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1. Introduction

This paper concerns the existence of τ-periodic brake orbits (τ > 0) of the autonomous first-order
Hamiltonian system 

Jż(t) = −∇H(z(t)),
z(−t) = Nz(t), t ∈ R,
z(t + τ) = z(t),

(1.1)

where H ∈ C2(R2n,R) with H(Nz) = H(z), z ∈ R2n, J =

(
0 −In

In 0

)
and N =

(
−In 0
0 In

)
with In the

n × n identity matrix.
As shown in [1, 2], for ~x = (x1, · · · , xn) and ~y = (y1, · · · , yn), we set

V(~x, ~y) = diag{x1, · · · , xn, y1, · · · , yn} ∈ R
2n×2n.

For z = (p1, · · · , pn, q1, · · · , qn), we have

V(~x, ~y)(z) = (x1 p1, · · · , xn pn, y1q1, · · · , ynqn).
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Below are the conditions cited from [3] with minor modifications.
(H1) H ∈ C2(R2n,R), H(Nz) = H(z), z ∈ R2n.
(H2) There exist γi > 0 (i = 1, · · · , n) such that

lim
|z|→+∞

H(z)
ω(z)

= 0,

where ω(z) =
n∑

i=1

(
|pi|

1+γi + |qi|
1+ 1

γi

)
.

(H3) There exist β > 1 and c1, c2, αi, βi > 0 with αi + βi = 1 (1 ≤ i ≤ n) such that

min{H(z),H(z) − ∇H(z) · V(z)} ≥ c1|z|β − c2, z ∈ R2n,

where V(z) = V(~α, ~β)(z) with ~α = (α1, · · · , αn), ~β = (β1, · · · , βn).
(H4) There exists λ ∈ [1, β2

β+1 ) such that

|H′′zz(z)| ≤ c2(|z|λ−1 + 1), z ∈ R2n,

where H′′zz means the Hessian matrix of H.
(H5) H(0) = 0 and H(z) > 0, |∇H(z)| > 0 for z , 0.
Note that (H2) is a variant subquadratic growth condition which has superquadratic growth behav-

iors in some components and has subquadratic growth behaviors in other components, while [4] pro-
vided one other kind of variant subquadratic growth condition, we also call such conditions anisotropic
growth conditions.

In the last decades, brake orbit problems have been investigated deeply, see [5–13] and references
therein. In [14], the existence of brake orbits and symmetric brake orbits were proved under the clas-
sical superquadratic growth conditions. Meanwhile, the minimal period estimates were given by com-
paring the L0-index iterations. Later, in [15], the authors obtained the same minimal period estimates
under a weak growth condition which has super-quadratic growth only on some J-invariant plane.
In [4, 16], the authors considered first-order anisotropic convex Hamiltonian systems and reduced the
existence problem of brake orbits to the dual variation problem, moreover, in [4], the minmality of
period for brake orbits was obtained. In [1], the authors removed the convex assumption in [16] and
obtained brake orbits with minimal period estimates under more general anisotropic growth conditions
which are variant superquadratic growth conditions.

The following is the main result of this paper.

Theorem 1.1. If H is a Hamiltonian function satisfying (H1)–(H5), then there exists τ̃ > 0 such that
when τ ≥ τ̃, the system (1.1) has a nontrivial brake orbit z with the L0-index estimate

iL0(z,
τ

2
) ≤ 0. (1.2)

Futhermore, if the above brake orbit z also satisfies
(H6) H′′zz(z(t)) ≥ 0, t ∈ R and

∫ τ
2

0
H′′qq(z(t))dt > 0, where H′′qq(z) means the Hessian matrix w.r.t. q for

z = (p, q), p, q ∈ Rn.
Then the brake orbit z has minimal period τ or τ

2 .
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We remind the readers that the minimal period τ
2 may not be eliminated generally. See Remark

4.2 in [14], for example, the minimal period is τ
2 under the condition (H6). In [2], we also consider

the symmetric brake orbit case under the above conditions with small changes using different index
iteration inequalities.

If z̃ is a brake orbit for the system (1.1), then z(t) = z̃( τ2 t) satisfies
Jż(t) = − τ2∇H(z(t)),
z(−t) = Nz(t),
z(t + 2) = z(t).

(1.3)

The converse is also true. So finding brake orbits for the system (1.1) is equivalent to finding 2-periodic
brake orbits for the system (1.3).

In Section 2, we recall the L0-index theory and the related Sobolev space. In Section 3, we prove
the existence of a nontrivial brake orbit with minimal period 2 or 1.

2. Preliminaries

The Maslov-type index theory is higly-developed and widly-used to study the existence, minimality
of period, multiplicity and stability of periodic solutions of Hamiltonian systems, see [17]. And to
estimate the minimal period for brake orbits, Liu and his cooperators introduced the L0-index theory
—a topologically variant Maslov-type index theory, see the monograph [18] and the recent survey
paper [19].

We denote by L(R2n) the set of all 2n × 2n real matrices, and denote by Ls(R2n) its subset of
symmetric ones. The symplectic group Sp(2n) for n ∈ N and the symplectic path Pτ(2n) in Sp(2n)
starting from the identity I2n on [0, τ] are denoted respectively by

Sp(2n) = {M ∈ L(R2n) | MT JM = J},

Pτ(2n) = {γ ∈ C([0, τ],Sp(2n)) | γ(0) = I2n}.

As showed in [18], for the Lagrangian subspaces L0 = {0}×Rn and L1 = Rn×{0}, there are two pairs
of integers (iLk(γ, τ), νLk(γ, τ)) ∈ Z×{0, 1, · · · , n} (k = 0, 1) associated with γ ∈ Pτ(2n) on the interval
[0, τ], called the Maslov-type index associated with Lk for k = 0, 1 or the Lk-index of γ in short. When
τ = 1, we simply write (iLk(γ), νLk(γ)).

The L0-iteration paths γ j : [0, j]→ Sp(2n) of γ ∈ P1(2n) (see [18]) are defined by

γ1(t) = γ(t), t ∈ [0, 1],

γ2(t) =

{
γ(t), t ∈ [0, 1],
Nγ(2 − t)γ(1)−1Nγ(1), t ∈ [1, 2]

and more generally, for j ∈ N,

γ2 j(t) =

{
γ2 j−1(t), t ∈ [0, 2 j − 1],
Nγ(2 j − t)N[γ2(2)] j, t ∈ [2 j − 1, 2 j],

γ2 j+1(t) =

{
γ2 j(t), t ∈ [0, 2 j],
γ(t − 2 j)[γ2(2)] j, t ∈ [2 j, 2 j + 1].
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Then we denote by (iL0(γ
j), νL0(γ

j)) the L0-index of γ j on the interval [0, j].
Assume B(t) ∈ C([0, τ],Ls(R2n)) satisfies B(t + τ) = B(t) and B( τ2 + t)N = NB( τ2 − t), consider the

fundamental solution γB of the following linear Hamiltonian system{
Jż(t) = −B(t)z(t), t ∈ [0, τ],
z(0) = I2n.

Then γB ∈ Pτ(2n). Note that γk
B satisfies{

Jż(t) = −B(t)z(t), t ∈ [0, kτ],
z(0) = I2n.

The L0-index of γB is denoted by (iL0(B), νL0(B)), called the L0-index pair with respect to B.
Moreover, if z is a brake orbit of the system (1.1), set B(t) = H′′(z(t)), denote by (iL0(z), νL0(z)) the

L0-index of γB, called the L0-index pair with respect to z.
See [17] for the Maslov-type index (i1(γ), ν1(γ)) of γ ∈ P(2n). And we refer to [18] for the indices

(iL0
√
−1

(γ), νL0
√
−1

(γ)) and (iL0
√
−1

(B), νL0
√
−1

(B)) for τ = 1.
Below are some basic results needed in this paper.

Lemma 2.1. ( [11]) For γ ∈ P(2n), there hold

i1(γ2) = iL0(γ) + iL1(γ) + n and ν1(γ2) = νL0(γ) + νL1(γ).

Lemma 2.2. ( [14]) Suppose B(t) ∈ C([0, 2],Ls(R2n)) with B(t + 2) = B(t) and B(1 + t)N = NB(1− t).
If B(t) ≥ 0 for all t ∈ [0, 2], then

iL0(B) + νL0(B) ≥ 0 and iL0
√
−1

(B) ≥ 0.

Lemma 2.3. ( [14]) Suppose B(t) ∈ C([0, 2],Ls(R2n)) with B(t + 2) = B(t) and B(1 + t)N = NB(1− t).

If B(t) =

(
S 11(t) S 12(t)
S 21(t) S 22(t)

)
≥ 0 and

∫ 1

0
S 22(t) dt > 0, then iL0(B) ≥ 0.

Lemma 2.4. ( [18]) The Maslov-type index iteration inequalities are presented below.
1◦ For γ ∈ P(2n) and k ∈ 2N − 1, there holds

iL0(γ
k) ≥ iL0(γ

1) +
k − 1

2
(i1(γ2) + ν1(γ2) − n).

2◦ For γ ∈ P(2n) and k ∈ 2N, there holds

iL0(γ
k) ≥ iL0(γ

1) + iL0
√
−1

(γ1) +

(
k
2
− 1

)
(i1(γ2) + ν1(γ2) − n).

Now we introduce the Sobolev space E = WL0 and its subspaces as in [10, 14].

E = WL0 =
{
z ∈ W

1
2 ,2(R/2Z,R2n) | z(−t) = Nz(t) for a.e. t ∈ R

}
=

z ∈ W
1
2 ,2(R/2Z,R2n)

∣∣∣∣∣ z(t) =
∑
k∈Z

exp(kπtJ)hk, hk ∈ L0

 .
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For m ∈ N, define

E± =

z ∈ WL0 | z(t) =
∑
±k∈Z

exp(kπtJ)hk, hk ∈ L0

 ,
E0 = L0,

Em =

z ∈ WL0 | z(t) =

m∑
k=−m

exp(kπtJ)hk, hk ∈ L0

 ,
and set E+

m := Em ∩ E+, E−m := Em ∩ E−. Then E = E0 ⊕ E− ⊕ E+ and Em = E0 ⊕ E−m ⊕ E+
m. Moreover

{Em, Pm} forms a Galerkin approximation scheme of the unbounded self-adjoint operator −J d
dt defined

on L2([0, 2]; L0), where Pm : E → Em denotes the orthogonal projection. Furthermore, define the
following bounded self-adjoint operatorA on E

〈Az, ζ〉 =

∫ 2

0
−Jż · ζ dt, z, ζ ∈ W1,2([0, 2]; L0) ⊆ E,

and, obviously, 〈Az, z〉 = 2(‖z+‖2 − ‖z−‖2), Az = Az+ −Az−, z ∈ E.

Remark 2.1. ( [1]) For z ∈ E, there holds V(~x, ~y)z ∈ E. And for z ∈ Em, we have V(~x, ~y)z ∈ Em. As for
the Fourier expression for V(~x, ~y)z, see [1] for details. Note that for V defined in (H2) and z ∈ E, we
have V(z) ∈ E. Moreover, a simple computation shows that

〈Az,V(z)〉 =
1
2
〈Az, z〉, z ∈ E.

In our case, assume B(t) ∈ C([0, 2],Ls(R2n)) satisfies B(t + 2) = B(t) and B(1 + t)N = NB(1 − t),
define the following bounded self-adjoint compact operator B

〈Bz, ζ〉 =

∫ 2

0
B(t)z · ζdt, z, ζ ∈ E. (2.1)

For any d > 0, denote by M−
d (·), M0

d(·), M+
d (·) the eigenspaces corresponding to the eigenvalues λ

belonging to (−∞,−d], (−d, d), [d,+∞) respectively. Set (A−B)] = (A−B|Im(A−B))−1. The following
result is crucial to esmiate the L0-index.

Lemma 2.5. ( [20,21]) For B(t) ∈ C([0, 2],Ls(R2n)) satisfying B(t + 2) = B(t), B(1 + t)N = NB(1 − t)
and 0 < d ≤ 1

4

∥∥∥(A− B)]
∥∥∥−1

, there exists m0 > 0 such that for m ≥ m0, we have

dimM+
d (Pm(A− B)Pm) = mn − iL0(B) − νL0(B).

dimM−
d (Pm(A− B)Pm) = mn + n + iL0(B).

dimM0
d(Pm(A− B)Pm) = νL0(B).

3. Main results

As shown in [10,14], searching for brake orbits for the system (1.3) can be transformed into finding
critical points of the following functional

g(z) =
τ

2

∫ 2

0
H(z) dt −

1
2
〈Az, z〉, z ∈ E.

Electronic Research Archive Volume 30, Issue 11, 4220–4231
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By (H4), we have g ∈ C2(E,R), then, let us now set gm = g|Em , m ∈ N. To find the critical points of
gm , we shall prove that gm satisfies the hypotheses of the homological link Theorem 4.1.7 in [22]. The
following several lemmas are essential.

Lemma 3.1. If H(z) satifies (H1),(H3) and (H4), then the above functional g satisfies (PS)∗ condi-
tion with respect to {Em}m∈N, i.e., any sequence {zm} ⊂ E satisfying zm ∈ Em, gm(zm) is bounded and
∇gm(zm)→ 0 as m→ +∞ possesses a convergent subsequence in E.

Proof. We follow the ideas in [3].
Let {zm} be a sequence such that |g(zm)| ≤ c3 and ∇gm(zm) → 0 as m → ∞, where c3 > 0. To prove

the lemma, it is enough to show that {zm} is bounded.
For m large enough, by Remark 2.1 and (H3), we have

c3 + ‖zm‖ ≥ g(zm) − 〈∇gm(zm),V(zm)〉

=
τ

2

∫ 2

0
(H(zm) − ∇H(zm) · V(zm)) dt

≥
τ

2

∫ 2

0
(c1|zm|

β − c2) dt,

then there exists c4 > 0 such that
‖zm‖Lβ ≤ c4(1 + ‖zm‖

1
β ). (3.1)

For large m, we have

‖z±m‖ ≥ ‖〈∇gm(zm), z±m〉‖ =

τ2
∫ 2

0
∇H(zm) · z±m dt − 〈Azm, z±m〉

 . (3.2)

By (3.2), (H4), Hölder’s inequality and the embedding theorem, we obtain

‖z±m‖
2 = ±

1
2
〈Azm, z±m〉

≤
τ

4

∣∣∣∣ ∫ 2

0
∇H(zm) · z±m dt

∣∣∣∣ +
1
2
‖z±m‖

≤ c5

∫ 2

0
(|zm|

λ + 1)|z±m| dt +
1
2
‖z±m‖

≤ c5

(∫ 2

0

(
|zm|

λ
) β
λ dt

) λ
β
(∫ 2

0
|z±m|

β
β−λ dt

) β−λ
β

+ c5‖z±m‖L1 +
1
2
‖z±m‖

= c5

(∫ 2

0
|zm|

β dt
) λ
β
(∫ 2

0
|z±m|

β
β−λ dt

) β−λ
β

+ c5‖z±m‖L1 +
1
2
‖z±m‖

≤ c6(1 + ‖zm‖
λ
Lβ)‖z

±
m‖,

(3.3)

where β > λ ≥ 1 for (H3), (H4) and c5, c6 > 0 are suitable constants.
Combining (3.1) and (3.3), for m large enough, there exists c7 > 0 such that

‖z±m‖ ≤ c7(1 + ‖zm‖
λ
β ). (3.4)
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Set ẑm = zm − z0
m = z+

m + z−m. By (H4), (3.4) and the embedding theorem, we obtain∣∣∣∣∣∣
∫ 2

0
[H(zm) − H(z0

m)] dt

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∫ 2

0

∫ 1

0
∇Hz(z0

m + ŝzm) · ẑm dsdt

∣∣∣∣∣∣
≤

∫ 2

0
2λc8

(
|z0

m|
λ + |̂zm|

λ + 1
)
|̂zm| dt

≤ c9

(
1 + ‖zm‖

λ+ λ
β

)
,

(3.5)

where c8, c9 > 0 are suitable constants. From (3.4) and (3.5), we see

τ

2

∫ 2

0
H(z0

m) dt = g(zm) +
1
2
〈Azm, zm〉 −

τ

2

∫ 2

0
[H(zm) − H(z0

m)] dt

≤ c10

(
1 + ‖zm‖

λ+ λ
β

)
,

(3.6)

where c10 > 0. From (H3), it follows that∫ 2

0
H(z0

m) dt ≥
∫ 2

0

(
c1|z0

m|
β − c2

)
dt. (3.7)

From (3.6) and (3.7), we see that
|z0

m| ≤ c11

(
1 + ‖zm‖

λ+λβ

β2

)
, (3.8)

where c11 > 0. From (3.4), (3.8) and λ+λβ

β2 < 1, we see {zm} is bounded.

For u0 ∈ E+
1 with ‖u0‖ = 1, define S =

(
E− ⊕ E0

)
+ u0.

Lemma 3.2. If H(z) satifies (H1),(H4) and (H5), then there exists τ̃ > 0 such that for τ ≥ τ̃, there
holds inf

S
g > 0.

Proof. The ideas come from [23].
For z ∈ S , we have

g(z) =
τ

2

∫ 2

0
H(z) dt + ‖z−‖2 − 1. (3.9)

There exist two cases to be considered.
Case (i) If ‖z−‖ > 1, then by (H5), we have

g(z) =
τ

2

∫ 2

0
H(z) dt + ‖z−‖2 − 1 > 0.

Case (ii) If ‖z−‖ ≤ 1, set Ω = {z ∈ S | ‖z−‖ ≤ 1}, then Ω is weakly compact and convex.
Since the functional z 7→

∫ 2

0
H(z) dt is weakly continuous, then the functional achieves its minimum

on Ω, assume the minimum is σ achieved at u− + u0 ∈ S . Since u0 , 0, we have u− + u0 , 0, then
σ > 0 by (H5).

Set τ̃ = 2
σ

, for τ > τ̃, by (3.9), we have

g(z) ≥
τσ

2
− 1 > 0.

Therefore, the lemma holds.
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Choose µ > 0 large enough such that σi =
µ

1+γi
> 1 and τi =

µ

1+ 1
γi

> 1. For ρ > 0, we set

Lρ(z) = (ρσ1−1 p1, · · · , ρ
σn−1 pn, ρ

τ1−1q1 · · · , ρ
τn−1qn),

where z = (p1, · · · , pn, q1, · · · , qn) ∈ E. Note that Lρ is well-defined on E by Remark 2.1. The operator
Lρ is linear bounded and invertible and ‖Lρ‖ ≤ 1, if ρ ≤ 1.

For any z = z0 + z− + z+ ∈ E, we have

〈ALρz, Lρz〉 = ρµ−2〈Az, z〉 = 2ρµ−2(‖z+‖2 − ‖z−‖2). (3.10)

Lemma 3.3. If H satisfies (H2), then there exists ρ > 1 large enough such that sup
Lρ(∂Q)

g < 0, where

Q = {z ∈ E+ | ‖z‖ ≤ ρ}.

Proof. For any ε > 0, by (H2), there exists Mε such that

H(z) ≤ ε
n∑

i=1

(
|pi|

1+γi + |qi|
1+ 1

γi

)
+ Mε , z ∈ R2n. (3.11)

For z ∈ ∂Q, from (3.10) and (3.11), we have

g(Lρz) =
τ

2

∫ 2

0
H(Lρz) dt −

1
2
〈ALρz, Lρz〉

≤
τε

2

n∑
i=1

∫ 2

0

(
ρ(σi−1)(1+γi)|pi|

1+γi + ρ
(τi−1)(1+ 1

γi
)
|qi|

1+ 1
γi

)
dt

+ Mετ − ρ
µ

≤ (nτεc12 − 1) ρµ + Mετ,

(3.12)

where c12 > 0 is the embedding constant.
Choose ε > 0 such that nτεc12 < 1, then for ρ > 1 large enough, we have sup

Lρ(∂Q)
g < 0.

Lemma 3.4. Set S m = S ∩ Em and Qm = Q ∩ Em. For ρ > 1 defined as above, we have Lρ(∂Qm) and
S m homologically link.

Proof. Since ρ > 1, ρ > ‖L−1
ρ ‖ = ‖L 1

ρ
‖. By direct computation, we can check that PLρ : E+ → E+ is

liner, bounded and invertible (see [24]). Let P̃m : Em → E+
m be the orthogonal projection. Note that

Lρ(Em) ⊂ Em by Remark 2.1, then
(
P̃mLρ

)
|Em : E+

m → E+
m is also linear, bounded and invertible.

Then the assertion follows from Lemma 2.8 in [3].

Theorem 3.1. Assume H satisfies (H1)–(H5), then there exists τ̃ > 0 such that for τ ≥ τ̃, the system
(1.3) possesses a nontrivial 2-periodic brake orbit z satisfying

iL0(z, 1) ≤ 0. (3.13)
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Proof. The proof is standard, we proceed as that in [10, 14].
For any m ∈ N, Lemmas 3.1–3.4 show that gm = g|Em satisfies the hypotheses of the homological

link Theorem 4.1.7 in [22], so gm possesses a critical point zm satisfying

0 < inf
S

g ≤ g(zm) ≤ sup
Lρ(Q)

g. (3.14)

By Lemma 3.1, when τ ≥ τ0, we may suppose zm → z ∈ E as m→ ∞, then g(z) > 0 and ∇g(z) = 0.
By (H5), we see the critical point z of g is a classical nontrivial 2-periodic brake orbit of the system
(1.3).

Now we show (3.13) holds. Let B be the operator for B(t) = τ
2 H′′zz(z(t)) defined by (2.1), then

‖g′′(x) − (B −A)‖ → 0 as ‖x − z‖ → 0, x ∈ E. (3.15)

By (3.15), there exists r0 > 0 such that

‖g′′(x) − (B −A)‖ < d, x ∈ Br0 = {x ∈ E | ‖x − z‖ ≤ r0},

where d = 1
4‖(B − A)]‖−1.

Hence, for m large enough, there holds

‖g′′m(x) − Pm(B −A)Pm‖ <
d
2
, x ∈ Br0 ∩ Em. (3.16)

For x ∈ Br0 ∩ Em and w ∈ M+
d (Pm(B −A)Pm) \ {0}, (3.16) implies that

〈g′′m(x)w,w〉 ≥ 〈Pm(B −A)Pmw,w〉 − ‖g′′m(x) − Pm(B −A)Pm‖ · ‖w‖2

≥
d
2
‖w‖2 > 0.

Then
dim M+(g′′m(x)) ≥ dim M+

d (Pm(B −A)Pm), x ∈ Br0 ∩ Em. (3.17)

Note that

dim M−
d (Pm(B −A)Pm) = dim M+

d (Pm(A− B)Pm),
dim M0

d(Pm(B −A)Pm) = dim M0
d(Pm(A− B)Pm).

(3.18)

By (3.17), (3.18) and the link theorem 4.1.7 in [22], for large m, we have

mn = dim Qm ≤ m(zm) + m0(zm)
≤ dim M−

d (Pm(B −A)Pm) + dim M0
d(Pm(B −A)Pm)

= mn − iL0(z, 1).

Hence, we obtain iL0(z, 1) ≤ 0.

Theorem 3.2. Assume H satisfies (H1)–(H6), then there exists τ̃ such that for τ ≥ τ̃, the system (1.3)
possesses a nontrivial brake orbit z with minimal period 2 or 1.
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Proof. The idea stems from [14], we proceed roughly.
For the nontrivial symmetric 2-periodic brake orbit z obtained in Theorem 3.1, assume its minimal

period 2
k for some nonnegative integer k. Denote by γz, 1

k
and γz the corresponding symplectic path on

the interval [0, 1
k ] and [0, 1] respectively, then γz = γk

z, 1
k
.

As shown in [14], we have the L1-index estimate

iL1(γz, 1
k
) + νL1(γz, 1

k
) ≥ 1. (3.19)

By (H6), we see B(t) = H′′(z(t)) is semipositive, Lemmas 2.1 and 2.2 and Eq (3.19) imply that

i1(γ2
z, 1

k
) + ν1(γ2

z, 1
k
) − n = iL0(γz, 1

k
) + νL0(γz, 1

k
) + iL1(γz, 1

k
) + νL1(γz, 1

k
) ≥ 1. (3.20)

By Lemmas 2.2 and 2.3, we see

iL0(γz, 1
k
) ≥ 0 and iL0

√
−1

(γz, 1
k
) ≥ 0. (3.21)

If k is odd, by Lemma 2.4, we see

iL0(γz) ≥ iL0(γz, 1
k
) +

k − 1
2

[
i1(γ2

z, 1
k
) + ν1(γ2

z, 1
k
) − n

]
(3.22)

From (3.13), (3.20)–(3.22), we see k = 1.
If k is even, If k is even, by Lemma 2.4, we see

iL0(γz) ≥ iL0(γz, 1
k
) + iL0

√
−1

(γz, 1
k
) + (

k
2
− 1)

[
i1(γ2

z, 1
k
) + ν1(γ2

z, 1
k
) − n

]
. (3.23)

From (3.13), (3.20), (3.21) and (3.23), we have k = 2.
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