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Abstract: Congestion pricing has been unquestionably recognized as an efficient strategy for 
managing traffic demand following the successful introduction of such schemes in a number of cities. 
However, the lack of political and public acceptance can be blamed for the nonexecution of congestion 
pricing projects in numerous cities around the world. This paper sheds light on the impacts of 
congestion pricing and the factors influencing its public acceptance. Our research was aimed to answer 
the following questions: (i) What are the factors that can influence public acceptance of congestion 
pricing? (ii) What are the impacts of implementing a congestion pricing scheme? (iii) How can we 
overcome the barriers that currently stand in the way of public acceptance of congestion pricing? To 
answer these questions, we developed a case study combining stated preference and revealed 
preference data collected in Nanjing, China. The study analyzes the acceptance of congestion pricing 
and the factors influencing it, such as socioeconomics, the perceived impact, fairness and public 
transit-related factors. We compare logistic regression and artificial neural network models to gain a 
deeper knowledge of the important factors and investigate the respondents’ attitudes. The results 
revealed that the perceived impacts on congestion, the environment, trips to the city center, revenue 
allocation, public transportation price satisfaction, annual income, fairness, car ownership and travel 
frequency, along with the efficiency and capacity of public transport systems, need to be included when 
evaluating individuals’ acceptance of congestion pricing. Among these, the perceived impacts on 
congestion and the environment, fairness and revenue allocation to public transportation are the most 
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significant factors. Moreover, we offer further qualitative insight into the individual, economic and 
social impacts of congestion pricing. This paper provides decision- and policy-makers with important 
advice on how to promote public acceptance when considering the implementation of a congestion 
pricing scheme. 

Keywords: congestion pricing; public acceptance; machine learning; logistic regression; artificial 
neural networks; transport policy 
 

1 Introduction  

Traffic congestion has been a big issue in many regions around the globe. In addition to increasing 
travel time and decreasing the effectiveness of transportation systems, it has severe effects on a 
country’s economic growth and environment, thereby limiting the regional sustainable development. 
In recent years, many analysts and policy-makers have focused their attention on the problem of urban 
roadway traffic congestion, which is becoming increasingly problematic. As a result of this assessment, 
congestion pricing has been identified as the most appropriate strategy for ensuring that existing roads 
are utilized to their full potential.  

The concept of congestion pricing was first introduced by Pigou in 1920, but numerous studies 
have since been conducted to develop and refine it; see, for example, [1–3]. Although the introduction 
of congestion pricing has been considered and argued numerous times, public acceptance has proven 
to be the most significant obstacle to its implementation [4]. Congestion pricing has, in theory, two 
major challenges: political acceptance and public acceptance; these are in contrast to administrative 
and technological concerns, which many people believe are the fundamental obstacles to congestion 
pricing implementation. Many democratic countries have found it difficult to implement such 
programs because of a lack of strong political and public backing, or because of a lack of sufficient 
political and popular support [5].  

Though numerous studies have acknowledged that numerous types of studies acknowledge that 
congestion pricing is an economically sound strategy for properly managing road traffic congestion, 
there have been few instances in which such projects have been fully executed beyond the design 
phase [6]. Thus, understanding road pricing in terms of public acceptance is a key topic, but in order 
to resolve this contentious subject, a careful analysis must be carried out [7]. Indeed, the absences of 
interest, familiarity and personal priorities require an immediate understanding of the determinants of 
the public’s attitude (i.e., acceptance or rejection) toward congestion pricing. Recent years have seen 
a growing interest in the public’s acceptance of congestion pricing, as primarily assessed by surveys 
and interviews; Zhou and Dai [8] investigated the smog awareness effects on the public acceptance of 
congestion pricing, Jakobsson et al. [9] discussed the factors that influence the acceptance of road 
charging by private car drivers; Fujii et al. [10], using concepts of fairness and freedom, explored car 
owners’ acceptance of road pricing in Japan and Taiwan; Wang et al. [11] evaluated how public 
perception of uncertainty over fairness and efficacy influences acceptance of congestion pricing; 
finally, Li et al. [12] used a multinomial logit model to identify the main sources of the acceptance or 
rejection of a proposed scheme among business owners and stakeholders in Beijing, China. Therefore, 
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research has tended to focus on particular factors or users, and very few studies were conducted in China.  
This research was aimed to investigate, in a holistic way, the relationship between public 

acceptance and congestion pricing among respondents from different societal backgrounds in 
Nanjing city. In fact, 94% of the Chinese population resides on less than 43% of the land which has 
resulted in enormous regional disparities; consequently, the largest cities on the eastern side of China 
lack space for building and/or extending roads in infrastructure, making them home to the world’s 
most congested roads. Furthermore, Nanjing was ranked among the top 10 most congested cities in 
China in 2020 [13]; so, congestion pricing could be the best approach in this circumstance. To ensure 
the success of a future implementation of this strategy in China, and to gain a better knowledge of the 
public’s acceptance of congestion pricing, we evaluated data from Nanjing by using two of the most 
common and effective data analysis techniques: logistic regression and artificial neural networks. 

This work was also aimed to provide a comprehensive analysis, including management strategies, 
and an interpretation of the impacts on the functional and symbolic levels of individuals and society 
from a Chinese perspective. 

The remainder of this paper is structured as follows. In Section 2, we present a literature review 
of congestion pricing practices around the world, as well as the determinants of the public acceptance 
of this strategy. In Section 3, we describe our analysis methods and the datasets we used. In Section 4, 
we present the results and discuss the findings. In Sections 5 and 6, we discuss the policy implications, 
as well as the relationship between public acceptance of congestion pricing and its impact, and we 
compare our findings with those in the literature. In Section 7, we state our conclusions and suggest 
possible topics for future research. 

2 Literature review 

2.1 Congestion pricing practices 

Congestion pricing is a radical new idea in transportation, but it has already been successfully 
implemented in cities all over the world. The idea is simple: to reduce city traffic by charging drivers 
for the privilege of driving during rush hours and on congested roads. The ultimate goal is to achieve 
healthier and more livable cities. 

In London, for instance, the London congestion charge policy was finally adopted in 2003 after 30 
years of preliminary feasibility studies. In fact, from 1965, multiple studies concluded that a congestion 
charging system in Central London would improve traffic and the environment, as well as increase 
generated revenue [14]. The success of the London scheme demonstrates how environmental 
objectives can benefit from transport charging as an instrument to discourage private transport. The 
main lesson learned from the scheme is that political leadership, widespread public support and clear 
communication are prerequisites for successfully implementing a transport charging scheme. 

In 2006, the first trial of a congestion pricing scheme was introduced in Stockholm. It aimed to 
reduce traffic, improve accessibility and enhance environmental quality. The pilot was followed by a 
citizen referendum in September of the same year, in which 51.3% of Stockholm city residents voted 
in favor of the policy; the parliament subsequently chose to make the congestion charge system 
permanent. Six months following the trial, both public and political support had improved, despite the 
difficulty of convincing vehicle owners of the environmental advantages [15,16]. 
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Singapore is another successful example. Due to its considerably small and limited surface, in the 
early 1970s, the government had no choice but to introduce an area licensing scheme. This policy led 
to a 20% increase in bus passengers and a 10% reduction in bus travel time. Tariffs vary during peak 
hours to increase road users’ efficiency and fairness without incurring any additional costs. This was 
accomplished by implementing variable toll costs based on vehicle classification (vehicle type and the 
number of axles), the location of the gantry (based on the direction of travel) and the time of day or 
night [17]. 

Multiple adjustments were made to the plan’s equity and complexity based on public feedback; 
and, in 1998, the area licensing scheme was superseded by the more sophisticated and adaptive 
electronic road pricing (ERP) system, in which charges are instantly assigned based on vehicle type, 
gantry location and time of day [18]. 

In 2007, the mayor of New York City announced a policy that included a congestion pricing 
trial [19]; after several revisions to the policy, and public campaigns, the plan was approved by a 
commission by a vote of 13 to 2. Nonetheless, two rounds afterwards, the state assembly chose not to 
vote on the proposal due to public and elected official opposition. Since then, researchers have 
investigated the rejection of this policy and reported that individuals who trusted the stated benefits of 
the plan, were more aware of it and/or used alternative modes of transportation were more likely to 
support it [20]. Besides the poor political handling, the absence of a congestion pricing pilot and the 
inadequacy of the proposed solution to the equity issue, the public and elected officials were primarily 
responsible for the rejection [21]. However, the state assembly surprisingly passed the congestion 
pricing law in 2020 when the lengthy path to completing the toll project was shortened by President 
Biden’s approval of an environmental review, making New York City the first city in North America 
to implement a congestion pricing scheme [22]; it is expected to come into effect by the end of 2023. 

Although the primary purpose of Norway’s toll cordons was not to reduce traffic congestion, the 
toll cordons have had that effect. In fact, they have been used as a financial tool for road and 
infrastructural facility expansion for over eight decades. Toll financing projects were contingent on 
political agreement after a two-step political procedure consisting of toll finance acceptance and 
financing scheme approval. The use of road pricing in Norway was also prompted by the country’s 
high gasoline and road maintenance taxes, which involve multiple tax systems and public funding [23]. 

In 1982, Hong Kong’s government implemented the world’s first ERP system to control and 
reduce traffic issues. Hong Kong is an example of a place where a road congestion pricing policy 
intended to benefit average citizens had to be reevaluated after politicians and decision-makers realized 
that it was unfeasible due to equity and fairness issues, not to mention its largest obstacle, which was 
perceived data privacy [24]. 

In 2008, Milan first implemented a cordon pricing program called “EcoPass”, requiring all 
motorists entering the city center between 7.30 a.m. and 7.30 p.m., Monday through Friday, to pay a 
pollution tax proportional to their vehicles’ emission levels. The program attempted to minimize air 
pollution and road congestion; as a result, after almost 1 year, traffic dropped by 12.3%, NOx and CO2 
emissions were lowered by 17 and 14%, respectively, and the number of people using public 
transportation rose by 9.2% [25]. The plan was later superseded by “Area C” in 2012, which was a “pure” 
congestion pricing scheme; its impacts on traffic were even greater than those of its predecessor [26]. 
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The Milan congestion charge scheme is a great example of how road pricing can successfully 
shift from a pollution control scheme to a congestion management scheme, as well as contribute to the 
whole European experience of pollution charges and road pricing in general. 

2.2 Factors influencing congestion pricing acceptance 

Based on previous experiences, the public acceptance of congestion pricing was primarily 
determined, as shown in Table 1, by four factors: privacy, uncertainty, complexity and equity. For each 
scenario, an additional investigation was conducted to determine the presence of the aforementioned 
factors, which were then either ignored or considered. Extensive research has demonstrated that 
problem perception, awareness of choices and alternatives, social norms, efficiency and perceived 
fairness are crucial acceptance drivers. 

Table 1. Factors influencing the public acceptance of congestion pricing. 

Factors Definitions Cases References 

Equity The mechanisms for collecting tolls as 
well as the distribution of tolls among 
the major sociodemographic 
groupings. 

• Singapore 
• London 
• Hong Kong (*) 
• Edinburgh (*) 
• New York (*) 

[1,20,26,27] 

Complexity To create a tolling system that is, in 
principle, effective, it is necessary for 
the general public to have a solid 
comprehension of the congestion 
pricing strategy. 

• Singapore  
• New York (*) 
• Stockholm 
• Edinburgh 

[27–30] 

Uncertainty  When users are aware of the current 
traffic situation, but they are uncertain 
about the proposed scheme in terms of 
how it will generate revenue and how 
it will be distributed. 

• Hong Kong (*) 
• Edinburgh 
• Stockholm 

[4,5,31–33] 

Privacy Drivers are often concerned that the 
system may record their personal 
information during transactions, 
thereby invading their privacy. 

• London 
• Singapore 
• Hong Kong (*) 

[24,30,34,35] 

  (*) The case was rejected due to this factor 

 
To begin with, regarding the privacy concern, in the United Kingdom, the introduction of the 

London congestion charge sparked a public debate about privacy rights. Public support was threatened 
by concerns about privacy invasion [29]. Transport for London [30], however, made a statement that 
it would not store information and that the database would be encrypted and kept in a secure 
environment. The Singaporean ERP system devised a method of safeguarding the privacy of its users. 
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Because the ERP system does not retrieve information about specific vehicle occupants, the concern 
about private information has been alleviated in this case.  

Another important factor is equity. The issue of fairness in congestion pricing consists of two 
components: the tolling tactics and the distribution of tolls across various sociodemographic categories. 
In fact, there is evidence that, in Hong Kong, New York City and Edinburgh, when proposed congestion 
pricing schemes were rejected, the question of equity was not addressed properly. In New York City, 
many revisions were made to the initial policy's complexity and fairness in response to public 
feedback [31].  

As a matter of fact, establishing a potential charging scheme that is efficient, transparent, and 
valuable for motorists and the general public has been shown to be one of the key drivers to the public 
attitudes towards congestion pricing [27]. 

Moreover, uncertainty surrounding potential congestion pricing schemes is likely to hinder their 
future development. To guarantee their successful implementation, trials must therefore provide 
sufficient knowledge and information to the broader population. In addition, revenue allocation must 
be set out in detail to ensure public support for any congestion pricing scheme [32]. 

Several studies have tried to present measurement approaches to congestion pricing, but they have 
lacked theoretical and practical implementation of the concept [33]. Even though some studies have 
presented theoretical foundations, relatively few have described any practical implementation of 
congestion pricing and the primary motivating factors that can impact the public’s willingness to accept 
it. The bulk of studies published on road pricing, such as [34–36], lack guidance toward achieving a 
comprehensive and well-developed transport policy; they also fail to show a basic economic rationale, 
something that is quite difficult to manage and implement. The studies lack information on traffic 
reforms and significant political rationale, because politicians tend to make the issue exceedingly 
complex and controversial. 

3 Study methods  

Conventional statistical models, such as logistic regression models, have been widely used in 
public attitude analyses. Numerous studies have adopted such models to analyze public acceptance 
and its influencing factors (e.g., [27,37–39]). Although they are accurate for a wide variety of simple 
datasets and perform well when datasets are linearly separable, these models show their disadvantages 
in capturing complex relationships.  

Artificial neural networks are emerging as a viable alternative to conventional logistic regression, 
with which they have a large number of similarities [40]. In fact, artificial neural networks show strong 
ability in classification and, resultingly, high fitting accuracy. For example, to study public acceptance 
of urban road pricing, Hao et al. [41] used a cluster analysis approach to identify different groups of 
people. However, because of its relatively low interpretability, this method is still not commonly used 
in assessing the acceptance of congestion pricing. While the merits of the logistic regression and 
artificial neural network models are well understood, these models have not been considered in terms 
of assessing the public acceptance of congestion pricing. In this study, we examined the acceptance 
level of congestion pricing based on data collected (sample size = 1740) in Nanjing, China; we also 
considered the factors that influence public acceptance of congestion pricing, including socioeconomic, 
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perceived impact, equity and public transit-related issues. Two models were implemented to meet the 
analysis requirements and investigate which factors were important for the successful implementation 
of a congestion pricing scheme.  

The questionnaire was divided into two sections. The first section involves revealed preference 
experiments, which include questions on socioeconomic characteristics (e.g., gender, age, annual 
income, employment status, car ownership, family structure), travel frequency, level of satisfaction 
with public transport (e.g., price, service), primary transport mode for traveling to the city center and 
road condition. The second section involves congestion charges and draws from available literature on 
stated preference experiments that address specific questions about the most important variables 
influencing congestion pricing acceptance. The aforementioned variables will serve as independent 
variables in our models, while the final question of the survey (i.e., to what extent will you support the 
implementation of a congestion charge scheme in Nanjing?) will be the dependent variable. 

3.1 Logistic regression 

Logistic regression (alternatively referred to as logit regression) is a statistical model frequently 
used in supervised learning scenarios to predict the probability of an event based on a known dataset 
and assess either the likelihood of an event occurring or whether an instance belongs to a specific class. 
In this way, we can estimate which values of a set of features will produce the most accurate predictions. 

 

Figure 1. Sigmoid function graph. 

The logistic model uses the logistic function, 𝜎ሺ𝑡ሻ , shown in Eq (1), where 𝑥ଵ, 𝑥ଶ, … , 𝑥௡ 
represents the set of predictors, and 𝛽଴, 𝛽ଵ, 𝛽ଶ, … , 𝛽௡, the corresponding coefficients. The product of 
the logistic function is expressed as a function of t, which is a linear combination of the predictors and 
their coefficients. This product forms an S-shaped curve with respect to t, ranging between 0 and 1, as 
shown in Figure 1. 
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𝜎ሺ𝑡ሻ ൌ ௘ഁబశഁభೣభశഁమೣమ…ഁ೙ೣ೙

ଵା௘ഁబశഁభೣభశഁమೣమ…ഁ೙ೣ೙
ൌ ଵ

ଵା௘షሺഁబశഁభೣభశഁమೣమ…ഁ೙ೣ೙ሻ
ൌ ଵ

ଵା௘ష೟
  (1) 

where 𝜎ሺ𝑡ሻ, ranging between 0 and 1, is the probability of the acceptance of a congestion pricing 
scheme, the set of predictors 𝑥ଵ, 𝑥ଶ, … , 𝑥௡ refers to the explanatory variables (i.e., age, gender, income, 
travel frequency, satisfaction level of public transport (e.g., price, service), primary transport mode for 
traveling to the city center, reducing congestion, etc.) , 𝛽଴ is the intercept of the model and 𝛽ଵ, 𝛽ଶ, … , 𝛽௡ 
represent the coefficients of the model for each explanatory variable. 

After rearranging Eq (1), the quantity 
௣ሺ௫ሻ

ଵି௣ሺ௫ሻ
, which represents the odds, was obtained as in Eq (2).  

௣ሺ௫ሻ

ଵି௣ሺ௫ሻ
ൌ 𝑒ఉబାఉభ௫భାఉమ௫మ…ఉ೙௫೙                                                      (2) 

The odds 
௣ሺ௫ሻ

ଵି௣ሺ௫ሻ
can take any value from 0 to infinity. Values of odds close to 0 and ∞ indicate a 

significantly low probability of acceptance (strongly disagree) and a high probability of acceptance 
(strongly agree), respectively.  

3.2 Artificial neural network 

Artificial neurons implement weightings or multiplication factors to simulate the synaptic 
junction strength of biological neurons, and summations of signals received from every link model the 
action of the axon hillock. In 2011, Gyurova and Friedrich [42] described neural networks as being 
similar to the brain, containing a massively parallel collection of small and straightforward processing 
units. Models typically comprise numerous non-linear computational elements that operate in parallel 
and are organized into patterns reminiscent of biological neural nets [43].  

For artificial neural network construction, no description of physical relationships nor 
observational theory is necessary. This aspect has an advantage over regression analysis and is, 
therefore, suitable for problem modeling when input and output relationships are unclear or significant 
formulation time is required. Lippman [43] suggested that, beyond optimal linear techniques, artificial 
neural networks can perform signal filter operations and functional approximations. This is enabled by 
their non-linear nature: they are capable of executing pattern recognition by defining non-linear regions 
in the feature space. 

However, it has also been noted in most of the literature that artificial neural networks act like a 
“black box” because the modeling process is relatively complicated to understand, and it is difficult to 
obtain any physical relationship within the data from the network, resulting in low interpretability [42]. 

Figure 2 illustrates this concept with a typical artificial neural network structure. The circles 
(nodes) in Figure 2 represent the neurons (aggregation operations or functions); they constitute the 
input signal applied to the nodes of the next layer, while the connecting lines are used to represent the 
weights (coefficients). The output signal set of the output layer of the neural networks represents the 
response to the activation pattern supplied by the source neurons in the first input layer. 

In our study, the nodes of the input layer represent the factors influencing the acceptance of a 
congestion pricing scheme in our study, i.e., age, gender, income, travel frequency, satisfaction level 
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of public transport (e.g., price, service), primary transport mode for traveling to the city center and 
likelihood to reduce congestion, whereas the output layer represents the acceptance of the scheme and 
the connecting lines represent the weight of each variable (the greater the weight, the greater the 
influence of the variable). 

 

Figure 2. Illustration of neural network architecture. 

Artificial neural networks learn by minimizing error between predicted and target values through 
a process called backpropagation [44]; this entails producing a forecast, comparing it to the target value 
and finally adjusting the coefficients necessary to minimize the error. The first step in making these 
predictions is usually to set random weights as initialization and then multiply those weights by the 
nodes in a process called the forward pass. 

4 Results and discussion 

Figure 3 illustrates the percentage distribution of respondents by gender, age, annual income, 
car ownership and educational background. According to the results, 62% of respondents were men 
and 38% were women. The majority of respondents were aged 18 to 30 (60%), followed by those 
aged 31 to 40 (21%) and those aged 41 to 50 (14%). Additionally, 34% of respondents reported an 
annual income of less than 40,000 Chinese Yuan, while 20 and 19% reported annual incomes of 
between 40,000 and 60,000 and over 80,000 Chinese Yuan, respectively. Lastly, 48% of respondents 
claimed to not have access to a vehicle, while the remaining 52% reported having access to at least 
one vehicle. 
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a Gender profile of survey respondents b Age profile of survey respondents 

  

c Respondent annual income d Respondent car ownership 

e Respondent educational background 

Figure 3. Respondents sociodemographic characteristics. 
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Table 2. Logistic regression results. 

Pseudo R-squ.:  0.449  Log-Likelihood:    -664.56 

Covariance Type:  Non-robust   LLR p-value 5.27E-207

 Coeff Std err z P > |z| [0.025 0.975] 

Gender 0.1808 0.147 1.227 0.22 -0.108 0.47 

Age 0.1647 0.151 1.091 0.275 -0.131 0.461 

Income -0.0596 0.082 -0.727 0.467 -0.22 0.101 

Education 0.0162 0.152 0.107 0.915 -0.281 0.313 

Full-Time Job* 0.6717 0.324 2.074 0.038 0.037 1.306 

Part-Time Job 0.8097 0.657 1.233 0.218 -0.478 2.097 

Self-Employed 0.5312 0.488 1.088 0.276 -0.425 1.488 

Unemployed* 2.7118 1.409 1.925 0.054 -0.05 5.473 

Retired* -1.4182 0.541 -2.622 0.009 -2.478 -0.358 

Car Ownership** -0.544 0.107 -5.098 0.000 -0.753 -0.335 

Household Single Person 0.2437 0.316 0.77 0.441 -0.377 0.864 

Household Single Parents 0.4454 0.383 1.162 0.245 -0.306 1.197 

Household Couple (No Children) -0.5034 0.37 -1.361 0.173 -1.228 0.221 

Household Couple (+ Children) 0.5298 0.31 1.711 0.087 -0.077 1.137 

Household with Parents -0.2489 0.396 -0.628 0.53 -1.025 0.527 

Travel Frequency -0.0734 0.074 -0.985 0.325 -0.219 0.073 

Public Transport Efficiency 0.0403 0.125 0.321 0.748 -0.206 0.286 

Satisfied with PT Fares* 0.2655 0.125 2.131 0.033 0.021 0.51 

Private Car* -0.7542 0.289 -2.611 0.009 -1.32 -0.188 

Public Transport** -1.1425 0.238 -4.797 0.000 -1.609 -0.676 

Bike and Walking* -1.4982 0.528 -2.838 0.005 -2.533 -0.463 

PT Service Satisfaction -0.2054 0.143 -1.439 0.15 -0.485 0.074 

Use Revenue for Transit -0.0387 0.081 -0.478 0.632 -0.197 0.12 

Use Revenue for Environment* -0.2138 0.099 -2.166 0.03 -0.407 -0.02 

Reduce Congestion** 0.8029 0.123 6.541 0.000 0.562 1.044 

Reduce Emissions* 0.3623 0.113 3.219 0.001 0.142 0.583 

Unfair to Poor* -0.2603 0.107 -2.434 0.015 -0.47 -0.051 

Bad for the Economy -0.3784 0.11 -3.452 0.001 -0.593 -0.164 

PT Sufficiency 0.1588 0.109 1.455 0.146 -0.055 0.373 

Use More PT * 0.2707 0.105 2.572 0.01 0.064 0.477 

Less Trips to City** -0.6385 0.115 -5.532 0.000 -0.865 -0.412 

Jobs in City Less Appealing* 0.3226 0.126 2.562 0.01 0.076 0.569 

Note: **:P-value ≤ 0.001;  *: P-value ≤ 0.05 

PT: Public Transport LLR: Log-Likelihood Ratio   

Correlations among variables were tested using the Pearson correlation method. The values that 
indicate the strength of the correlation range between -1 and 1. Values of 1 and -1 indicate complete 
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correlation, while values closer to 0 suggest weaker correlation; a zero value indicates an independent 
relationship between two variables. The direction of the relationship is indicated by the sign of the 
value, where a negative value implies a negative relationship, and vice versa. The results returned 
values of 1.0 when each independent variable (shown in Table 2) was correlated against itself, while 
the correlation with other variables ranged mostly between -0.3 and 1, with few values between -0.7 
and -0.4. 

4.1 Logistic regression results 

The results of the logistic regression model analysis are shown in Table 2. It can be seen that 
respondents who reported a high level of acceptance are likely to believe that congestion pricing will 
help reduce congestion (coefficient = 0.80, p < 0.001) and car emissions (coefficient = 0.3623, p < 0.001). 
On the other hand, the belief that congestion pricing revenue will be used to improve the environment 
unexpectedly showed a negative correlation with congestion pricing acceptance (coefficient = -0.21, p 
< 0.05). Additionally, respondents who were satisfied with public transportation prices (coefficient 
= 0.26, p < 0.05) and believed that a congestion pricing scheme would not only increase people’s 
reliance on public transportation for downtown travel (coefficient = 0.27, p < 0.05), but would also 
result in a lack of interest in city-based jobs (coefficient = 0.32, p < 0.05), had a higher acceptance rate. 
In contrast, strong respondent opposition to this proposal was based on the notion that a congestion 
charge would discourage people from visiting the city for shopping or entertainment (coefficient = -0.63, 
p < 0.05). Additionally, individuals who owned at least one car (coefficient = -0.54, p < 0.001) or 
believed that the scheme was unfair to car users and low-income groups (coefficient = -0.26, p < 0.05) 
were more likely to express significant opposition to this approach. Congestion pricing acceptance 
appeared to be unaffected by other factors such as age (coefficient = 0.16, p = 0.27), gender (coefficient 
= 0.18, p = 0.21), education (coefficient = 0.01, p = 0.91), income (coefficient = -0.05, p = 0.46) and 
travel frequency (coefficient = -0.07, p = 0.32). 

The logistic regression results have merit in that the direction and intensity with respect to each 
input variable and its statistical significance are explicitly given, allowing for direct quantification of 
the expected impact of a change of a specific predictor in the planning stage. However, the assumed 
linear relationship (i.e., the input t is a linear function of the predictors and their coefficients) can be 
overly modeled, and the basic assumption of (nearly complete) independence among the predictors 
might cause biased or over-/underrated results if some of the results are correlated. The observed, 
counterintuitive results may be due to limitations of the logistic modeling method. 

4.2 Artificial neural network model results 

The neural networks were built using Scikit-Learn, and a multilayer perceptron (MLP) 
architecture was adopted for the model.  

A grid search algorithm was used to optimize model performance by traversing given 
combinations of parameters. In grid search cross-validation, the algorithm optimizes the model 
performance according to the results of cross-validation. Cross-validation on a fundamental level is 
referred to as k-fold cross-validation [45]. The training set was divided into k subsets. The following 
procedure was followed for each of the k “folds”: 
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• A model was trained using k-1 of the folds as training data; 
• The resulting model was validated on the remaining part of the data. 
The k-fold cross-validation performance measure is therefore the average of the values obtained 

in the loop. While this strategy is computationally intensive, it avoids excessive data waste, which is 
critical for issues such as inverse inference, which requires a minimal number of samples. 

Grid search cross-validation was used to build an optimized MLP classifier; the tested parameters 
were as follows: 
• Single hidden layer with 25, 50, 75 and 100 nodes 
• Two hidden layers with corresponding numbers of nodes of (25, 25), (50, 50), (75, 75) and (100, 100) 
• Activation functions tested were logistic, tanh and ReLU 

Twenty-two total combinations were tested; and, the result of the optimized architecture with the 
highest accuracy came from the tanh activation function with a (100, 100) hidden layer size. 

Table 3 shows an overview of the optimized neural network MLP classifier (100, 100) model 
results. The receiver operator characteristic (ROC) curve is commonly used to illustrate the 
compromise between sensitivity (or the true positive rate (TPR)) and specificity (1 – false positive rate 
(FPR)). A random classifier is expected to generate points along the diagonal (FPR = TPR) as a baseline. 
The less accurate the test, the closer the curve is to the 45° diagonal of the ROC space, while classifiers 
that generate curves closer to the upper-left corner perform better. The ROC curve and the confusion 
matrix of the model indicate that the optimized neural network MLP classifier gives clearly better 
results than the precedent model; it also has a reasonably extensive convergence, because the predicted 
outputs matched the actual targets at a rate of 96%.  

Table 3. Artificial neural network confusion matrix and ROC curve. 

 Confusion matrix ROC curve 

Optimized 
neural 
network 
MLP 
classifier 

 Precision Recall F1-score Support 

Accuracy 0.965517 0.965517 0.965517 0.965517 

To assess the factors that highly influence congestion pricing acceptance according to the 
optimized neural network model, the weights of the features were set as listed in descending order of 
strength in Table 4. 
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Table 4. Weights of features in optimized neural network MLP classifier. 

Feature Weight 

Reducing Congestion 0.2017 ± 0.0242 

Public Transport 0.0714 ± 0.0047 

Reduce Emissions 0.0638 ± 0.0129 

PT Efficiency 0.0613 ± 0.0078 

Unfair to Poor 0.0552 ± 0.0105 

Car Ownership 0.0527 ± 0.0068 

Income 0.0440 ± 0.0085 

Use More Public Transport  0.0359 ± 0.0049 

Private Car 0.0352 ± 0.0054 

Less Trips to City 0.0333 ± 0.0028 

Satisfied with PT Fares 0.0319 ± 0.0023 

PT Service Satisfaction 0.0282 ± 0.0109 

Use Revenues for Transit 0.0277 ± 0.0053 

Travel Frequency 0.0268 ± 0.0042 

Self-Employed 0.0231 ± 0.0039 

Household Single parents 0.0207 ± 0.0048 

Gender 0.0192 ± 0.0066 

Use Revenue for Environment 0.0161 ± 0.0035 

Bike and Walking 0.0159 ± 0.0026 

Household Single person 0.0149 ± 0.0025 

PT Sufficiency 0.0123 ± 0.0043 

Household Couple (No Children) 0.0118 ± 0.0023 

Bad for the Economy 0.0097 ± 0.0028 

Age 0.0078 ± 0.0037 

Retired 0.0058 ± 0.0044 

Jobs in City Less Appealing 0.0057 ± 0.0042 

Household Couple (+ Children) 0.0055 ± 0.0037 

Education 0.0043 ± 0.0039 

Full-Time Job 0.0028 ± 0.0008 

Part-Time Job 0.0025 ± 0.0011 

Household with Parents 0.0021 ± 0.0006 

Unemployed 0.0020 ± 0.0016 

Consistent with the logit model, the artificial neural network results show that the primary 
elements that influence public acceptance of congestion pricing include the presumption that a pricing 
scheme would help reduce traffic congestion and vehicle pollutants, along with fairness to the lower-
income class and car drivers; the effect of fairness is perhaps somewhat counterintuitive given that one 
might naturally think that people would be more willing to pay in order to get what they perceive as a 
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valued service. Under certain assumptions, this can be construed as implying that perceived inequity 
will generate resentment, which ultimately may provoke counterproductive reactions by drivers who 
perceive themselves as having been forced to pay rather than voluntarily paying the fee. 

Moreover, other factors that are mainly related to public transport were interestingly shown to be 
more influential in the current model outputs than in the logistic regression model, such as comments 
on bus efficiency, public transport price and service and the use of revenue to improve public 
transportation systems. In other words, the accuracy of predicting public acceptance of congestion 
pricing was increased by public transportation system improvements and bus efficiency including 
pricing and service. As such, it can be useful both for planners and policy-makers to understand how 
they can improve the conditions of the public transport systems to increase public acceptability of 
congestion pricing, hence ultimately increasing its chance of implementation. 

Besides this, the results show that people who travel frequently by using public transport had a 
higher acceptance rate for congestion pricing, which may also reflect, on the other side, that 
respondents who own at least one car will strongly oppose charging schemes; thus, car ownership and 
income do influence congestion pricing acceptance.  

The pattern of results suggests that income helps predict willingness to pay for road use. Given 
that the model indicated that there is in fact a relationship between income and support for congestion 
charging, we believe that lower-income groups may be more skeptical about this policy. This result 
also suggests that low-income people may have less flexibility in their travel options and higher levels 
of dependence on public transport. These findings may shed light on how certain individuals perceive 
similar policies differently depending on their social class and level of social mobility. 

Additionally, contrary to expectations, this study did not find a significant association between 
willingness to pay and any of the following variables in either the linear regression or neural networks 
models: education, household structure, age, gender and occupation. 

Finally, the analysis of the dataset using the aforesaid models shows that the main factors that can 
influence congestion pricing acceptance are as follows: ability to reduce road congestion and car 
emissions, car ownership, comments on public transportation systems fees, the use of a private 
car/public transport as primary transportation mode, fairness of the scheme, traveling less to city center 
for entertainment and switching to multimodal transport. However, what is surprising is that some 
factors, which we believe to be very important according to the literature in Section 2, were not 
included in the panel of the most influencing factors in the logistic regression model, e.g., income, 
travel frequency and using congestion pricing revenue to improve public transportation systems. On 
this basis, various hypotheses arise to account for these observations, such as those regarding the 
accuracy of the model or the possibility of a strong correlation between two variables. 

The present findings confirm that logistic regression is a simpler and more straightforward 
technique to implement and use to analyze results. It can indicate not only the relevance of a predictor 
(coefficient), but also the direction of the relationship between the dependent and the independent 
variables (positive or negative). In spite of this, the primary constraint for logit models is the linear 
association between the variables, which can make it difficult to capture complex relationships. This 
approach is readily outperformed by more powerful and compact algorithms, such as neural networks. 
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5 Public acceptance and impacts of congestion pricing  

Our results cast a new light on the importance of understanding the relationship between the 
public’s willingness to support congestion pricing and the policy effects, many of which are centered 
on the economic, social and individual aspects. Table 5 shows the functional (i.e., What does it do for 
you/ for society/ for the economy?) and symbolic dimensions (i.e., What does it represent?) of each of 
the aforementioned aspects. 

Table 5. Functional and symbolic dimensions of congestion pricing impacts. 

 Functional Dimension Symbolic Dimension 

Social Impacts 

• Reduces pollution and emissions 
• Reduces congestion 
• Generates revenue 
• Reduces accidents 

• Healthier environment 
• Improves travel time and speed 
• Improves public transportation 
• Benefits users  
• Increases safety 

Individual Impacts 
• Time gaining 
• Modal switch (more walking, biking 

and carpooling) 

• Reduces delays and stress 
• Better health 
• More savings 

Economic Impacts 
• Guarantees free flow of traffic 
• Generates revenue 
• Increases trip time predictability 

• Ensures reliability 
• Keeps business and goods costs low 
• Allows more deliveries per hour 

Our findings are directly in line with previous findings, such as those of Bhatt et al. [46], who 
stated that allocating revenues to the most favored purposes is essential for public support. According 
to the literature, revenue dedicated to public transportation and/or infrastructure improvements may 
generate support in some regions, but may also compete with other inclinations, such as potential tax 
cuts, in others. Moreover, equity among income groups exposed to pricing frequently causes experts 
in the field of road pricing to discuss fairness. However, studies suggest that congestion pricing 
acceptance may not differ significantly across income levels, and that a broader definition of equity 
may predominate and require more consideration. Specifically, the following equity perspectives may 
be pertinent: fairness of outcome, i.e., assurance that some are not evading the pricing area; procedural 
fairness, i.e., allowing the public to contribute to the plan’s development; and fairness to special groups, 
such as persons with disabilities and reduced mobility and emergency workers. 

In addition to this, our results show that the general public appears to be more receptive to 
congestion pricing if it is believed that the revenue from the scheme will be distributed to help improve 
the environment and that the system will help reduce congestion and emissions. In fact, the cases of 
London and Stockholm were successful for these reasons, as there have been reports of better air 
quality within and in the areas surrounding congestion-charging zones. Some of these reductions are 
due to decreased traffic volumes, but the majority are attributable to the growth of public transit, as 
made possible by the revenue generated from congestion pricing, which has the potential to decrease 
pollution and sustain reductions over time [46]. Specifically, in Stockholm, congestion charging 
resulted in an up to 14% reduction in emissions [47].  
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Our analysis also demonstrates that people’s perceptions of fairness have a substantial impact on 
their perception of congestion pricing; hence, the equity implications of the policy are crucial in 
determining whether or not it will be supported by the general public. This is determined by comparing 
the amount charged to the average income of the population, the availability of other modes of 
transportation and the effectiveness of all systems; most important, however, are the impacts of 
congestion pricing on traffic and the environment. 

6 Policy implications 

There are different criteria for implementing schemes in different cities, such as private car 
ownership and the flexibility of the public transportation system. Furthermore, there are some 
important points to be accepted by both sides of the debate. First, congestion charging cannot always 
solve all traffic congestion and space utilization issues. Second, the scheme can only play an important 
role in improving transportation efficiency if it is designed within a comprehensive transport planning 
approach. Third, it will be necessary to put in place measures to complement and reinforce any 
congestion charging scheme, such as the investment of public funds in public transport infrastructure. 
For example, in China, the government has made significant investments in new bus lines and metro 
lines, which will be helpful in reducing the number of private cars using road space and increasing 
public acceptance of any eventual congestion pricing scheme in cities like Shanghai, Beijing, 
Guangzhou or Nanjing.  

Our investigation in Nanjing revealed a strong association between the public acceptance of 
congestion pricing and satisfaction with the quality of transit and related services. Therefore, congestion 
pricing must be included in any comprehensive package of transportation measures. When London first 
implemented congestion pricing, 33 complementary measures were also implemented to improve public 
transit services, provide alternative options and optimize signal timing. In addition, it is worth noting 
that China’s transportation system has dramatically improved over the last few years. Nanjing, for 
example, has expanded its subway network from 2005 to the present with 11 lines and 191 stations, 
and it has over 10 new lines and extensions under construction that are expected to be completed 
by 2026 [48], making it an ideal location for the implementation of a congestion pricing scheme. 

Before adopting such schemes, many publicity campaigns must be carried out through both print 
and online media to increase market development. In addition, the local government of Nanjing should 
initially implement a trial plan and use the generated revenue to upgrade transit systems, offer 
discounts to public transportation passengers and reduce peak-hour transit fares. Parking management 
is an additional complementary strategy, especially in the Xinjiekou area and across the central 
business district. This strategy can strongly influence demand. Nevertheless, it has been underutilized 
by several authorities. It can help lower demand for automotive travel and, as a result, address location- 
and time-based traffic congestion. 

Furthermore, transparency in toll fees collected and how they are spent can make congestion 
pricing more acceptable to the public. The public is often conscious of fees paid through congestion 
pricing policies, and hence is keen to ensure that revenue is not wasted or lost. Therefore, it is extremely 
important that the process be transparent, and that information on revenue generated and how it is 
spent to benefit the public must be clearly communicated. 
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Finally, there should be some sort of compensation mechanism in place for disadvantaged groups 
and businesses that are affected. Most importantly, though, it is critical to maintain a cost-effective 
user charge and improve the performance of the plan through the employment of an affordable and 
adaptable pricing system. 

7 Conclusions 

Among the ideas to alleviate traffic congestion, constructing new infrastructure and improving 
available alternatives are abstract concepts; the possibility of congestion charging, however, is concrete. 
In many instances, low public acceptance prior to the implementation is the major impediment to 
congestion pricing schemes. Thus, this paper investigates several factors that influence public support 
for congestion pricing before and during its implementation by government. 

Based on the survey analysis results of three different methods, we derived the general facts that 
the perceived impacts on congestion and the environment, trips to the city center, revenue allocation, 
public transportation price satisfaction, annual income, fairness, car ownership and travel frequency, 
along with the efficiency and capacity of public transport systems, need to be included when evaluating 
individuals’ acceptance of congestion pricing. Among these factors, the perceived impacts on 
congestion and the environment, fairness and revenue allocation to public transportation are the most 
significant features. Additionally, respondents who support the ideas that congestion pricing can help 
protect the environment by reducing vehicle emissions, and that its revenue can be used to improve 
the environment, are likely to strongly support the congestion pricing policy. In contrast, the belief that 
congestion charging will discourage people from visiting the city center for shopping or entertainment 
is the primary reason that some respondents oppose the policy. Additionally, individuals who own at 
least one car are more likely to express significant opposition to this approach. Accordingly, the key 
to increasing public acceptance is to improve public transportation, raise public awareness about 
policy and revenue redistribution strategies and alter individual expectations regarding congestion 
charging impacts.  

Unsurprisingly, as with any other innovation, the system has a number of inherent limits that, 
when considered, may result in its installation being rejected. Given these points, our study offers 
further insight into the individual, economic and social impacts of congestion pricing. Additionally, 
we provide decision- and policy-makers with important advice on how to promote the public approval 
of a congestion pricing scheme. To increase public trust and confidence, it is necessary to educate the 
general public vigorously about the complexity, privacy and fairness of the scheme. The government 
should safeguard the confidentiality of the personal information of all parties concerned. To achieve 
the overall goals, a forecasting model should be established to predict possible changes that will arise 
from implementation of the plan. 

The findings of this research can provide knowledge for policy-makers as they consider the 
implementation of congestion pricing policies and attempt to enhance public acceptance. However, 
more improvements may be made in future research; for example, we plan to incorporate more features 
into the models, such as pricing and time options. These elements will provide decision- and policy-
makers with more adaptable insight, assisting them in increasing congestion pricing acceptance. 
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