Electronic
Research Archive

Research article

Brake orbits with minimal period estimates of first-order variant subquadratic Hamiltonian systems

Xiaofei Zhang ${ }^{1}$ and Fanjing Wang ${ }^{2, *}$

${ }^{1}$ School of Mathematics and Statistics, Shanxi Datong University, Datong 037009, China
${ }^{2}$ School of Statistics and Mathematics, Shanghai Lixin University of Accounting and Finance, Shanghai 201209, China

* Correspondence: Email: 20190047 @lixin.edu.cn; Tel: +8615921902687.

Abstract

Under a generalized subquadratic growth condition, brake orbits are guaranteed via the homological link theorem. Moreover, the minimal period estimate is given by Morse index estimate and L_{0}-index estimate.

Keywords: Hamiltonian system; Sobolev spaces; weakly continuous functionals; L_{0}-index; brake orbit; anisotropic growth

1. Introduction

This paper concerns the existence of τ-periodic brake orbits $(\tau>0)$ of the autonomous first-order Hamiltonian system

$$
\left\{\begin{array}{l}
J \dot{z}(t)=-\nabla H(z(t)), \tag{1.1}\\
z(-t)=N z(t), \\
z(t+\tau)=z(t),
\end{array} \quad t \in \mathbb{R},\right.
$$

where $H \in C^{2}\left(\mathbb{R}^{2 n}, \mathbb{R}\right)$ with $H(N z)=H(z), z \in \mathbb{R}^{2 n}, J=\left(\begin{array}{cc}0 & -I_{n} \\ I_{n} & 0\end{array}\right)$ and $N=\left(\begin{array}{cc}-I_{n} & 0 \\ 0 & I_{n}\end{array}\right)$ with I_{n} the $n \times n$ identity matrix.

As shown in [1,2], for $\vec{x}=\left(x_{1}, \cdots, x_{n}\right)$ and $\vec{y}=\left(y_{1}, \cdots, y_{n}\right)$, we set

$$
V(\vec{x}, \vec{y})=\operatorname{diag}\left\{x_{1}, \cdots, x_{n}, y_{1}, \cdots, y_{n}\right\} \in \mathbb{R}^{2 n \times 2 n}
$$

For $z=\left(p_{1}, \cdots, p_{n}, q_{1}, \cdots, q_{n}\right)$, we have

$$
V(\vec{x}, \vec{y})(z)=\left(x_{1} p_{1}, \cdots, x_{n} p_{n}, y_{1} q_{1}, \cdots, y_{n} q_{n}\right) .
$$

Below are the conditions cited from [3] with minor modifications.
(H1) $H \in C^{2}\left(\mathbb{R}^{2 n}, \mathbb{R}\right), H(N z)=H(z), z \in \mathbb{R}^{2 n}$.
(H2) There exist $\gamma_{i}>0(i=1, \cdots, n)$ such that

$$
\lim _{|z| \rightarrow+\infty} \frac{H(z)}{\omega(z)}=0
$$

where $\omega(z)=\sum_{i=1}^{n}\left(\left|p_{i}\right|^{1+\gamma_{i}}+\left|q_{i}\right|^{1+\frac{1}{\gamma_{i}}}\right)$.
(H3) There exist $\beta>1$ and $c_{1}, c_{2}, \alpha_{i}, \beta_{i}>0$ with $\alpha_{i}+\beta_{i}=1(1 \leq i \leq n)$ such that

$$
\min \{H(z), H(z)-\nabla H(z) \cdot V(z)\} \geq c_{1}|z|^{\beta}-c_{2}, \quad z \in \mathbb{R}^{2 n}
$$

where $V(z)=V(\vec{\alpha}, \vec{\beta})(z)$ with $\vec{\alpha}=\left(\alpha_{1}, \cdots, \alpha_{n}\right), \vec{\beta}=\left(\beta_{1}, \cdots, \beta_{n}\right)$.
(H4) There exists $\lambda \in\left[1, \frac{\beta^{2}}{\beta+1}\right)$ such that

$$
\left|H_{z z}^{\prime \prime}(z)\right| \leq c_{2}\left(|z|^{1-1}+1\right), \quad z \in \mathbb{R}^{2 n}
$$

where $H_{z z}^{\prime \prime}$ means the Hessian matrix of H.
(H5) $H(0)=0$ and $H(z)>0,|\nabla H(z)|>0$ for $z \neq 0$.
Note that (H2) is a variant subquadratic growth condition which has superquadratic growth behaviors in some components and has subquadratic growth behaviors in other components, while [4] provided one other kind of variant subquadratic growth condition, we also call such conditions anisotropic growth conditions.

In the last decades, brake orbit problems have been investigated deeply, see [5-13] and references therein. In [14], the existence of brake orbits and symmetric brake orbits were proved under the classical superquadratic growth conditions. Meanwhile, the minimal period estimates were given by comparing the L_{0}-index iterations. Later, in [15], the authors obtained the same minimal period estimates under a weak growth condition which has super-quadratic growth only on some J-invariant plane. In [4, 16], the authors considered first-order anisotropic convex Hamiltonian systems and reduced the existence problem of brake orbits to the dual variation problem, moreover, in [4], the minmality of period for brake orbits was obtained. In [1], the authors removed the convex assumption in [16] and obtained brake orbits with minimal period estimates under more general anisotropic growth conditions which are variant superquadratic growth conditions.

The following is the main result of this paper.
Theorem 1.1. If H is a Hamiltonian function satisfying (H1)-(H5), then there exists $\tilde{\tau}>0$ such that when $\tau \geq \tilde{\tau}$, the system (1.1) has a nontrivial brake orbit z with the L_{0}-index estimate

$$
\begin{equation*}
i_{L_{0}}\left(z, \frac{\tau}{2}\right) \leq 0 \tag{1.2}
\end{equation*}
$$

Futhermore, if the above brake orbit z also satisfies
(H6) $H_{z z}^{\prime \prime}(z(t)) \geq 0, t \in \mathbb{R}$ and $\int_{0}^{\frac{\tau}{2}} H_{q q}^{\prime \prime}(z(t)) \mathrm{d} t>0$, where $H_{q q}^{\prime \prime}(z)$ means the Hessian matrix w.r.t. q for $z=(p, q), p, q \in \mathbb{R}^{n}$.
Then the brake orbit z has minimal period τ or $\frac{\tau}{2}$.

We remind the readers that the minimal period $\frac{\tau}{2}$ may not be eliminated generally. See Remark 4.2 in [14], for example, the minimal period is $\frac{\tau}{2}$ under the condition (H6). In [2], we also consider the symmetric brake orbit case under the above conditions with small changes using different index iteration inequalities.

If \tilde{z} is a brake orbit for the system (1.1), then $z(t)=\tilde{z}\left(\frac{\tau}{2} t\right)$ satisfies

$$
\left\{\begin{array}{l}
J \dot{z}(t)=-\frac{\tau}{2} \nabla H(z(t)), \tag{1.3}\\
z(-t)=N z(t) \\
z(t+2)=z(t)
\end{array}\right.
$$

The converse is also true. So finding brake orbits for the system (1.1) is equivalent to finding 2-periodic brake orbits for the system (1.3).

In Section 2, we recall the L_{0}-index theory and the related Sobolev space. In Section 3, we prove the existence of a nontrivial brake orbit with minimal period 2 or 1 .

2. Preliminaries

The Maslov-type index theory is higly-developed and widly-used to study the existence, minimality of period, multiplicity and stability of periodic solutions of Hamiltonian systems, see [17]. And to estimate the minimal period for brake orbits, Liu and his cooperators introduced the L_{0}-index theory -a topologically variant Maslov-type index theory, see the monograph [18] and the recent survey paper [19].

We denote by $\mathcal{L}\left(\mathbb{R}^{2 n}\right)$ the set of all $2 n \times 2 n$ real matrices, and denote by $\mathcal{L}_{s}\left(\mathbb{R}^{2 n}\right)$ its subset of symmetric ones. The symplectic group $\operatorname{Sp}(2 n)$ for $n \in \mathbb{N}$ and the symplectic path $\mathcal{P}_{\tau}(2 n)$ in $\operatorname{Sp}(2 n)$ starting from the identity $I_{2 n}$ on $[0, \tau]$ are denoted respectively by

$$
\begin{aligned}
& \operatorname{Sp}(2 n)=\left\{M \in \mathcal{L}\left(\mathbb{R}^{2 n}\right) \mid M^{T} J M=J\right\} \\
& \mathcal{P}_{\tau}(2 n)=\left\{\gamma \in C([0, \tau], \operatorname{Sp}(2 n)) \mid \gamma(0)=I_{2 n}\right\} .
\end{aligned}
$$

As showed in [18], for the Lagrangian subspaces $L_{0}=\{0\} \times \mathbb{R}^{n}$ and $L_{1}=\mathbb{R}^{n} \times\{0\}$, there are two pairs of integers $\left(i_{L_{k}}(\gamma, \tau), v_{L_{k}}(\gamma, \tau)\right) \in \mathbb{Z} \times\{0,1, \cdots, n\}(k=0,1)$ associated with $\gamma \in \mathcal{P}_{\tau}(2 n)$ on the interval $[0, \tau]$, called the Maslov-type index associated with L_{k} for $k=0,1$ or the L_{k}-index of γ in short. When $\tau=1$, we simply write $\left(i_{L_{k}}(\gamma), \nu_{L_{k}}(\gamma)\right)$.

The L_{0}-iteration paths $\gamma^{j}:[0, j] \rightarrow \mathrm{Sp}(2 n)$ of $\gamma \in \mathcal{P}_{1}(2 n)$ (see [18]) are defined by

$$
\begin{gathered}
\gamma^{1}(t)=\gamma(t), \quad t \in[0,1], \\
\gamma^{2}(t)= \begin{cases}\gamma(t), & t \in[0,1], \\
N \gamma(2-t) \gamma(1)^{-1} N \gamma(1), & t \in[1,2]\end{cases}
\end{gathered}
$$

and more generally, for $j \in \mathbb{N}$,

$$
\begin{gathered}
\gamma^{2 j}(t)=\left\{\begin{array}{lr}
\gamma^{2 j-1}(t), & t \in[0,2 j-1], \\
N \gamma(2 j-t) N\left[\gamma^{2}(2)\right]^{j}, & t \in[2 j-1,2 j],
\end{array}\right. \\
\gamma^{2 j+1}(t)=\left\{\begin{array}{lr}
\gamma^{2 j}(t), & t \in[0,2 j], \\
\gamma(t-2 j)\left[\gamma^{2}(2)\right]^{j}, & t \in[2 j, 2 j+1] .
\end{array}\right.
\end{gathered}
$$

Then we denote by $\left(i_{L_{0}}\left(\gamma^{j}\right), v_{L_{0}}\left(\gamma^{j}\right)\right)$ the L_{0}-index of γ^{j} on the interval $[0, j]$.
Assume $B(t) \in C\left([0, \tau], \mathcal{L}_{s}\left(\mathbb{R}^{2 n}\right)\right)$ satisfies $B(t+\tau)=B(t)$ and $B\left(\frac{\tau}{2}+t\right) N=N B\left(\frac{\tau}{2}-t\right)$, consider the fundamental solution γ_{B} of the following linear Hamiltonian system

$$
\left\{\begin{array}{l}
J \dot{z}(t)=-B(t) z(t), \quad t \in[0, \tau] \\
z(0)=I_{2 n} .
\end{array}\right.
$$

Then $\gamma_{B} \in \mathcal{P}_{\tau}(2 n)$. Note that γ_{B}^{k} satisfies

$$
\left\{\begin{array}{l}
J \dot{z}(t)=-B(t) z(t), \quad t \in[0, k \tau], \\
z(0)=I_{2 n} .
\end{array}\right.
$$

The L_{0}-index of γ_{B} is denoted by $\left(i_{L_{0}}(B), \nu_{L_{0}}(B)\right)$, called the L_{0}-index pair with respect to B.
Moreover, if z is a brake orbit of the system (1.1), set $B(t)=H^{\prime \prime}(z(t))$, denote by $\left(i_{L_{0}}(z), v_{L_{0}}(z)\right.$) the L_{0}-index of γ_{B}, called the L_{0}-index pair with respect to z.

See [17] for the Maslov-type index $\left(i_{1}(\gamma), v_{1}(\gamma)\right)$ of $\gamma \in \mathcal{P}(2 n)$. And we refer to [18] for the indices $\left(i_{\sqrt{-1}}^{L_{0}}(\gamma), v_{\sqrt{-1}}^{L_{0}}(\gamma)\right)$ and $\left(i_{\sqrt{-1}}^{L_{0}}(B), v_{\sqrt{-1}}^{L_{0}}(B)\right)$ for $\tau=1$.

Below are some basic results needed in this paper.
Lemma 2.1. ([11]) For $\gamma \in \mathcal{P}(2 n)$, there hold

$$
i_{1}\left(\gamma^{2}\right)=i_{L_{0}}(\gamma)+i_{L_{1}}(\gamma)+n \quad \text { and } \quad v_{1}\left(\gamma^{2}\right)=v_{L_{0}}(\gamma)+v_{L_{1}}(\gamma) .
$$

Lemma 2.2. ([14]) Suppose $B(t) \in C\left([0,2], \mathcal{L}_{s}\left(\mathbb{R}^{2 n}\right)\right)$ with $B(t+2)=B(t)$ and $B(1+t) N=N B(1-t)$. If $B(t) \geq 0$ for all $t \in[0,2]$, then

$$
i_{L_{0}}(B)+v_{L_{0}}(B) \geq 0 \quad \text { and } \quad i_{\sqrt{-1}}^{L_{0}}(B) \geq 0 .
$$

Lemma 2.3. ([14]) Suppose $B(t) \in C\left([0,2], \mathcal{L}_{s}\left(\mathbb{R}^{2 n}\right)\right)$ with $B(t+2)=B(t)$ and $B(1+t) N=N B(1-t)$. If $B(t)=\left(\begin{array}{ll}S_{11}(t) & S_{12}(t) \\ S_{21}(t) & S_{22}(t)\end{array}\right) \geq 0$ and $\int_{0}^{1} S_{22}(t) \mathrm{d} t>0$, then $i_{L_{0}}(B) \geq 0$.

Lemma 2.4. ([18]) The Maslov-type index iteration inequalities are presented below.
1° For $\gamma \in \mathcal{P}(2 n)$ and $k \in 2 \mathbb{N}-1$, there holds

$$
i_{L_{0}}\left(\gamma^{k}\right) \geq i_{L_{0}}\left(\gamma^{1}\right)+\frac{k-1}{2}\left(i_{1}\left(\gamma^{2}\right)+v_{1}\left(\gamma^{2}\right)-n\right)
$$

2° For $\gamma \in \mathcal{P}(2 n)$ and $k \in 2 \mathbb{N}$, there holds

$$
i_{L_{0}}\left(\gamma^{k}\right) \geq i_{L_{0}}\left(\gamma^{1}\right)+i_{\sqrt{-1}}^{L_{0}}\left(\gamma^{1}\right)+\left(\frac{k}{2}-1\right)\left(i_{1}\left(\gamma^{2}\right)+v_{1}\left(\gamma^{2}\right)-n\right) .
$$

Now we introduce the Sobolev space $E=W_{L_{0}}$ and its subspaces as in [10, 14].

$$
\begin{aligned}
E=W_{L_{0}} & =\left\{\left.z \in W^{\frac{1}{2}, 2}\left(\mathbb{R} / 2 \mathbb{Z}, \mathbb{R}^{2 n}\right) \right\rvert\, z(-t)=N z(t) \text { for a.e. } t \in \mathbb{R}\right\} \\
& =\left\{\left.z \in W^{\frac{1}{2}, 2}\left(\mathbb{R} / 2 \mathbb{Z}, \mathbb{R}^{2 n}\right) \right\rvert\, z(t)=\sum_{k \in \mathbb{Z}} \exp (k \pi t J) h_{k}, h_{k} \in L_{0}\right\} .
\end{aligned}
$$

For $m \in \mathbb{N}$, define

$$
\begin{aligned}
E^{ \pm} & =\left\{z \in W_{L_{0}} \mid z(t)=\sum_{ \pm k \in \mathbb{Z}} \exp (k \pi t J) h_{k}, h_{k} \in L_{0}\right\}, \\
E^{0} & =L_{0}, \\
E_{m} & =\left\{z \in W_{L_{0}} \mid z(t)=\sum_{k=-m}^{m} \exp (k \pi t J) h_{k}, h_{k} \in L_{0}\right\},
\end{aligned}
$$

and set $E_{m}^{+}:=E_{m} \cap E^{+}, E_{m}^{-}:=E_{m} \cap E^{-}$. Then $E=E^{0} \oplus E^{-} \oplus E^{+}$and $E_{m}=E^{0} \oplus E_{m}^{-} \oplus E_{m}^{+}$. Moreover $\left\{E_{m}, P_{m}\right\}$ forms a Galerkin approximation scheme of the unbounded self-adjoint operator $-J \frac{\mathrm{~d}}{\mathrm{~d} t}$ defined on $L^{2}\left([0,2] ; L_{0}\right)$, where $P_{m}: E \rightarrow E_{m}$ denotes the orthogonal projection. Furthermore, define the following bounded self-adjoint operator \mathcal{A} on E

$$
\langle\mathcal{A} z, \zeta\rangle=\int_{0}^{2}-J \dot{z} \cdot \zeta \mathrm{~d} t, \quad z, \zeta \in W^{1,2}\left([0,2] ; L_{0}\right) \subseteq E,
$$

and, obviously, $\langle\mathcal{A} z, z\rangle=2\left(\left\|z^{+}\right\|^{2}-\left\|z^{-}\right\|^{2}\right), \mathcal{A} z=\mathcal{A} z^{+}-\mathcal{A} z^{-}, z \in E$.
Remark 2.1. ([1]) For $z \in E$, there holds $V(\vec{x}, \vec{y}) z \in E$. And for $z \in E_{m}$, we have $V(\vec{x}, \vec{y}) z \in E_{m}$. As for the Fourier expression for $V(\vec{x}, \vec{y}) z$, see [1] for details. Note that for V defined in $(H 2)$ and $z \in E$, we have $V(z) \in E$. Moreover, a simple computation shows that

$$
\langle\mathcal{A} z, V(z)\rangle=\frac{1}{2}\langle\mathcal{A} z, z\rangle, \quad z \in E .
$$

In our case, assume $B(t) \in C\left([0,2], \mathcal{L}_{s}\left(\mathbb{R}^{2 n}\right)\right)$ satisfies $B(t+2)=B(t)$ and $B(1+t) N=N B(1-t)$, define the following bounded self-adjoint compact operator \mathcal{B}

$$
\begin{equation*}
\langle\mathcal{B} z, \zeta\rangle=\int_{0}^{2} B(t) z \cdot \zeta \mathrm{~d} t, \quad z, \zeta \in E \tag{2.1}
\end{equation*}
$$

For any $d>0$, denote by $M_{d}^{-}(\cdot), M_{d}^{0}(\cdot), M_{d}^{+}(\cdot)$ the eigenspaces corresponding to the eigenvalues λ belonging to $(-\infty,-d],(-d, d),[d,+\infty)$ respectively. Set $(\mathcal{A}-\mathcal{B})^{\sharp}=\left(\mathcal{A}-\left.\mathcal{B}\right|_{\operatorname{Im}(\mathcal{A}-\mathcal{B})}\right)^{-1}$. The following result is crucial to esmiate the L_{0}-index.

Lemma 2.5. ($[20,21])$ For $B(t) \in C\left([0,2], \mathcal{L}_{s}\left(\mathbb{R}^{2 n}\right)\right)$ satisfying $B(t+2)=B(t), B(1+t) N=N B(1-t)$ and $0<d \leq \frac{1}{4}\left\|(\mathcal{A}-\mathcal{B})^{\sharp}\right\|^{-1}$, there exists $m_{0}>0$ such that for $m \geq m_{0}$, we have

$$
\begin{aligned}
\operatorname{dim} M_{d}^{+}\left(P_{m}(\mathcal{A}-\mathcal{B}) P_{m}\right) & =m n-i_{L_{0}}(B)-v_{L_{0}}(B) . \\
\operatorname{dim} M_{d}^{-}\left(P_{m}(\mathcal{A}-\mathcal{B}) P_{m}\right) & =m n+n+i_{L_{0}}(B) . \\
\operatorname{dim} M_{d}^{0}\left(P_{m}(\mathcal{A}-\mathcal{B}) P_{m}\right) & =v_{L_{0}}(B) .
\end{aligned}
$$

3. Main results

As shown in $[10,14]$, searching for brake orbits for the system (1.3) can be transformed into finding critical points of the following functional

$$
g(z)=\frac{\tau}{2} \int_{0}^{2} H(z) \mathrm{d} t-\frac{1}{2}\langle\mathcal{A} z, z\rangle, \quad z \in E .
$$

By (H4), we have $g \in C^{2}(E, \mathbb{R})$, then, let us now set $g_{m}=\left.g\right|_{E_{m}}, m \in \mathbb{N}$. To find the critical points of g_{m}, we shall prove that g_{m} satisfies the hypotheses of the homological link Theorem 4.1.7 in [22]. The following several lemmas are essential.

Lemma 3.1. If $H(z)$ satifies $(H 1),(H 3)$ and $(H 4)$, then the above functional g satisfies $(P S)^{*}$ condition with respect to $\left\{E_{m}\right\}_{m \in \mathbb{N}}$, i.e., any sequence $\left\{z_{m}\right\} \subset E$ satisfying $z_{m} \in E_{m}, g_{m}\left(z_{m}\right)$ is bounded and $\nabla g_{m}\left(z_{m}\right) \rightarrow 0$ as $m \rightarrow+\infty$ possesses a convergent subsequence in E.

Proof. We follow the ideas in [3].
Let $\left\{z_{m}\right\}$ be a sequence such that $\left|g\left(z_{m}\right)\right| \leq c_{3}$ and $\nabla g_{m}\left(z_{m}\right) \rightarrow 0$ as $m \rightarrow \infty$, where $c_{3}>0$. To prove the lemma, it is enough to show that $\left\{z_{m}\right\}$ is bounded.

For m large enough, by Remark 2.1 and (H3), we have

$$
\begin{aligned}
c_{3}+\left\|z_{m}\right\| & \geq g\left(z_{m}\right)-\left\langle\nabla g_{m}\left(z_{m}\right), V\left(z_{m}\right)\right\rangle \\
& =\frac{\tau}{2} \int_{0}^{2}\left(H\left(z_{m}\right)-\nabla H\left(z_{m}\right) \cdot V\left(z_{m}\right)\right) \mathrm{d} t \\
& \geq \frac{\tau}{2} \int_{0}^{2}\left(c_{1}\left|z_{m}\right|^{\beta}-c_{2}\right) \mathrm{d} t
\end{aligned}
$$

then there exists $c_{4}>0$ such that

$$
\begin{equation*}
\left\|z_{m}\right\|_{L^{\beta}} \leq c_{4}\left(1+\left\|z_{m}\right\|^{\frac{1}{\beta}}\right) . \tag{3.1}
\end{equation*}
$$

For large m, we have

$$
\begin{equation*}
\left\|z_{m}^{ \pm}\right\| \geq\left\|\left\langle\nabla g_{m}\left(z_{m}\right), z_{m}^{ \pm}\right\rangle\right\|=\left|\frac{\tau}{2} \int_{0}^{2} \nabla H\left(z_{m}\right) \cdot z_{m}^{ \pm} \mathrm{d} t-\left\langle\mathcal{A} z_{m}, z_{m}^{ \pm}\right\rangle\right| . \tag{3.2}
\end{equation*}
$$

By (3.2), (H4), Hölder's inequality and the embedding theorem, we obtain

$$
\begin{align*}
\left\|z_{m}^{ \pm}\right\|^{2} & = \pm \frac{1}{2}\left\langle\mathcal{A} z_{m}, z_{m}^{ \pm}\right\rangle \\
& \leq \frac{\tau}{4}\left|\int_{0}^{2} \nabla H\left(z_{m}\right) \cdot z_{m}^{ \pm} \mathrm{d} t\right|+\frac{1}{2}\left\|z_{m}^{ \pm}\right\| \\
& \leq c_{5} \int_{0}^{2}\left(\left|z_{m}\right|^{\lambda}+1\right)\left|z_{m}^{ \pm}\right| \mathrm{d} t+\frac{1}{2}\left\|z_{m}^{ \pm}\right\| \\
& \leq c_{5}\left(\int_{0}^{2}\left(\left|z_{m}\right|^{\lambda}\right)^{\frac{\beta}{\lambda}} \mathrm{d} t\right)^{\frac{\lambda}{\beta}}\left(\int_{0}^{2}\left|z_{m}^{ \pm}\right|^{\frac{\beta}{\beta-\lambda}} \mathrm{d} t\right)^{\frac{\beta-\lambda}{\beta}}+c_{5}\left\|z_{m}^{ \pm}\right\|_{L^{1}}+\frac{1}{2}\left\|z_{m}^{ \pm}\right\| \tag{3.3}\\
& =c_{5}\left(\int_{0}^{2}\left|z_{m}\right|^{\beta} \mathrm{d} t\right)^{\frac{\lambda}{\beta}}\left(\int_{0}^{2}\left|z_{m}^{ \pm}\right| \frac{\beta}{\beta-\lambda} \mathrm{d} t\right)^{\frac{\beta-\lambda}{\beta}}+c_{5}\left\|z_{m}^{ \pm}\right\|_{L^{1}}+\frac{1}{2}\left\|z_{m}^{ \pm}\right\| \\
& \leq c_{6}\left(1+\left\|z_{m}\right\|_{L^{\beta}}^{\lambda}\right)\left\|z_{m}^{ \pm}\right\|,
\end{align*}
$$

where $\beta>\lambda \geq 1$ for (H3), (H4) and $c_{5}, c_{6}>0$ are suitable constants.
Combining (3.1) and (3.3), for m large enough, there exists $c_{7}>0$ such that

$$
\begin{equation*}
\left\|z_{m}^{ \pm}\right\| \leq c_{7}\left(1+\left\|z_{m}\right\|^{\frac{1}{\beta}}\right) \tag{3.4}
\end{equation*}
$$

Set $\widehat{z}_{m}=z_{m}-z_{m}^{0}=z_{m}^{+}+z_{m}^{-}$. By (H4), (3.4) and the embedding theorem, we obtain

$$
\begin{align*}
\left|\int_{0}^{2}\left[H\left(z_{m}\right)-H\left(z_{m}^{0}\right)\right] \mathrm{d} t\right| & =\left|\int_{0}^{2} \int_{0}^{1} \nabla H_{z}\left(z_{m}^{0}+\widehat{s}_{m}\right) \cdot \widehat{z}_{m} \mathrm{~d} s \mathrm{~d} t\right| \\
& \leq \int_{0}^{2} 2^{\lambda} c_{8}\left(\left|z_{m}^{0}\right|^{\lambda}+\left|\widehat{z}_{m}\right|^{\lambda}+1\right) \widehat{z}_{m} \mid \mathrm{d} t \tag{3.5}\\
& \leq c_{9}\left(1+\left\|z_{m}\right\|^{\lambda+\frac{\lambda}{\beta}}\right),
\end{align*}
$$

where $c_{8}, c_{9}>0$ are suitable constants. From (3.4) and (3.5), we see

$$
\begin{align*}
\frac{\tau}{2} \int_{0}^{2} H\left(z_{m}^{0}\right) \mathrm{d} t & =g\left(z_{m}\right)+\frac{1}{2}\left\langle\mathcal{A} z_{m}, z_{m}\right\rangle-\frac{\tau}{2} \int_{0}^{2}\left[H\left(z_{m}\right)-H\left(z_{m}^{0}\right)\right] \mathrm{d} t \tag{3.6}\\
& \leq c_{10}\left(1+\left\|z_{m}\right\|^{\lambda+\frac{\lambda}{\beta}}\right),
\end{align*}
$$

where $c_{10}>0$. From (H3), it follows that

$$
\begin{equation*}
\int_{0}^{2} H\left(z_{m}^{0}\right) \mathrm{d} t \geq \int_{0}^{2}\left(c_{1} \mid z_{m}^{0} \beta^{\beta}-c_{2}\right) \mathrm{d} t \tag{3.7}
\end{equation*}
$$

From (3.6) and (3.7), we see that

$$
\begin{equation*}
\left|z_{m}^{0}\right| \leq c_{11}\left(1+\left\|z_{m}\right\|^{\frac{1+1 \beta}{\beta^{2}}}\right) \tag{3.8}
\end{equation*}
$$

where $c_{11}>0$. From (3.4), (3.8) and $\frac{\lambda+\lambda \beta}{\beta^{2}}<1$, we see $\left\{z_{m}\right\}$ is bounded.
For $u_{0} \in E_{1}^{+}$with $\left\|u_{0}\right\|=1$, define $S=\left(E^{-} \oplus E^{0}\right)+u_{0}$.
Lemma 3.2. If $H(z)$ satifies (H1),(H4) and (H5), then there exists $\tilde{\tau}>0$ such that for $\tau \geq \tilde{\tau}$, there holds $\inf _{S} g>0$.
Proof. The ideas come from [23].
For $z \in S$, we have

$$
\begin{equation*}
g(z)=\frac{\tau}{2} \int_{0}^{2} H(z) \mathrm{d} t+\left\|z^{-}\right\|^{2}-1 \tag{3.9}
\end{equation*}
$$

There exist two cases to be considered.
Case (i) If $\left\|z^{-}\right\|>1$, then by (H5), we have

$$
g(z)=\frac{\tau}{2} \int_{0}^{2} H(z) \mathrm{d} t+\left\|z^{-}\right\|^{2}-1>0
$$

Case (ii) If $\left\|z^{-}\right\| \leq 1$, set $\Omega=\left\{z \in S \mid\left\|z^{-}\right\| \leq 1\right\}$, then Ω is weakly compact and convex.
Since the functional $z \mapsto \int_{0}^{2} H(z) \mathrm{d} t$ is weakly continuous, then the functional achieves its minimum on Ω, assume the minimum is σ achieved at $u^{-}+u_{0} \in S$. Since $u_{0} \neq 0$, we have $u^{-}+u_{0} \neq 0$, then $\sigma>0$ by (H5).

Set $\tilde{\tau}=\frac{2}{\sigma}$, for $\tau>\tilde{\tau}$, by (3.9), we have

$$
g(z) \geq \frac{\tau \sigma}{2}-1>0
$$

Therefore, the lemma holds.

Choose $\mu>0$ large enough such that $\sigma_{i}=\frac{\mu}{1+\gamma_{i}}>1$ and $\tau_{i}=\frac{\mu}{1+\frac{1}{\gamma_{i}}}>1$. For $\rho>0$, we set

$$
L_{\rho}(z)=\left(\rho^{\sigma_{1}-1} p_{1}, \cdots, \rho^{\sigma_{n}-1} p_{n}, \rho^{\tau_{1}-1} q_{1} \cdots, \rho^{\tau_{n}-1} q_{n}\right),
$$

where $z=\left(p_{1}, \cdots, p_{n}, q_{1}, \cdots, q_{n}\right) \in E$. Note that L_{ρ} is well-defined on E by Remark 2.1. The operator L_{ρ} is linear bounded and invertible and $\left\|L_{\rho}\right\| \leq 1$, if $\rho \leq 1$.

For any $z=z^{0}+z^{-}+z^{+} \in E$, we have

$$
\begin{equation*}
\left\langle\mathcal{A} L_{\rho} z, L_{\rho} z\right\rangle=\rho^{\mu-2}\langle\mathcal{A} z, z\rangle=2 \rho^{\mu-2}\left(\left\|z^{+}\right\|^{2}-\left\|z^{-}\right\|^{2}\right) . \tag{3.10}
\end{equation*}
$$

Lemma 3.3. If H satisfies (H2), then there exists $\rho>1$ large enough such that $\sup _{L_{\rho}(\partial Q)} g<0$, where $Q=\left\{z \in E^{+} \mid\|z\| \leq \rho\right\}$.

Proof. For any $\epsilon>0$, by (H2), there exists M_{ϵ} such that

$$
\begin{equation*}
H(z) \leq \epsilon \sum_{i=1}^{n}\left(\left|p_{i}\right|^{1+\gamma_{i}}+\left|q_{i}\right|^{1+\frac{1}{\gamma_{i}}}\right)+M_{\epsilon}, \quad z \in \mathbb{R}^{2 n} . \tag{3.11}
\end{equation*}
$$

For $z \in \partial Q$, from (3.10) and (3.11), we have

$$
\begin{align*}
g\left(L_{\rho} z\right)= & \frac{\tau}{2} \int_{0}^{2} H\left(L_{\rho} z\right) \mathrm{d} t-\frac{1}{2}\left\langle\mathcal{A} L_{\rho} z, L_{\rho} z\right\rangle \\
\leq & \frac{\tau \varepsilon}{2} \sum_{i=1}^{n} \int_{0}^{2}\left(\rho^{\left(\sigma_{i}-1\right)\left(1+\gamma_{i}\right)}\left|p_{i}\right|^{1+\gamma_{i}}+\rho^{\left(\tau_{i}-1\right)\left(1+\frac{1}{\gamma_{i}}\right)}\left|q_{i}\right|^{1+\frac{1}{\gamma_{i}}}\right) \mathrm{d} t \tag{3.12}\\
& +M_{\epsilon} \tau-\rho^{\mu} \\
\leq & \left(n \tau \epsilon c_{12}-1\right) \rho^{\mu}+M_{\epsilon} \tau
\end{align*}
$$

where $c_{12}>0$ is the embedding constant.
Choose $\epsilon>0$ such that $n \tau \epsilon c_{12}<1$, then for $\rho>1$ large enough, we have $\sup _{L_{\rho}(\partial Q)} g<0$.
Lemma 3.4. Set $S_{m}=S \cap E_{m}$ and $Q_{m}=Q \cap E_{m}$. For $\rho>1$ defined as above, we have $L_{\rho}\left(\partial Q_{m}\right)$ and S_{m} homologically link.

Proof. Since $\rho>1, \rho>\left\|L_{\rho}^{-1}\right\|=\left\|L_{\frac{1}{\rho}}\right\|$. By direct computation, we can check that $P L_{\rho}: E^{+} \rightarrow E^{+}$is liner, bounded and invertible (see [24]). Let $\widetilde{P}_{m}: E_{m} \rightarrow E_{m}^{+}$be the orthogonal projection. Note that $L_{\rho}\left(E_{m}\right) \subset E_{m}$ by Remark 2.1, then $\left.\left(\widetilde{P}_{m} L_{\rho}\right)\right|_{E_{m}}: E_{m}^{+} \rightarrow E_{m}^{+}$is also linear, bounded and invertible.

Then the assertion follows from Lemma 2.8 in [3].
Theorem 3.1. Assume H satisfies (H1)-(H5), then there exists $\tilde{\tau}>0$ such that for $\tau \geq \tilde{\tau}$, the system (1.3) possesses a nontrivial 2-periodic brake orbit z satisfying

$$
\begin{equation*}
i_{L_{0}}(z, 1) \leq 0 . \tag{3.13}
\end{equation*}
$$

Proof. The proof is standard, we proceed as that in $[10,14]$.
For any $m \in \mathbb{N}$, Lemmas 3.1-3.4 show that $g_{m}=\left.g\right|_{E_{m}}$ satisfies the hypotheses of the homological link Theorem 4.1.7 in [22], so g_{m} possesses a critical point z_{m} satisfying

$$
\begin{equation*}
0<\inf _{S} g \leq g\left(z_{m}\right) \leq \sup _{L_{\rho}(Q)} g . \tag{3.14}
\end{equation*}
$$

By Lemma 3.1, when $\tau \geq \tau_{0}$, we may suppose $z_{m} \rightarrow z \in E$ as $m \rightarrow \infty$, then $g(z)>0$ and $\nabla g(z)=0$. By (H5), we see the critical point z of g is a classical nontrivial 2-periodic brake orbit of the system (1.3).

Now we show (3.13) holds. Let \mathcal{B} be the operator for $B(t)=\frac{\tau}{2} H_{z z}^{\prime \prime}(z(t))$ defined by (2.1), then

$$
\begin{equation*}
\left\|g^{\prime \prime}(x)-(\mathcal{B}-\mathcal{A})\right\| \rightarrow 0 \quad \text { as } \quad\|x-z\| \rightarrow 0, \quad x \in E . \tag{3.15}
\end{equation*}
$$

By (3.15), there exists $r_{0}>0$ such that

$$
\left\|g^{\prime \prime}(x)-(\mathcal{B}-\mathcal{A})\right\|<d, \quad x \in B_{r_{0}}=\left\{x \in E \mid\|x-z\| \leq r_{0}\right\}
$$

where $d=\frac{1}{4}\left\|(B-A)^{\sharp}\right\|^{-1}$.
Hence, for m large enough, there holds

$$
\begin{equation*}
\left\|g_{m}^{\prime \prime}(x)-P_{m}(\mathcal{B}-\mathcal{A}) P_{m}\right\|<\frac{d}{2}, \quad x \in B_{r_{0}} \cap E_{m} . \tag{3.16}
\end{equation*}
$$

For $x \in B_{r_{0}} \cap E_{m}$ and $w \in M_{d}^{+}\left(P_{m}(\mathcal{B}-\mathcal{A}) P_{m}\right) \backslash\{0\}$, (3.16) implies that

$$
\begin{aligned}
\left\langle g_{m}^{\prime \prime}(x) w, w\right\rangle & \geq\left\langle P_{m}(\mathcal{B}-\mathcal{A}) P_{m} w, w\right\rangle-\left\|g_{m}^{\prime \prime}(x)-P_{m}(\mathcal{B}-\mathcal{A}) P_{m}\right\| \cdot\|w\|^{2} \\
& \geq \frac{d}{2}\|w\|^{2}>0 .
\end{aligned}
$$

Then

$$
\begin{equation*}
\operatorname{dim} M^{+}\left(g_{m}^{\prime \prime}(x)\right) \geq \operatorname{dim} M_{d}^{+}\left(P_{m}(\mathcal{B}-\mathcal{A}) P_{m}\right), \quad x \in B_{r_{0}} \cap E_{m} . \tag{3.17}
\end{equation*}
$$

Note that

$$
\begin{align*}
\operatorname{dim} M_{d}^{-}\left(P_{m}(\mathcal{B}-\mathcal{A}) P_{m}\right) & =\operatorname{dim} M_{d}^{+}\left(P_{m}(\mathcal{A}-\mathcal{B}) P_{m}\right), \\
\operatorname{dim} M_{d}^{0}\left(P_{m}(\mathcal{B}-\mathcal{A}) P_{m}\right) & =\operatorname{dim} M_{d}^{0}\left(P_{m}(\mathcal{A}-\mathcal{B}) P_{m}\right) . \tag{3.18}
\end{align*}
$$

By (3.17), (3.18) and the link theorem 4.1.7 in [22], for large m, we have

$$
\begin{aligned}
m n=\operatorname{dim} Q_{m} & \leq m\left(z_{m}\right)+m^{0}\left(z_{m}\right) \\
& \leq \operatorname{dim} M_{d}^{-}\left(P_{m}(\mathcal{B}-\mathcal{A}) P_{m}\right)+\operatorname{dim} M_{d}^{0}\left(P_{m}(\mathcal{B}-\mathcal{A}) P_{m}\right) \\
& =m n-i_{L_{0}}(z, 1)
\end{aligned}
$$

Hence, we obtain $i_{L_{0}}(z, 1) \leq 0$.
Theorem 3.2. Assume H satisfies (H1)-(H6), then there exists $\tilde{\tau}$ such that for $\tau \geq \tilde{\tau}$, the system (1.3) possesses a nontrivial brake orbit z with minimal period 2 or 1 .

Proof. The idea stems from [14], we proceed roughly.
For the nontrivial symmetric 2-periodic brake orbit z obtained in Theorem 3.1, assume its minimal period $\frac{2}{k}$ for some nonnegative integer k. Denote by $\gamma_{z, \frac{1}{k}}$ and γ_{z} the corresponding symplectic path on the interval $\left[0, \frac{1}{k}\right]$ and $[0,1]$ respectively, then $\gamma_{z}=\gamma_{z, \frac{1}{k}}^{k}$.

As shown in [14], we have the L_{1}-index estimate

$$
\begin{equation*}
i_{L_{1}}\left(\gamma_{z, \frac{1}{k}}\right)+v_{L_{1}}\left(\gamma_{z, \frac{1}{k}}\right) \geq 1 \tag{3.19}
\end{equation*}
$$

By (H6), we see $B(t)=H^{\prime \prime}(z(t))$ is semipositive, Lemmas 2.1 and 2.2 and Eq (3.19) imply that

$$
\begin{equation*}
i_{1}\left(\gamma_{z, \frac{1}{k}}^{2}\right)+v_{1}\left(\gamma_{z, \frac{1}{k}}^{2}\right)-n=i_{L_{0}}\left(\gamma_{z, \frac{1}{k}}\right)+v_{L_{0}}\left(\gamma_{z, \frac{1}{k}}\right)+i_{L_{1}}\left(\gamma_{z, \frac{1}{k}}\right)+v_{L_{1}}\left(\gamma_{z, \frac{1}{k}}\right) \geq 1 . \tag{3.20}
\end{equation*}
$$

By Lemmas 2.2 and 2.3, we see

$$
\begin{equation*}
i_{L_{0}}\left(\gamma_{z, \frac{1}{k}}\right) \geq 0 \quad \text { and } \quad i_{\sqrt{-1}}^{L_{0}}\left(\gamma_{z, \frac{1}{k}}\right) \geq 0 \tag{3.21}
\end{equation*}
$$

If k is odd, by Lemma 2.4, we see

$$
\begin{equation*}
i_{L_{0}}\left(\gamma_{z}\right) \geq i_{L_{0}}\left(\gamma_{z, \frac{1}{k}}\right)+\frac{k-1}{2}\left[i_{1}\left(\gamma_{z, \frac{1}{k}}^{2}\right)+v_{1}\left(\gamma_{z, \frac{1}{k}}^{2}\right)-n\right] \tag{3.22}
\end{equation*}
$$

From (3.13), (3.20)-(3.22), we see $k=1$.
If k is even, If k is even, by Lemma 2.4, we see

$$
\begin{equation*}
i_{L_{0}}\left(\gamma_{z}\right) \geq i_{L_{0}}\left(\gamma_{z, \frac{1}{k}}\right)+i_{\sqrt{-1}}^{L_{0}}\left(\gamma_{z, \frac{1}{k}}\right)+\left(\frac{k}{2}-1\right)\left[i_{1}\left(\gamma_{z, \frac{1}{k}}^{2}\right)+v_{1}\left(\gamma_{z, \frac{1}{k}}^{2}\right)-n\right] . \tag{3.23}
\end{equation*}
$$

From (3.13), (3.20), (3.21) and (3.23), we have $k=2$.

Acknowledgments

The first author is supported by the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi (Grant No. 2021L377) and the Doctoral Scientific Research Foundation of Shanxi Datong University (Grant No. 2018-B-15). The authors sincerely thank the referees for their careful reading and valuable comments and suggestions.

Conflict of interest

The authors declare there is no conflicts of interest.

References

1. X. Zhang, C. Liu, Brake orbits with minimal period estimates of first-order anisotropic Hamiltonian systems, submitted for publication.
2. X. Zhang, F. Wang, Symmetric brake orbits with minimal period of first-order anisotropic Hamiltonian systems, submitted for publication.
3. S. Tang, X. Zhang, Subharmonic solutions and minimal periodic solutions of first-order variant subquadratic Hamiltonian systems, Topol. Methods Nonlinear Anal., 55 (2020), 517-532. https://doi.org/10.12775/tmna.2019.105
4. X. Zhang, C. Liu, Minimal brake orbits of first-order convex Hamiltonian systems with anisotropic growth, Partial Differ. Equations Appl., 2 (2021), 1-8. https://doi.org/10.1007/s42985-021-001049
5. A .M. Alghamdi, S. Gala, M. A. Ragusa, Regularity criterion for weak solutions to the NavierStokes involving one velocity and one vorticity components, Sib. Electron. Math. Rep., 19 (2022), 309-315. https://doi.org/10.33048/semi.2022.19.025
6. D. Corona, F. Giannoni, Brake orbits for Hamiltonian systems of the classical type via geodesics in singular Finsler metrics, Adv. Nonlinear Anal., 11 (2022), 1223-1248. https://doi.org/10.1515/anona-2022-0222
7. C. Li, The study of minimal period estimates for brake orbits of autonomous subquadratic Hamiltonian systems, Acta Math. Sin. Engl. Ser., 31 (2015), 1645-1658. https://doi.org/10.1007/s10114-015-4421-3
8. C. Li, Brake subharmonic solutions of subquadratic Hamiltonian systems, Chin. Ann. Math. Ser. B, 37 (2016), 405-418. https://doi.org/10.1007/s11401-016-0970-8
9. C. Li, C. Liu, Brake subharmonic solutions of first order Hamiltonian systems, Sci. China Math., 52 (2015), 2719-2732. https://doi.org/10.1007/s11425-010-4105-5
10. C. Liu, Minimal period estimates for brake orbits of nonlinear symmetric Hamiltonian systems, Discrete Contin. Dyn. Syst., 27 (2010), 337-355. https://doi.org/10.48550/arXiv.0908.0029
11. C. Liu, D. Zhang, Iteration theory of L-index and multiplicity of brake orbits, J. Differ. Equations, 257 (2014), 1194-1245. https://doi.org/10.1016/j.jde.2014.05.006
12. C. Liu, D. Zhang, Seifert conjecture in the even convex case, Commun. Pure Appl. Math., 67 (2014), 1563-1604. https://doi.org/10.1002/cpa. 21525
13. Z. Liu, F. Wang, D. Zhang, Brake orbits of a reversible even Hamiltonian system near an equilibrium, Acta Math. Sin. Engl. Ser, 38 (2022), 263-280. https://doi.org/10.1007/s10114-022-0473-3
14. D. Zhang, Minimal period problems for brake orbits of nonlinear autonomous reversible semipositive Hamiltonian systems, Discrete Contin. Dyn. Syst., 35 (2015), 2227-2272. https://doi.org/10.48550/arXiv.1110.6915
15. X. Zhang, C. Liu, X. Lu, Minimal periodic problem for brake orbits of first order Hamiltonian systems, Topol. Methods Nonlinear Anal., 57 (2021), 73-87. https://doi.org/10.12775/TMNA.2020.032
16. X. Zhang, C. Liu, Brake orbits of first order convex Hamiltonian systems with particular anisotropic growth, Acta Math. Sin. Engl. Ser., 36 (2020), 171-178. https://doi.org/10.1007/s10114-020-9043-8
17. Y. Long, Index Theory for Symplectic Paths with Applications, Birkhauser Verlag Basel, Boston, Berlin, 2002.
18. C. Liu, Index Theory in Nonlinear Analysis, Springer, Science Press, Beijing, 2019.
19. C. Liu, Y. Long, D. Zhang, Index iteration theory for brake orbit type solutions and applications, Anal. Theory Appl., 37 (2021), 129-156. https://doi.org/10.4208/ata.2021.pr80.05
20. C. Liu, Asymptotically linear Hamiltonian systems with Lagrangian boundary conditions, Pac. J. Math., 232 (2007), 233-255. https://doi.org/10.2140/pjm.2007.232.233
21. C. Liu, Maslov-type index theory for symplectic paths with Lagrangian boundary conditions, Adv. Nonlinear Stud., 7 (2007), 131-161. https://doi.org/10.1515/ans-2007-0107
22. A. Abbondandolo, Morse Theory for Hamiltonian Systems, Chapman, Hall, London, 2001.
23. V. Benci, P. H. Rabinowitz, Critical point theorems for indefinite functionals, Invent. Math., 52 (1979), 241-273. https://doi.org/10.1007/BF01389883
24. T. An, Z. Wang, Periodic solutions of Hamiltonian systems with anisotropic growth, Comm. Pure Appl. Anal., 9 (2010), 1069-1082. https://doi.org/10.3934/cpaa.2010.9.1069

AIMS Press
© 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)

