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Abstract: We consider the problem of scheduling jobs with delivery times and inclusive processing set
restrictions on unbounded batch machines to minimize the maximum delivery completion time, which
is equivalent to minimizing the maximum lateness from the optimization viewpoint. We develop a
polynomial time approximation scheme for this strongly NP-hard problem that runs in linear time for
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1. Introduction

Machine scheduling problems with processing set restrictions have been extensively studied in the
past few decades. In this class of problems, we are given a set of n jobs J = {1, 2, . . . , n} and a set
of m parallel machines M = {M1,M2, . . . ,Mm}. Each job j is associated with a subset of machines
M j ⊆ M, called its processing set, whose members are capable of processing job j. Each machine can
process at most one job at a time. The goal is to find an optimal schedule where optimality is defined
by some problem-dependent objective. The current research on scheduling problems with processing
set restrictions is dominated by models with the makespan objective. Leung and Li [1, 2] surveyed the
state of the art of these problems.

It is well known that parallel machine scheduling problems are usually strongly NP-hard for stan-
dard objective functions (such as minimizing makespan, minimizing total weighted completion time),
even with equal release times and without processing set restrictions. Most of the previous researches
thus have concentrated the efforts on polynomial time approximation algorithms. The performance of
an approximation algorithm can be measured by its approximation ratio. For a given instance I of a
minimization problem and an approximation algorithm A, let A(I) and OPT (I) denote the objective
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value of the solution obtained by algorithm A and the optimal solution value, respectively, when ap-
plied to I. If A(I)/OPT (I) ≤ ρ for all I, then we say that algorithm A has an approximation ratio
ρ, and A is called a ρ-approximation algorithm for this problem. A polynomial time approximation
scheme (PTAS) is an approximation algorithm which for any instance I and any fixed accuracy re-
quirement ε > 0 produces a solution with a running time polynomial in the input size of I such that
A(I)/OPT (I) ≤ 1 + ε [3].

A particularly important special case of processing set restrictions that has received considerable
attention is the so-called inclusive processing set restriction. In this case, for each pairM j1 andM j2 ,
either M j1 ⊆ M j2 or M j2 ⊆ M j1 . The problem of minimizing makespan with release times and
inclusive processing set restrictions is denoted as P|r j,M j(inclusive)|Cmax, in the three-field notation
of Graham et al. [4]. The special case of it where all jobs are released at the same time is denoted
as P|M j(inclusive)|Cmax. There are a number of algorithms for P|M j(inclusive)|Cmax with increasingly
better approximation ratios: a (2 − 1/(m − 1))-approximation algorithm [5, 6], a 3/2-approximation
algorithm [7], a 4/3-approximation algorithm and a PTAS [8]. Li and Wang [9] presented a PTAS for
P|r j,M j(inclusive)|Cmax which is based on dynamic programming.

Inclusive processing set restrictions have been extended to bounded batch machines. Each bounded
batch machine Mi has a capacity Ki < n. Each job j has a size s j, where 0 < s j ≤ maxiKi. Several
jobs can be processed simultaneously as a batch on machine Mi, provided that the total size of the
jobs in the batch does not exceed Ki. The processing time of a batch is the largest processing time
of all the jobs in the batch. This model is called p-batch scheduling model [10]. (There is a rich
literature if for each job j we assume 0 < s j ≤ miniKi. See the survey papers [10–12].) Leung
and Li [2] used P|p − batch,M j(inclusive)|Cmax to denote problem P|M j(inclusive)|Cmax with bounded
batch machines. When all jobs have equal processing times, Wang and Leung [13] presented a 2-
approximation algorithm for P|p − batch,M j(inclusive)|Cmax that runs in O(n log n) time. They also
showed that, unless P=NP, for this special case there does not exist any polynomial time algorithm
with approximation ratio better than 2. For P|p − batch,M j(inclusive)|Cmax, Damodaran et al. [14]
proposed a particle swarm optimization algorithm, and Jia et al. [15] presented a heuristic based on the
First-Fit-Decreasing rule and a meta-heuristic based on Max-Min Ant System.

To the best of our knowledge, processing set restrictions have not been extended to unbounded
batch machines. An unbounded batch machine can process up to B (B ≥ n) jobs simultaneously as a
batch, and the processing time of a batch is the largest processing time of all the jobs in the batch [16].
Although the machines have unbounded capacities, a job may not be assigned to some machines due
to particular machine eligibility constraints which are determined by factors other than the machine
capacities.

In this paper we consider the problem of scheduling jobs with release times and inclusive pro-
cessing set restrictions on unbounded batch machines, with a more general objective than makespan
minimization, i.e., minimizing the maximum delivery completion time. The problem we study can be
formulated as follows. Given a set of n jobsJ = {1, 2, . . . , n} and a set of m unbounded batch machines
M = {M1,M2, . . . ,Mm}. Each unbounded batch machine can process up to B (B ≥ n) jobs simulta-
neously as a batch, and the processing time of a batch is the largest processing time of all the jobs
in the batch. Each job j is characterized by a quadruple of non-negative real numbers (r j, a j, p j, q j),
where r j is the release time before which job j cannot be processed, a j is the machine index associated
with job j which specifies the smallest index among the machines that can process job j, p j and q j are
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the processing time and delivery time of job j respectively. Job j can be processed by machine Mi if
and only if i ≥ a j. The machines in {Ma j ,Ma j+1, . . . ,Mm} are called eligible machines for job j. If S j

denotes the time job j starts processing, it has been delivered at time L j = S j + p j + q j, which is called
its delivery completion time. The goal is to find a schedule so as to minimize the maximum delivery
completion time, Lmax = max jL j. Using the notation of Graham et al. [4], we denote this problem as
P|r j,M j(inclusive), B ≥ n|Lmax. Makespan minimization is a special case of this problem where all
q j = 0.

From the optimization viewpoint, the scheduling problem with delivery times and the maximum
delivery completion time objective is equivalent to one with due dates and the maximum lateness
objective [17]. However, since the lateness of a job can be zero or even negative, the delivery-time
model is preferable from the perspective of approximation algorithms [18].

Much research has been done on scheduling unbounded batch machines without processing set
restrictions under various objective functions. We only mention the results with the maximum lateness
(or the maximum delivery completion time) objective here. For the single machine case with equal
release times, Brucker et al. [16] provided a dynamic programming algorithm that requires O(n2) time,
and Wagelmans and Gerodimos [19] presented an improved algorithm that runs in O(n log n) time. For
the single machine case with unequal release times, Cheng et al. [20] established its NP-hardness, and
Bai et al. [21] developed a linear time approximation scheme. Liu et al. [22] proved that the problem of
scheduling jobs with release times and deadlines on unbounded batch machines is strongly NP-hard.
Since this problem is the decision version of P|r j, B ≥ n|Lmax (scheduling jobs with release times on
unbounded batch machines to minimize the maximum delivery completion time), P|r j, B ≥ n|Lmax is
strongly NP-hard. Liu et al. [22] also presented a PTAS for P|r j, B ≥ n|Lmax. For online scheduling
jobs with delivery times on m unbounded batch machines, Fang et al. [23] presented an algorithm
with competitive ratio 1.5 + o(1), and Liu and Lu [24] presented an algorithm with competitive ratio
1 + 2/

⌊√
m
⌋
.

Since P|r j, B ≥ n|Lmax is a special case of P|r j,M j(inclusive), B ≥ n|Lmax studied in this paper
(scheduling jobs with release times and inclusive processing set restrictions on unbounded batch
machines to minimize the maximum delivery completion time), P|r j,M j(inclusive), B ≥ n|Lmax

is also strongly NP-hard. In this paper we present a linear time approximation scheme for
P|r j,M j(inclusive), B ≥ n|Lmax. This result is the best possible in two regards: it achieves the best
possible approximation ratio for this strongly NP-hard problem; and it has optimum asymptotic time
complexity. This result is inspired by [9,22,25,26]. For the classical scheduling problem (each machine
can process at most one job at a time) of minimizing the maximum delivery completion time with re-
lease times on parallel machines (without processing set restrictions), Hall and Shmoys [25] presented
a PTAS with running time O(npoly(1/ε)), and Mastrolilli [26] developed another one with running time
O(n + f (1/ε)), where f (1/ε) is a constant that depends exponentially on 1/ε.

This paper is organized as follows. In Section 2 we describe several input transformations so that
the input has certain nice structure. In Section 3, we develop a linear time approximation scheme for
P|r j,M j(inclusive), B ≥ n|Lmax. We conclude this paper in Section 4.
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2. Simplifying the input

In this section we aim to transform any instance of P|r j,M j(inclusive), B ≥ n|Lmax into one with a
simpler structure. This will make the subsequent dynamic program more efficient.

A released job j is available for machine Mi if i ≥ a j and j has not been assigned to any machine.
Let q(Bg) = max{q j| j ∈ Bg} denote the delivery time of batch Bg. Let a(Bg) = max{a j| j ∈ Bg}

denote the machine index associated with batch Bg. Let Ji = { j ∈ J|a j = i}, i = 1, 2, . . . ,m. We have
J = ∪m

i=1Ji. Let OPT be the objective value of an optimal schedule. Let rmax = max jr j, pmax = max j p j,
qmax = max jq j. Clearly we have OPT ≥ rmax, OPT ≥ pmax, OPT ≥ qmax.

Let ε be an arbitrary small rational number. For simplicity, we assume that 0 < ε < 1 and 1/ε is
integral. We will perform several transformations each of which may potentially increase the objective
value by a factor of 1 + O(ε). When we describe this type of transformation, we shall say it produces
1 + O(ε) loss.

There is a trivial 3-approximation algorithm for P|r j,M j(inclusive), B ≥ n|Lmax: wait until time rmax

and schedule all the jobs in one batch on machine Mm. Let UB be the objective value of this schedule.
We have UB ≤ rmax + pmax + qmax ≤ 3OPT . Let LB = max{rmax, pmax, qmax,UB/3}. We have

LB ≤ OPT ≤ 3LB. (2.1)

Let δ = ε ·LB. Following [25], we can assume there are a constant number of different release times
and delivery times, as the following lemma states.

Lemma 2.1. With 1 + 2ε loss, we assume that there are at most 1/ε + 1 different release times and
1/ε + 1 different delivery times.

Proof. For each job j we set r′j =
⌊
r j/δ
⌋
·δ, q′j =

⌊
q j/δ
⌋
·δ. Since rmax ≤ (1/ε)δ and qmax ≤ (1/ε)δ, there

are at most 1/ε + 1 different release times and at most 1/ε + 1 different delivery times in the rounded
instance. Since the values are rounded down, the optimal objective value of the rounded instance is not
greater than OPT . Given a schedule for the rounded instance, we add δ to each job’s start time, and
re-introduce the original delivery times. Therefore, we get a feasible schedule for the original instance.
We may increase the objective value by 2δ ≤ 2ε · OPT .

□

By the inequalities (2.1) we know OPT ≤ (3/ε)δ. Divide the interval [0, (3/ε)δ] into intervals
∆1,∆2, . . . ,∆1/ε+1, where ∆k = [(k − 1)δ, kδ) denotes the k-th interval for k = 1, 2, . . . , 1/ε, and
∆1/ε+1 = [(1/ε)δ, (3/ε)δ] denotes the last interval. Let ρk = (k − 1)δ denote the k-th release time,
k = 1, 2, . . . , 1/ε + 1. Similarly, let ξl = (l − 1)δ denote the l-th delivery time, l = 1, 2, . . . , 1/ε + 1.

A regular scheduling criterion is one that is non-decreasing in the job completion times. Brucker
et al. [16] proved that when all the jobs have equal release times, for minimizing any regular objective
on an unbounded batch machine, there is an optimal schedule in which the jobs are processed in the
batch-SPT order, i.e., for any two batches B1 and B2 in this schedule, if B1 is processed before B2,
then there does not exist two jobs j and j′ such that j ∈ B1, j′ ∈ B2 and p j > p j′ . On the other
hand, recall that when all the jobs have equal release times, Jackson’s rule [27] solves the classical
scheduling problem of minimizing the maximum lateness on a single machine optimally: Schedule the
jobs without idle time in order of non-increasing delivery times. Based on these two results, we get the
following lemma.
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Lemma 2.2. There is an optimal schedule for P|r j,M j(inclusive), B ≥ n|Lmax with the following prop-
erties:

for i = 1, 2, . . . ,m (This ordering is used crucially, which means that we handle the machines in
increasing order of their indices),

(i) on machine Mi, the batches started in ∆k (k = 1, 2, . . . , 1/ε+1) are processed in strictly increasing
order of batch processing times, and this order is also the strictly decreasing order of batch
delivery times;

(ii) on machine Mi, the batches started in ∆k (k = 1, 2, . . . , 1/ε + 1) are filled in strictly increasing
order of processing times such that each batch contains all currently available jobs with process-
ing times no greater than the batch processing time and delivery times no greater than the batch
delivery time.

Proof. Consider an optimal schedule for P|r j,M j(inclusive), B ≥ n|Lmax. We will transform it into
another schedule (without increasing the objective value) that satisfies the properties described in the
lemma. We perform the transformations by handling the machines in increasing order of their indices.
Suppose that we have handled the machines M1,M2, . . . ,Mi−1. We now explain how to handle machine
Mi.

We handle the intervals on Mi in increasing order of their indices. Suppose that we have handled
the intervals ∆1,∆2, . . . ,∆k−1. We now explain how to handle ∆k. Recall that the delivery time of batch
Bg is defined to be the largest delivery time of all the jobs in Bg. Let B1, B2, . . . , Bx denote the batches
which are processed on Mi and started in ∆k. Among these batches, if there are two batches having
the same delivery time, then we move all the jobs in the batch with smaller processing time into the
batch with the larger processing time. Therefore, we can assume that the batches B1, B2, . . . , Bx have
different delivery times.

Since all these batches are scheduled in the same interval, scheduling them in ∆k is essentially an
instance of the problem where all jobs have equal release times. Therefore, we can apply Jackson’s rule
to rearrange these batches and thereafter assume without loss generality that the batches B1, B2, . . . , Bx

are processed successively on machine Mi one after another and q(B1) > q(B2) > · · · > q(Bx), where
q(Bh) denotes the delivery time of batch Bh, h = 1, 2, . . . , x.

Among the batches B1, B2, . . . , Bx, if there are two batches Bh1 and Bh2 (1 ≤ h1 < h2 ≤ x) such that
p(Bh1) ≥ p(Bh2), then we move all the jobs in Bh2 into Bh1 . Accordingly, the completion times of the
jobs in Bh2 decrease, while the completion times of the jobs in other batches do not increase. A finite
number of repetitions of this procedure yield an optimal schedule which satisfies property (i) described
in the lemma (with respect to machine Mi and interval ∆k).

We continue to transform the obtained schedule into the one satisfying property (ii) (with respect
to machine Mi and interval ∆k). To do so, we first delete all the jobs from the batches B1, B2, . . . , Bx,
but retain all the empty batches which are specified by the processing times and delivery times of
B1, B2, . . . , Bx. We fill these empty batches in strictly increasing order of processing times such that
each batch contains all currently available jobs with processing times no greater than the batch pro-
cessing time and delivery times no greater than the batch delivery time. Thereby we get an optimal
schedule of the required form.

We repeat the procedure to handle the machines in increasing order of their indices, and within that
to handle the intervals on each machine in increasing order of their indices. At the end, we will get an
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optimal schedule which satisfies the properties described in the lemma.
□

Following [25], we classify both jobs and batches as large and small. Job j is large if p j ≥

δ/(1/ε + 1)2, otherwise it is small. A batch is large if it contains at least a large job, otherwise it
is small. We have:

Lemma 2.3. With 1 + ε2 loss, we assume that

(i) p j = 0 for any small job j;
(ii) no small job is included in large batches;

(iii) on each machine there is at most one small batch started in each interval.

Proof. Set p j = 0 for any small job j. This will not increase the objective value. Given an optimal
schedule for the transformed instance, for the batches started in the same interval on the same ma-
chine, we stretch an extra space of length δ/(1/ε + 1)2 right before the first batch of these batches to
reschedule all the small jobs started in this interval on this machine with the original processing times.
Therefore, no small job is included in large batches, and on each machine there is at most one small
batch started in each interval. Since there are 1/ε + 1 intervals, the objective value may increase by
δ/(1/ε + 1) ≤ ε2 · OPT . □

Lemma 2.4. With 1+ ε loss, the number of different processing times of large jobs, λ, can be bounded
from above by (1 + ε)/ε4 − 1/ε + 1.

Proof. Set p′j =
⌊
p j/(ε · δ/(1/ε + 1)2)

⌋
· (ε · δ/(1/ε + 1)2) for any large job j. This will not increase

the objective value. Given an optimal schedule for the transformed instance, re-introduce the original
processing times of large jobs. Since for large job j we have p j ≥ δ/(1/ε + 1)2, the objective value
may increase by ε · OPT . Since δ/(1/ε + 1)2 ≤ p j ≤ (1/ε)δ, we get λ ≤ (1 + ε)/ε4 − 1/ε + 1. □

Thus, all large jobs have processing times of the form h · (ε · δ/(1/ε + 1)2), where h ∈ {1/ε, 1/ε +
1, . . . , (1 + ε)/ε4}. Without loss of generality, we assume γ = (1 + ε)/ε4 − 1/ε + 1. Let Pt = (t + 1/ε −
1) · (ε · δ/(1/ε + 1)2) denote the t-th processing time of the large jobs, t ∈ {1, 2, . . . , γ}. In addition, let
P0 = 0 denote the processing time zero of all the small jobs.

Let nklti be the number of jobs with release time ρk, delivery time ξl, processing time Pt and machine
index i, k = 1, 2, . . . , 1/ε+1, l = 1, 2, . . . , 1/ε+1, t = 0, 1, . . . , λ, i = 1, 2, . . . ,m. Let nklt(i) =

∑i
h=1 nklth.

These values can be computed in O(n+m/ε6) time. (Note that ((1+ε)/ε4−1/ε+2)·(1/ε + 1)2 ≤ 12/ε6.)

3. A linear time approximation scheme

In this section we will present a linear time approximation scheme for P|r j,M j(inclusive), B ≥
n|Lmax.

Consider an optimal schedule Σ that satisfies Lemmas 2.1, 2.2, 2.3 and 2.4. (After the rounding
and before the re-introducing, the objective value of the rounded instance is not greater than OPT .)
By Lemma 2.2, we deal with the machines in increasing order of their indices. Let n′klt(i) be the
number of available jobs for machine Mi with release time ρk, delivery time ξl and processing time Pt,
k = 1, 2, . . . , 1/ε + 1, l = 1, 2, . . . , 1/ε + 1, t = 0, 1, . . . , λ, i = 1, 2, . . . ,m. Let xklti denote the number
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of jobs with release time ρk, delivery time ξl and processing time Pt that are assigned to machine Mi

in Σ. It must be true that xklti ≤ n′klt(i), k = 1, 2, . . . , 1/ε + 1, l = 1, 2, . . . , 1/ε + 1, t = 0, 1, . . . , λ,
i = 1, 2, . . . ,m. We call the set {xklti|∀k, l, t} an assignment for machine Mi, i = 1, 2, . . . ,m.

We then delete from Σ all the jobs, but retain all the empty batches. Let Yklti be the set of the empty
batches in Σ that are started in interval ∆k with delivery time ξl and processing time Pt on machine Mi,
k = 1, 2, . . . , 1/ε + 1, l = 1, 2, . . . , 1/ε + 1, t = 0, 1, . . . , λ, i = 1, 2, . . . ,m. Let yklti = |Yklti|. By Lemmas
2.2 and 2.3, we have

∑1/ε+1
l=1 yklti ≤ 1, k = 1, 2, . . . , 1/ε + 1, t = 0, 1, . . . , λ, i = 1, 2, . . . ,m. We call the

set {yklti|∀k, l, t} a configuration for machine Mi, i = 1, 2, . . . ,m.
Example:

We now demonstrate an example to illustrate the techniques and definitions we discussed so far. We
start with a schedule that satisfies Lemma 2.1. Let LB = 18 and ε = 1/2. We have: δ = ε · LB = 9.
By Lemma 2.1, there are three different release times: ρ1 = 0, ρ2 = 9, ρ3 = 18, and three different
delivery times: ξ1 = 0, ξ2 = 9, ξ3 = 18. The three time intervals on a machine are: ∆1 = [0, 9),
= [9, 18), and ∆3 = [18, 54). Consider an optimal schedule Σ for P|r j,M j(inclusive), B ≥ n|Lmax which
satisfies Lemma 2.2. Let us fix a particular machine Mi. In Σ, there are three batches started in ∆1 and
processed on Mi: B1, B2 and B3; there are only one batch started in ∆2 and processed on Mi: B4; there
are two batches started in ∆3 and processed on Mi: B5 and B6. Batch B1 starts at time 0 and completes
at time 1/4, which consists of two jobs j1 and j2 with r j1 = r j2 = ρ1, p j1 = 1/4, p j2 = 1/6, q j1 = ξ3,
q j2 = ξ2. Batch B2 starts at time 1/4 and completes at time 3/4, which consists of two jobs j3 and j4

with r j3 = r j4 = ρ1, p j3 = p j4 = 1/2, q j3 = ξ2, q j4 = ξ1. Batch B3 starts at time 3/4 and completes at time
10 3

4 , which consists of two jobs j5 and j6 with r j5 = r j6 = ρ1, p j5 = p j6 = 10, q j5 = q j6 = ξ1. Batch B4

starts at time 10 3
4 and completes at time 193

4 , which consists of two jobs j7 and j8 with r j7 = r j8 = ρ2,
p j7 = 9, p j8 = 5, q j7 = ξ3, q j8 = ξ2. Batch B5 starts at time 19 3

4 and completes at time 20 , which
consists of two jobs j9 and j10 with r j9 = ρ2, r j10 = ρ3, p j9 = p j10 = 1/4, q j9 = ξ3, q j10 = ξ2. Batch
B6 starts at time 20 and completes at time 20 1

2 , which consists of two jobs j11 and j12 with r j11 = ρ2,
r j12 = ρ3, p j11 = p j12 = 1/2, q j11 = q j12 = ξ2.

Recall that δ/(1/ε + 1)2 = 9/(1/(1/2) + 1)2 = 1 represents the threshold for classifying large and
small jobs. Thus, jobs j1, j2, j3, j4, j9, j10, j11, j12 are small jobs, and jobs j5, j6, j7, j8 are large jobs.
By Lemma 2.3, we round the processing times of all the small jobs down to zero. By Lemma 2.4, we
round the processing times of large jobs down to the nearest integral multiple of ε · δ/(1/ε + 1)2 = 1/2.
(Certainly, for Mi we need not to round down the processing times of the large jobs, because all the
large jobs processed on Mi have integral processing times.) Recall that P0 = 0, and Pt = (t+1/ε−1)·(ε·
δ/(1/ε + 1)2) = (t + 1)/2 denotes the t-th processing time of the large jobs, t ∈ {1, 2, . . . , γ}. Therefore,
the processing times of the jobs processed on Mi can be labeled as p j1 = p j2 = P0, p j3 = p j4 = P0,
p j5 = p j6 = P19, p j7 = P17, p j8 = P9, p j9 = p j10 = P0, p j11 = p j12 = P0.

We are now ready to determine the assignment and the configuration for Mi. We have: x1,1,0,i = 1
(job j4), x1,2,0,i = 2 (jobs j2 and j3), x1,3,0,i = 1 (job j1), x2,1,0,i = 0, x2,2,0,i = 1 (job j11), x2,3,0,i = 1 (job
j9), x3,1,0,i = 0, x3,2,0,i = 2 (jobs j10 and j12), x3,3,0,i = 0. We also have: x1,1,19,i = 2 (jobs j5 and j6),
x2,3,17,i = 1 (job j7), x2,2,9,i = 1 (job j8). All other values of xklti are equal to zero, k = 1, 2, . . . , 1/ε + 1,
l = 1, 2, . . . , 1/ε + 1, t = 1, 2, . . . , λ. Thereby, we get the set {xklti|∀k, l, t}, which is the assignment for
machine Mi with respect to Σ.

Furthermore, we have: Y1,3,0,i = {B̄1}, Y1,2,0,i = {B̄2}, Y1,1,19,i = {B̄3}, Y2,3,17,i = {B̄4}, Y3,3,0,i =

{B̄5}, Y3,2,0,i = {B̄6}, where B̄h denotes the empty batch represented by the processing time of Bh,

Electronic Research Archive Volume 30, Issue 11, 4209–4219



4216

h = 1, 2, . . . , 6. We get: y1,3,0,i = 1, y1,2,0,i = 1, y1,1,19,i = 1, y2,3,17,i = 1, y3,3,0,i = 1, y3,2,0,i = 1. All other
values of yklti are equal to zero, k = 1, 2, . . . , 1/ε + 1, l = 1, 2, . . . , 1/ε + 1, t = 0, 1, . . . , γ. Thereby, we
get the set {yklti|∀k, l, t}, which is the configuration of machine Mi with respect to Σ.

Let Σi denote the restriction of Σ to machine Mi, i = 1, 2, . . . ,m. Given the assignment and the
configuration for Mi, we can recover Σi by Lemma 2.2: for k = 1, 2, . . . , 1/ε + 1, fill the empty
batches in ∪1/ε+1

l=1 ∪λt=0 Yklti in strictly increasing order of processing times (this order is also the strictly
decreasing order of batch delivery times except for the possible empty small batch) such that each batch
contains all currently available jobs with processing times no greater than the batch processing time
and delivery times no greater than the batch delivery time. Since OPT ≤ (3/ε)δ, Σi contains at most
(3/ε)δ/(δ/(1/ε + 1)2) = 3(1/ε + 1)2/ε empty large batches and at most 1/ε + 1 empty small batches.
Thus, the recovery of Σi can be done in O((3(1/ε + 1)2/ε + 1/ε + 1) · (1/ε + 1)2) = O((1/ε)7) time.

We enumerate the possible configurations for Mi as follows. We have shown that Σi contains at
most (3/ε)δ/(δ/(1/ε + 1)2) = 3(1/ε + 1)2/ε empty large batches and at most 1/ε + 1 empty small
batches. The processing times of large batches are chosen from λ ≤ (1 + ε)/ε4 − 1/ε + 1 different
values. The delivery times of all the batches are chosen from 1/ε + 1 values. Hence, the number of
different configurations for machine Mi (i = 1, 2, . . . ,m) can be bounded by (λ(1/ε + 1) + 1)3(1/ε+1)2/ε ·

(1/ε + 2)(1/ε+1) ≤ (5/ε5)14/ε3 .
Let D({xklti|∀k, l, t}) be the maximum delivery completion time of the jobs processed on Mi if

assignment {xklti|∀k, l, t} is adopted. From the above analysis, D({xklti|∀k, l, t}) can be computed in
O((1/ε)7 · (5/ε5)14/ε3) = O((5/ε5)14/ε3+2) time.

Let vklti denote the number of jobs with release time ρk, delivery time ξl and processing time Pt that
are assigned to machines M1,M2, . . . ,Mi in Σ. It must be true that vklti ≤ nklt(i), k = 1, 2, . . . , 1/ε + 1,
l = 1, 2, . . . , 1/ε + 1, t = 0, 1, . . . , λ, i = 1, 2, . . . ,m. For i = 1, 2, . . . ,m, we call the set {vklti|∀k, l, t} an
outline for machines M1,M2, . . . ,Mi.

Let Vi be the set of all possible outlines for machines M1,M2, . . . ,Mi, i = 1, 2, . . . ,m. Unbounded
batch machines have the following property: for any pair of values of l and t, if vulti > 0 for some u ∈
{1, 2, . . . , 1/ε + 1}, then vklti = nklt(i) for all k ∈ {1, 2, . . . , u}. Hence, we get |Vi| ≤ (1/ε + 2)(1/ε+1)(λ+1) ≤

(1/ε + 2)6/ε5 , i = 1, 2, . . . ,m.
To solve P|r j,M j(inclusive), B ≥ n|Lmax, we generalize the dynamic programming approach pre-

sented in [9] for P|r j,M j(inclusive)|Cmax.
For each {vklti|∀k, l, t} ∈ Vi (i = 1, 2, . . . ,m), Let Fi({vklti|∀k, l, t}) denote the minimum possible

objective value if we use the outline {vklti|∀k, l, t} for machines M1,M2, . . . ,Mi. We are interested in the
schedules with objective value at most (3/ε)δ. Therefore, for machines M1,M2, . . . ,Mi, we only need
to consider the outlines with objective value no greater than (3/ε)δ. Let Wi ⊆ Vi be the set of these
outlines for machines M1,M2, . . . ,Mi, i = 1, 2, . . . ,m.

We have the following recurrence relation:

Fi+1({vklt(i+1)|∀k, l, t}) = min
wklti≤vklt(i+1)

{max{D({vklt(i+1) − wklti|∀k, l, t}), Fi({wklti|∀k, l, t})}}.

The boundary conditions are:
(i) F1({vklt1|∀k, l, t}) = D({vklt1|∀k, l, t}) if {vklt1|∀k, l, t} ∈ W1, and F1({vklt1|∀k, l, t}) = +∞ otherwise.
(ii) Fi({vklti|∀k, l, t}) = +∞ if {vklti|∀k, l, t} < Wi.
Finally, the optimal objective value is given by Fm({nklt(m)|∀k, l, t}).
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The values of nklti and nklt(i) for all k, l, t, i can be computed in O(n + m/ε6) time. Computing
D({vklt(i+1) − wklti|∀k, l, t}) takes O((1/ε)7 · (5/ε5)14/ε3) = O((5/ε5)14/ε3+2) time. Executing the dynamic
program takes time O(m·(5/ε5)14/ε3+2 ·|Vm|

2) = O(m·(5/ε5)14/ε3+2 ·((1/ε + 2)6/ε5)2) = O(m·(5/ε5)14/ε3+2 ·

(1/ε + 2)12/ε5).Hence, the overall running time of the algorithm is O(n+m·(5/ε5)14/ε3+2 ·(1/ε + 2)12/ε5).
Therefore we get:

Theorem 3.1. Problem P|r j,M j(inclusive), B ≥ n|Lmax admits a PTAS that runs in linear time for any
fixed accuracy requirement.

4. Conclusions

In this paper we initiated the study of scheduling jobs with release times, delivery times and in-
clusive processing set restrictions on unbounded batch machines. The objective is to minimize the
maximum delivery completion time. For this strongly NP-hard problem, we presented a linear time
approximation scheme. For future research, we can study this problem for other objective functions,
such as minimizing total weighted completion time. Moreover, we admit that the proposed PTAS still
has a bad dependence on ε. As pointed out by Mnich and Wiese [28], in practice exact algorithms
are often desired and it would be interesting to investigate fixed-parameter scheduling. If we take the
inverse of ε as a parameter, then what we developed can be seen as a fixed-parameter algorithm (for
this parameter). The idea in fixed-parameter algorithms is to accept exponential running times, which
are seemingly inevitable in solving NP-hard problems, but to restrict them to certain aspects of the
problem, which are captured by parameters [29]. In future research, we can use the techniques of
fixed-parameter scheduling to study problems of interest.
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