group by an almost simple group are inner. In particular, these groups have the normalizer property.

Keywords: almost simple group; simple group; Coleman automorphism; *q*-central automorphism; normalizer property

1. Introduction

Let *F* be a finite group and Aut(*F*) be its automorphism group. We use $\mathbb{Z}F$ to denote the integral group ring of *F*. The normalizer problem (see [1], problem 43) asks whether $N_{U(\mathbb{Z}F)}(F) = F\zeta(U(\mathbb{Z}F))$, where $N_{U(\mathbb{Z}F)}(F)$ is normalizer of *F* in the unit group $U(\mathbb{Z}F)$, $\zeta(U(\mathbb{Z}F))$ is the center of $U(\mathbb{Z}F)$. Write $Aut_{\mathbb{Z}}(F) = \{\sigma_v \in Aut(F) \mid x^{\sigma_v} = v^{-1}xv, v \in N_{U(\mathbb{Z}F)}(F), x \in F\}$, then $Aut_{\mathbb{Z}}(F)$ is a subgroup of Aut(F). Set $Out_{\mathbb{Z}}(F) = Aut_{\mathbb{Z}}(F)/Inn(F)$. Jackowski and Marciniak [2] proved that $N_{U(\mathbb{Z}F)}(F) = F\zeta(U(\mathbb{Z}F))$ is equivalent to $Aut_{\mathbb{Z}}(F) = Inn(F)$. Thus, we call that *F* has the normalizer property provided that $Out_{\mathbb{Z}}(F) = 1$.

Hertweck and Kimmerle [3] introduced the Coleman automorphism, i.e., a $\varphi \in \operatorname{Aut}(F)$ is said to be Coleman automorphism if for any $q \in \pi(F)$ and any $Q \in \operatorname{Syl}_q(F)$, there exists a $h \in F$ with $\varphi|_Q = \operatorname{conj}(h)|_Q$. Denoted by $\operatorname{Aut}_{\operatorname{Col}}(F)$ the Coleman automorphism group of F. Write $\operatorname{Out}_{\operatorname{Col}}(F) =$ $\operatorname{Aut}_{\operatorname{Col}}(F)/\operatorname{Inn}(F)$. In [4], Gross introduced the *q*-central automorphism, i.e., a $\theta \in \operatorname{Aut}(F)$ is called a *q*-central if there exists a $q \in \pi(F)$ and some $Q \in \operatorname{Syl}_q(F)$ such that $\theta|_Q = id|_Q$. Obviously, modifying the Coleman automorphism with an inner automorphism, then the Coleman automorphism of F is *q*-central for any $q \in \pi(F)$.

Coleman automorphisms come up in the study of the normalizer problem. By Coleman's lemma [5] and Krempa's result [1], we only show that $Out_{Col}(F) = 1$ or $Out_{Col}(F)$ is a 2'-group, then $Aut_{\mathbb{Z}}(F) =$

Inn(*F*). For example, let *F* be a simple group or a nilpotent group. Then $Out_{Col}(F) = 1$ (see [3]). Related results on this subject can be found in [6–10].

The purpose of this paper is to investigate normalizer property of finite groups with almost simple subgroups. Recall that a finite group A is called to be an almost simple group provided that there exists some non-abelian simple group S with $S \le A \le \operatorname{Aut}(S)$. Note that Van Antwerpen [10] gave a group $C_{15} \rtimes C_2$ for which $\operatorname{Out}_{\operatorname{Col}}(C_{15} \rtimes C_2) \cong C_2$. In this paper, we consider that F is an almost simple group by a simple group or an odd order group by an almost simple group. We shall show that $\operatorname{Out}_{\operatorname{Col}}(F) = 1$ or $\operatorname{Out}_{\operatorname{Col}}(F)$ is of odd order. In particular, these groups have the normalizer property. Our notation is standard, refer to [1,3,11].

2. Preliminaries

Lemma 2.1. [3] Assume that *S* is a simple group. Then there is $q \in \pi(S)$ such that every *q*-central automorphisms of *S* is inner.

Lemma 2.2. Let *S* be a non-abelian simple group. Then $C_{Aut(S)}(Inn(S)) = 1$.

Proof. By hypothesis, then $\zeta(S) = 1$ and $S \simeq \text{Inn}(S)$. Set $\sigma : S \to \text{Inn}(S)$ is an isomorphism. Thus, for any $\theta \in C_{\text{Aut}(S)}(\text{Inn}(S)), g \in G$, we obtain $\theta^{-1}\sigma(g)\theta = \sigma(g)$, that is, $\sigma(g^{\theta}) = \sigma(g)$. It follows that $g^{\theta} = g$, which implies that $\theta = 1$. Hence $C_{\text{Aut}(S)}(\text{Inn}(S)) = 1$.

Lemma 2.3. Let $J \leq F$. Then $C_F(J) = 1$ if and only if $\zeta(H) = 1$ for every H such that $J \leq H \leq F$.

Proof. The assertion is obvious.

Lemma 2.4. Assume that *A* is an almost simple group. Then $\zeta(A) = 1$.

Proof. By Lemma 2.2 and Lemma 2.3, the conclusion holds.

Lemma 2.5. [6] Let $\rho \in \operatorname{Aut}(F)$ be of *p*-power order and $E \leq F$, where $p \in \pi(F)$. If $\rho|_E = \operatorname{conj}(h)|_E$ for some $h \in F$, then there exists a $\delta \in \operatorname{Inn}(F)$ such that $\rho \delta|_E = id|_E$ and $o(\rho \delta) = p^i$, where *i* is positive integer.

Lemma 2.6. [3] Let $\rho \in \operatorname{Aut}_{\operatorname{Col}}(F)$ and $M \trianglelefteq F$. Then (1) $\rho|_M \in \operatorname{Aut}(M)$, (2) $\rho|_{F/M} \in \operatorname{Aut}_{\operatorname{Col}}(F/M)$.

Lemma 2.7. Assume that A is an almost simple group. Then $Aut_{Col}(A) = Inn(A)$.

Proof. Let $\rho \in \operatorname{Aut}_{\operatorname{Col}}(A)$. We shall prove that $\rho \in \operatorname{Inn}(A)$. By hypothesis $S \leq A \leq \operatorname{Aut}(S)$. It follows from Lemma 2.1 that there exists some $q \in \pi(S)$ such that every *q*-central automorphism of *S* is inner. Let $Q \in \operatorname{Syl}_q(A)$. Since $\rho \in \operatorname{Aut}_{\operatorname{Col}}(A)$, then $\rho|_Q = \operatorname{conj}(a)|_Q$ for some $a \in A$. In general, we may suppose that $\rho|_Q = id|_Q$ by Lemma 2.5. Write $R = Q \cap S$, hence $R \in \operatorname{Syl}_q(S)$ and $\rho|_R = id|_R$. Note that $S \leq A$, by Lemma 2.6(1), we obtain that $\rho|_S$ is *q*-central. Hence, $\rho|_S \in \operatorname{Inn}(S)$, i.e., there exists a $g \in S$ with $\rho|_S = \operatorname{conj}(g)|_S$. Write $\eta = \rho \operatorname{conj}(g^{-1})$, then $\eta|_S = id|_S$. By Lemma 2.2 and *S* identifies with Inn(*S*), we obtain that $C_A(S) = C_{\operatorname{Aut}(S)}(S) \cap A = 1$. Thus, for any $y \in A$ and $x \in S$, we have $(y^{-1}xy)^{\eta} = (y^{-1})^{\eta}xy^{\eta} = y^{-1}xy$, which implies that $y^{\eta}y^{-1} \in C_A(S) = 1$. Hence, $\eta = id$, i.e., $\rho \in \operatorname{Inn}(A)$.

Lemma 2.8. [12] Let $\rho \in \operatorname{Aut}(F)$ be of *p*-power order. If there exists some $H \triangleleft F$ such that $\rho|_H = id|_H$ and $\rho|_{F/H} = id|_{F/H}$, then $\rho|_{F/Q_p(\mathcal{I}(H))} = id|_{F/Q_p(\mathcal{I}(H))}$. Assume further that there exists a $T \in Syl_p(F)$ such that $\rho|_T = id|_T$. Then $\rho \in \text{Inn}(F)$.

Lemma 2.9. [6] Let $\rho \in Aut(F)$ be of p-power order, and let $H \triangleleft F$ with $H^{\rho} = H$. Assume further that $\rho|_{F/H} \in \text{Inn}(F/H)$. Then there is $\tau \in \text{Inn}(F)$ such that $\rho\tau|_{F/H} = id|_{F/H}$ and $o(\rho\tau) = p^j$, where *j* is positive integer.

Lemma 2.10. [3] Let $\rho \in \operatorname{Aut}(F)$ and $H \triangleleft F$ with $H^{\rho} = H$, and assume that $Q \in \operatorname{Syl}(H)$. If $\rho|_{Q} =$ $\operatorname{conj}(g)|_O$ for some $g \in F$, then $K = HC_F(Q) \leq F$ and $K^{\rho} = K$. Moreover, $\rho|_{F/K} = \operatorname{conj}(g)|_{F/K}$.

Lemma 2.11. [3] Let *M* be a 2'-group. Then $Out_{Col}(M)$ is also a 2'-group.

3. Proof of The Theorems

Theorem 3.1. Let A be an almost simple normal subgroup of F. If F/A is an abelian group, then $\operatorname{Out}_{\operatorname{Col}}(F) = 1$. In particular, $\operatorname{Aut}_{\mathbb{Z}}(F) = \operatorname{Inn}(F)$.

Proof. Let $\varphi \in \operatorname{Aut}_{\operatorname{Col}}(F)$ and let φ be of p-power order, where $p \in \pi(F)$. We shall prove that $\varphi \in$ Inn(F). By hypothesis A is almost simple, then $S \leq A \leq \operatorname{Aut}(S)$. Now, we show that $\varphi|_S$ is a q-central, where $q \in \pi(S)$ and S is non-abelian simple. Let $Q \in Syl_q(A)$, then there exists some $T \in Syl_q(F)$ such that $Q \leq T$. Note that $\varphi \in \operatorname{Aut}_{\operatorname{Col}}(F)$, thus $\varphi|_T = \operatorname{conj}(g)|_T$ for some $g \in F$. In general, we suppose that $\varphi|_T = id|_T$ by Lemma 2.5. Write $R = Q \cap S$, hence $R \in Syl_q(S)$ and $\varphi|_R = id|_R$. By Lemma 2.6(1), we obtain that $\varphi_{|A|}$ is an automorphism of A. Denote by R^S the normal closure of R in S. Since S is non-abelian simple, then $R^S = S$. Note that $R^S = \langle s^{-1}rs : s \in S, r \in R \rangle$ and $S \leq A$. Hence, for any $s \in S, r \in R$, $(s^{-1}rs)^{\varphi} = (s^{\varphi})^{-1}rs^{\varphi} \in S$, which implies that $\varphi|_{S} \in Aut(S)$. Hence, $\varphi|_{S}$ is q-central. By Lemma 2.1, we have $\varphi|_S \in \text{Inn}(S)$, that is, there exists a $h \in S$ with $\varphi|_S = \text{conj}(h)|_S$. Again by Lemma 2.5, we may suppose that $\varphi|_S = id|_S$. By Lemma 2.2 and S identifies with Inn(S), we obtain that $C_A(S) = C_{Aut(S)}(S) \cap A = 1$. Thus, for any $y \in A$ and $x \in S$, we have $(y^{-1}xy)^{\rho} = (y^{-1})^{\varphi}xy^{\varphi} = y^{-1}xy$, which implies that $y^{\varphi}y^{-1} \in C_A(S) = 1$. Hence,

$$\varphi|_A = id|_A. \tag{3.1}$$

By Lemma 2.6(2), $\varphi|_{F/A} \in \operatorname{Aut}_{\operatorname{Col}}(F/A)$. Note that F/A is abelian, which implies that

$$\varphi|_{F/A} = id_{F/A}.\tag{3.2}$$

Now, by Lemma 2.8, we obtain that

$$\varphi|_{F/O_p(\zeta(A))} = id_{F/O_p(\zeta(A))}.$$
(3.3)

By Lemma 2.4, we have $O_p(\zeta(A)) = 1$. Hence, by (3.3), $\varphi = id$.

Corollary 3.2. Let S be a simple normal subgroup of F. If F/S is an abelian group, then $Out_{Col}(F) = 1$. In particular, $\operatorname{Aut}_{\mathbb{Z}}(F) = \operatorname{Inn}(F)$.

Proof. If S is abelian simple, this is a consequence of Proposition 3.1 in [6]. Next, we suppose that S is non-abelian simple. Hence the assertion holds by Theorem 3.1.

Theorem 3.3. Let A be an almost simple normal subgroup of F. If F/A is a simple group, then $\operatorname{Out}_{\operatorname{Col}}(F) = 1$. In particular, $\operatorname{Aut}_{\mathbb{Z}}(F) = \operatorname{Inn}(F)$.

Proof. Let $\rho \in \operatorname{Aut}_{\operatorname{Col}}(F)$ and let ρ be of p-power order, where $p \in \pi(F)$. We shall prove that $\rho \in$ Inn(F). If F/A is abelian simple, then the conclusion holds by Theorem 3.1. Next, we suppose that F/A is non-abelian simple. It follows from Lemma 2.6(2) and Lemma 2.1 that $\rho|_{F/A} \in \text{Inn}(F/A)$, that is, $\rho|_{F/A} = \operatorname{conj}(x)|_{F/A}$ for some $x \in F$. In general, by Lemma 2.9, we may suppose that

$$\rho|_{F/A} = id|_{F/A}.\tag{3.4}$$

First, we show that $\rho|_A \in \operatorname{Aut}_{\operatorname{Col}}(A)$. Since $\rho \in \operatorname{Aut}_{\operatorname{Col}}(F)$, then there is a $k \in F$ such that

$$\rho|_Q = \operatorname{conj}(k)|_Q, \tag{3.5}$$

where $Q \in Syl(A)$. Set $H = AC_F(Q)$. By Lemma 2.10,

$$\rho|_{F/H} = \operatorname{conj}(k)|_{F/H}.$$
(3.6)

Note that $H \ge A$. By (3.4), we deduce that

$$\rho|_{F/H} = id|_{F/H}.\tag{3.7}$$

Consequently, by (3.6) and (3.7), we obtain that $\operatorname{conj}(k)|_{F/H} = id|_{F/H}$, this implies that $kH \in \zeta(F/H)$. Note that $H/A \leq F/A$ and F/A is non-abelian simple, then H/A = 1 or H/A = F/A. From this, we deduce that $\zeta(F/H) = 1$. Hence, $k \in H$. Note further that $H = AC_F(Q) = C_F(Q)A$, we may suppose that k = ra, where $r \in C_F(Q)$, $a \in A$. By (3.5),

$$\rho|_Q = \operatorname{conj}(k)|_Q = \operatorname{conj}(ra)|_Q = \operatorname{conj}(a)|_Q.$$
(3.8)

By (3.8), we have $\rho|_A \in \text{Aut}_{\text{Col}}(A)$. Since A is almost simple, then $\rho|_A \in \text{Inn}(A)$ by Lemma 2.7, i.e., there is a $b \in A$ with $\rho|_A = \operatorname{conj}(b)|_A$. Set $\varphi = \rho \operatorname{conj}(b^{-1})$. In general, we suppose that φ is of p-power order, and

$$\varphi|_A = id|_A. \tag{3.9}$$

By (3.4), we also have

$$\varphi|_{F/A} = id|_{F/A}.\tag{3.10}$$

Hence, by Lemma 2.8,

$$\varphi|_{F/O_p(\zeta(A))} = id|_{F/O_p(\zeta(A))}.$$
(3.11)

By Lemma 2.4, $O_p(\zeta(A)) = 1$. Thus, by (3.11), we have that $\varphi = id$, i.e., $\rho \in \text{Inn}(F)$.

Corollary 3.4. Let *S* be a simple normal subgroup of *F*. If F/S is a simple group, then $Out_{Col}(F) = 1$. In particular, $\operatorname{Aut}_{\mathbb{Z}}(F) = \operatorname{Inn}(F)$.

Proof. If S is abelian simple, this is a consequence of Theorem 1.2 in [6]. Next, we suppose that S is non-abelian simple. Consequently, the assertion holds by Theorem 3.3.

Theorem 3.5. Let *M* be a normal subgroup of odd order of *F*. If F/M is an almost simple group, then $\operatorname{Out}_{\operatorname{Col}}(F)$ is of odd order. In particular, $\operatorname{Aut}_{\mathbb{Z}}(F) = \operatorname{Inn}(F)$.

Proof. Let $\rho \in \operatorname{Aut}_{\operatorname{Col}}(F)$ and let ρ be of 2-power order. We shall prove that $\rho \in \operatorname{Inn}(F)$. By Lemma 2.6(2), $\rho|_{F/M} \in \operatorname{Aut}_{\operatorname{Col}}(F/M)$. Since F/M is almost simple, then, by Lemma 2.7, $\rho|_{F/M} \in \operatorname{Inn}(F/M)$, i.e., $\rho|_{F/M} = \operatorname{conj}(x)|_{F/M}$ for some $x \in F$. In general, we may suppose that

$$\rho|_{F/M} = id|_{F/M}.$$
 (3.12)

First, we show that $\rho|_M \in \operatorname{Aut}_{\operatorname{Col}}(M)$. Since $\rho \in \operatorname{Aut}_{\operatorname{Col}}(F)$, then

$$\rho|_P = \operatorname{conj}(t)|_P, \tag{3.13}$$

where $t \in F, P \in Syl(M)$. Set $H = MC_F(P)$, by Lemma 2.10, $H \trianglelefteq F$ and $H^{\rho} = H$. Moreover,

$$\rho|_{F/H} = \operatorname{conj}(t)|_{F/H}.$$
(3.14)

Note that $H \ge M$. By (3.12), we have

$$\rho|_{F/H} = id|_{F/H}.$$
 (3.15)

By (3.14) and (3.15), $\operatorname{conj}(t)|_{G/H} = id|_{F/H}$, which implies that $tH \in \zeta(F/H)$. Since F/M is almost simple, then we may suppose that $S/M \leq F/M \leq \operatorname{Aut}(S/M)$. Note that $H/M \triangleleft F/M$ and $S/M \triangleleft F/M$, so either $H/M \cap S/M = 1$ or $S/M \leq H/M$. If $H/M \cap S/M = 1$, then [H/M, S/M] = 1. It follows from Lemma 2.2 that H = M. If $S/M \leq H/M$, then $\zeta(H/M) = 1$, $\zeta(F/M) = 1$ by Lemma 2.3. From this, we deduce that $\zeta(F/H) = 1$, that is, $t \in H$. Note further that $H = MC_F(P) = C_F(P)M$, we may suppose that t = cm, where $c \in C_F(P)$, $m \in M$. By (3.13), we have

$$\rho|_P = \operatorname{conj}(t)|_P = \operatorname{conj}(cm)|_P = \operatorname{conj}(m)|_P.$$
(3.16)

Thus (3.16) implies that $\rho|_M \in \operatorname{Aut}_{\operatorname{Col}}(M)$. Next, by Lemma 2.11,

$$\rho|_M = id|_M. \tag{3.17}$$

Hence, by Lemma 2.8,

$$\rho|_{F/\mathcal{O}_2(\zeta(M))} = id|_{F/\mathcal{O}_2(\zeta(M))}.$$
(3.18)

But note that $O_2(\zeta(M)) = 1$, so (3.18) implies that $\rho = id$.

Corollary 3.6. Let *M* be a normal subgroup of odd order of *F*. If *F*/*M* is a non-abelian simple group, then $Out_{Col}(F)$ is of odd order. In particular, $Aut_{\mathbb{Z}}(F) = Inn(F)$.

Acknowledgments

Supported by NSF of China(11871292).

Conflict of interest

The authors declare there is no conflicts of interest.

Electronic Research Archive

References

- 1. S. K. Sehgal, *Units in integral group rings*, Longman Scientific and Technical Press, 1993. https://doi.org/0803.16022
- S. Jackowski, Z. S. Marciniak, Group automorphisms inducing the identity map on cohomology, J. Pure Appl. Algebra, 44 (1987), 241–250. https://doi.org/10.1016/0022-4049(87)90028-4
- 3. M. Hertweck, W. Kimmerle, Coleman automorphisms of finite groups, *Math. Z.*, **242** (2002), 203–215. https://doi.org/10.1007/s002090100318
- 4. F. Gross, Automorphisms which centralize a Sylow *p*-subgroup, *J. Algebra*, **77** (1988), 202–233. https://doi.org/10.1016/0021-8693(82)90287-3
- D. B. Coleman, On the modular group ring of a *p*-group, *Proc. Amer. Math. Soc.*, 5 (1964), 511– 514. https://doi.org/10.2307/2034735
- J. K. Hai, L. L. Zhao, Coleman automorphisms of extensions of finite characteristically simple groups by some finite groups, *Algebra Colloq.*, 28 (2021), 561–568. https://doi.org/10.1142/S1005386721000444
- S. O. Juriaans, J. M. Miranda, J. R. Robério, Automorphisms of finite groups, *Comm. Algebra*, 32 (2004), 1705–1714. https://doi.org/10.1081/AGB-120029897
- 8. Z. X. Li, Coleman automorphisms of permutational wreath products II, *Comm. Algebra*, **46** (2020), 4473–4479. https://doi.org/10.1080/00927872.2018.1448836
- 9. T. Zheng, X. Y. Guo, *The normalizer property for finite groups whose Sylow 2-subgroups are abelian, Commun. Math. Stat.*, **9** (2021), 87–99. https://doi.org/10.1007/s40304-020-00211-w
- 10. A. Van Antwerpen, Coleman automorphisms of finite groups and their minimal normal subgroups, *J. Pure Appl. Algebra*, **222** (2018), 3379–3394. https://doi.org/10.1016/j.jpaa.2017.12.013
- 11. H. Kurzweil, B. Stellmacher, *The Theory of Finite Groups: An Introduction*, Springer-Verlag, New York, 2004. https://doi.org/10.1115/1.3259028
- 12. M. Hertweck, Class-preserving automorphisms of finite groups, J. Algebra, 241 (2001), 1–26. https://doi.org/10.1006/jabr.2001.8760

© 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)