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Abstract: In this paper, we prove that all Coleman automorphisms of extension of an almost simple
group by an abelian group or a simple group are inner. Using our methods we also show that the
Coleman automorphisms of 2-power order of an odd order group by an almost simple group are inner.
In particular, these groups have the normalizer property.
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1. Introduction

Let F be a finite group and Aut(F) be its automorphism group. We use ZF to denote the integral
group ring of F. The normalizer problem (see [1], problem 43) asks whether NU(ZF)(F) = Fζ(U(ZF)),
where NU(ZF)(F) is normalizer of F in the unit group U(ZF), ζ(U(ZF)) is the center of U(ZF). Write
AutZ(F) = {σv ∈ Aut(F) | xσv = v−1xv, v ∈ NU(ZF)(F), x ∈ F}, then AutZ(F) is a subgroup of Aut(F).
Set OutZ(F) = AutZ(F)/Inn(F). Jackowski and Marciniak [2] proved that NU(ZF)(F) = Fζ(U(ZF))
is equivalent to AutZ(F) = Inn(F). Thus, we call that F has the normalizer property provided that
OutZ(F) = 1.

Hertweck and Kimmerle [3] introduced the Coleman automorphism, i.e., a φ ∈ Aut(F) is said
to be Coleman automorphism if for any q ∈ π(F) and any Q ∈ Sylq(F), there exists a h ∈ F with
φ|Q = conj(h)|Q. Denoted by AutCol(F) the Coleman automorphism group of F. Write OutCol(F) =
AutCol(F)/Inn(F). In [4], Gross introduced the q-central automorphism, i.e., a θ ∈ Aut(F) is called a
q-central if there exists a q ∈ π(F) and some Q ∈ Sylq(F) such that θ|Q = id|Q. Obviously, modifying
the Coleman automorphism with an inner automorphism, then the Coleman automorphism of F is
q-central for any q ∈ π(F).

Coleman automorphisms come up in the study of the normalizer problem. By Coleman’s lemma [5]
and Krempa’s result [1], we only show that OutCol(F) = 1 or OutCol(F) is a 2′-group, then AutZ(F) =

http://http://www.aimspress.com/journal/era
http://dx.doi.org/10.3934/era.2022215


4233

Inn(F). For example, let F be a simple group or a nilpotent group. Then OutCol(F) = 1(see [3]).
Related results on this subject can be found in [6–10].

The purpose of this paper is to investigate normalizer property of finite groups with almost simple
subgroups. Recall that a finite group A is called to be an almost simple group provided that there exists
some non-abelian simple group S with S ≤ A ≤ Aut(S ). Note that Van Antwerpen [10] gave a group
C15 ⋊C2 for which OutCol(C15 ⋊C2) � C2. In this paper, we consider that F is an almost simple group
by a simple group or an odd order group by an almost simple group. We shall show that OutCol(F) = 1
or OutCol(F) is of odd order. In particular, these groups have the normalizer property. Our notation is
standard, refer to [1, 3, 11].

2. Preliminaries

Lemma 2.1. [3] Assume that S is a simple group. Then there is q ∈ π(S ) such that every q-central
automorphisms of S is inner.

Lemma 2.2. Let S be a non-abelian simple group. Then CAut(S )(Inn(S )) = 1.

Proof. By hypothesis, then ζ(S ) = 1 and S ≃ Inn(S ). Set σ : S → Inn(S ) is an isomorphism. Thus,
for any θ ∈ CAut(S )(Inn(S )), g ∈ G, we obtain θ−1σ(g)θ = σ(g), that is, σ(gθ) = σ(g). It follows that
gθ = g, which implies that θ = 1. Hence CAut(S )(Inn(S )) = 1. □

Lemma 2.3. Let J ≤ F. Then CF(J) = 1 if and only if ζ(H) = 1 for every H such that J ≤ H ≤ F.

Proof. The assertion is obvious. □

Lemma 2.4. Assume that A is an almost simple group. Then ζ(A) = 1.

Proof. By Lemma 2.2 and Lemma 2.3, the conclusion holds. □

Lemma 2.5. [6] Let ρ ∈ Aut(F) be of p-power order and E ≤ F, where p ∈ π(F). If ρ|E = conj(h)|E
for some h ∈ F, then there exists a δ ∈ Inn(F) such that ρδ|E = id|E and o(ρδ) = pi, where i is positive
integer.

Lemma 2.6. [3] Let ρ ∈ AutCol(F) and M ⊴ F. Then
(1) ρ|M ∈ Aut(M),
(2) ρ|F/M ∈ AutCol(F/M).

Lemma 2.7. Assume that A is an almost simple group. Then AutCol(A) = Inn(A).

Proof. Let ρ ∈ AutCol(A). We shall prove that ρ ∈ Inn(A). By hypothesis S ≤ A ≤ Aut(S ). It
follows from Lemma 2.1 that there exists some q ∈ π(S ) such that every q-central automorphism of
S is inner. Let Q ∈ Sylq(A). Since ρ ∈ AutCol(A), then ρ|Q = conj(a)|Q for some a ∈ A. In general,
we may suppose that ρ|Q = id|Q by Lemma 2.5. Write R = Q ∩ S , hence R ∈ Sylq(S ) and ρ|R = id|R.
Note that S ⊴ A, by Lemma 2.6(1), we obtain that ρ|S is q-central. Hence, ρ|S ∈ Inn(S ), i.e., there
exists a g ∈ S with ρ|S = conj(g)|S . Write η = ρconj(g−1), then η|S = id|S . By Lemma 2.2 and S
identifies with Inn(S ), we obtain that CA(S ) = CAut(S )(S ) ∩ A = 1. Thus, for any y ∈ A and x ∈ S ,
we have (y−1xy)η = (y−1)ηxyη = y−1xy, which implies that yηy−1 ∈ CA(S ) = 1. Hence, η = id, i.e.,
ρ ∈ Inn(A). □
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Lemma 2.8. [12] Let ρ ∈ Aut(F) be of p-power order. If there exists some H ◁ F such that ρ|H = id|H
and ρ|F/H = id|F/H, then ρ|F/Op(ζ(H)) = id|F/Op(ζ(H)). Assume further that there exists a T ∈ Sylp(F) such
that ρ|T = id|T . Then ρ ∈ Inn(F).

Lemma 2.9. [6] Let ρ ∈ Aut(F) be of p-power order, and let H ◁ F with Hρ = H. Assume further
that ρ|F/H ∈ Inn(F/H). Then there is τ ∈ Inn(F) such that ρτ|F/H = id|F/H and o(ρτ) = p j, where j is
positive integer.

Lemma 2.10. [3] Let ρ ∈ Aut(F) and H ◁ F with Hρ = H, and assume that Q ∈ Syl(H). If ρ|Q =
conj(g)|Q for some g ∈ F, then K = HCF(Q) ⊴ F and Kρ = K. Moreover, ρ|F/K = conj(g)|F/K .

Lemma 2.11. [3] Let M be a 2′-group. Then OutCol(M) is also a 2′-group.

3. Proof of The Theorems

Theorem 3.1. Let A be an almost simple normal subgroup of F. If F/A is an abelian group, then
OutCol(F) = 1. In particular, AutZ(F) = Inn(F).

Proof. Let φ ∈ AutCol(F) and let φ be of p-power order, where p ∈ π(F). We shall prove that φ ∈
Inn(F). By hypothesis A is almost simple, then S ≤ A ≤ Aut(S ). Now, we show that φ|S is a q-central,
where q ∈ π(S ) and S is non-abelian simple. Let Q ∈ Sylq(A), then there exists some T ∈ Sylq(F) such
that Q ≤ T . Note that φ ∈ AutCol(F), thus φ|T = conj(g)|T for some g ∈ F. In general, we suppose that
φ|T = id|T by Lemma 2.5. Write R = Q ∩ S , hence R ∈ Sylq(S ) and φ|R = id|R. By Lemma 2.6(1),
we obtain that φ|A is an automorphism of A. Denote by RS the normal closure of R in S . Since S is
non-abelian simple, then RS = S . Note that RS =< s−1rs : s ∈ S , r ∈ R > and S ⊴ A. Hence, for
any s ∈ S , r ∈ R, (s−1rs)φ = (sφ)−1rsφ ∈ S , which implies that φ|S ∈ Aut(S ). Hence, φ|S is q-central.
By Lemma 2.1, we have φ|S ∈ Inn(S ), that is, there exists a h ∈ S with φ|S = conj(h)|S . Again by
Lemma 2.5, we may suppose that φ|S = id|S . By Lemma 2.2 and S identifies with Inn(S ), we obtain
that CA(S ) = CAut(S )(S )∩ A = 1. Thus, for any y ∈ A and x ∈ S , we have (y−1xy)ρ = (y−1)φxyφ = y−1xy,
which implies that yφy−1 ∈ CA(S ) = 1. Hence,

φ|A = id|A. (3.1)

By Lemma 2.6(2), φ|F/A ∈ AutCol(F/A). Note that F/A is abelian, which implies that

φ|F/A = idF/A. (3.2)

Now, by Lemma 2.8, we obtain that

φ|F/Op(ζ(A)) = idF/Op(ζ(A)). (3.3)

By Lemma 2.4, we have Op(ζ(A)) = 1. Hence, by (3.3), φ = id. □

Corollary 3.2. Let S be a simple normal subgroup of F. If F/S is an abelian group, then OutCol(F) = 1.
In particular, AutZ(F) = Inn(F).

Proof. If S is abelian simple, this is a consequence of Proposition 3.1 in [6]. Next, we suppose that S
is non-abelian simple. Hence the assertion holds by Theorem 3.1. □
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Theorem 3.3. Let A be an almost simple normal subgroup of F. If F/A is a simple group, then
OutCol(F) = 1. In particular, AutZ(F) = Inn(F).

Proof. Let ρ ∈ AutCol(F) and let ρ be of p-power order, where p ∈ π(F). We shall prove that ρ ∈
Inn(F). If F/A is abelian simple, then the conclusion holds by Theorem 3.1. Next, we suppose that
F/A is non-abelian simple. It follows from Lemma 2.6(2) and Lemma 2.1 that ρ|F/A ∈ Inn(F/A), that
is, ρ|F/A = conj(x)|F/A for some x ∈ F. In general, by Lemma 2.9, we may suppose that

ρ|F/A = id|F/A. (3.4)

First, we show that ρ|A ∈ AutCol(A). Since ρ ∈ AutCol(F), then there is a k ∈ F such that

ρ|Q = conj(k)|Q, (3.5)

where Q ∈ Syl(A). Set H = ACF(Q). By Lemma 2.10,

ρ|F/H = conj(k)|F/H. (3.6)

Note that H ≥ A. By (3.4), we deduce that

ρ|F/H = id|F/H. (3.7)

Consequently, by (3.6) and (3.7), we obtain that conj(k)|F/H = id|F/H, this implies that kH ∈ ζ(F/H).
Note that H/A ⊴ F/A and F/A is non-abelian simple, then H/A = 1 or H/A = F/A. From this, we
deduce that ζ(F/H) = 1. Hence, k ∈ H. Note further that H = ACF(Q) = CF(Q)A, we may suppose
that k = ra, where r ∈ CF(Q), a ∈ A. By (3.5),

ρ|Q = conj(k)|Q = conj(ra)|Q = conj(a)|Q. (3.8)

By (3.8), we have ρ|A ∈ AutCol(A). Since A is almost simple, then ρ|A ∈ Inn(A) by Lemma 2.7, i.e.,
there is a b ∈ A with ρ|A = conj(b)|A. Set φ = ρconj(b−1). In general, we suppose that φ is of p-power
order, and

φ|A = id|A. (3.9)

By (3.4), we also have
φ|F/A = id|F/A. (3.10)

Hence, by Lemma 2.8,
φ|F/Op(ζ(A)) = id|F/Op(ζ(A)). (3.11)

By Lemma 2.4, Op(ζ(A)) = 1. Thus, by (3.11), we have that φ = id, i.e., ρ ∈ Inn(F). □

Corollary 3.4. Let S be a simple normal subgroup of F. If F/S is a simple group, then OutCol(F) = 1.
In particular, AutZ(F) = Inn(F).

Proof. If S is abelian simple, this is a consequence of Theorem 1.2 in [6]. Next, we suppose that S is
non-abelian simple. Consequently, the assertion holds by Theorem 3.3. □

Theorem 3.5. Let M be a normal subgroup of odd order of F. If F/M is an almost simple group, then
OutCol(F) is of odd order. In particular, AutZ(F) = Inn(F).
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Proof. Let ρ ∈ AutCol(F) and let ρ be of 2-power order. We shall prove that ρ ∈ Inn(F). By
Lemma 2.6(2), ρ|F/M ∈ AutCol(F/M). Since F/M is almost simple, then, by Lemma 2.7, ρ|F/M ∈
Inn(F/M), i.e., ρ|F/M = conj(x)|F/M for some x ∈ F. In general, we may suppose that

ρ|F/M = id|F/M. (3.12)

First, we show that ρ|M ∈ AutCol(M). Since ρ ∈ AutCol(F), then

ρ|P = conj(t)|P, (3.13)

where t ∈ F, P ∈ Syl(M). Set H = MCF(P), by Lemma 2.10, H ⊴ F and Hρ = H. Moreover,

ρ|F/H = conj(t)|F/H. (3.14)

Note that H ≥ M. By (3.12), we have
ρ|F/H = id|F/H. (3.15)

By (3.14) and (3.15), conj(t)|G/H = id|F/H, which implies that tH ∈ ζ(F/H). Since F/M is almost
simple, then we may suppose that S/M ≤ F/M ≤ Aut(S/M). Note that H/M ◁ F/M and S/M ◁ F/M,
so either H/M ∩ S/M = 1 or S/M ≤ H/M. If H/M ∩ S/M = 1, then [H/M, S/M] = 1. It follows from
Lemma 2.2 that H = M. If S/M ≤ H/M, then ζ(H/M) = 1, ζ(F/M) = 1 by Lemma 2.3. From this, we
deduce that ζ(F/H) = 1, that is, t ∈ H. Note further that H = MCF(P) = CF(P)M, we may suppose
that t = cm, where c ∈ CF(P),m ∈ M. By (3.13), we have

ρ|P = conj(t)|P = conj(cm)|P = conj(m)|P. (3.16)

Thus (3.16) implies that ρ|M ∈ AutCol(M). Next, by Lemma 2.11,

ρ|M = id|M. (3.17)

Hence, by Lemma 2.8,
ρ|F/O2(ζ(M)) = id|F/O2(ζ(M)). (3.18)

But note that O2(ζ(M)) = 1, so (3.18) implies that ρ = id. □

Corollary 3.6. Let M be a normal subgroup of odd order of F. If F/M is a non-abelian simple group,
then OutCol(F) is of odd order. In particular, AutZ(F) = Inn(F).
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