
ELECTRONIC RESEARCH ARCHIVE doi:10.3934/era.2021077
Volume 29, Number 6, December 2021 pp. 4159–4175

GLOBAL DYNAMICS OF SOME SYSTEM OF SECOND-ORDER

DIFFERENCE EQUATIONS

Tran Hong Thai∗, Nguyen Anh Dai and Pham Tuan Anh

Department of Mathematics, Hung Yen University of Technology and Education

Hung Yen 160000, Vietnam

(Communicated by Moxun Tang)

Abstract. In this paper, we study the boundedness and persistence of positive
solution, existence of invariant rectangle, local and global behavior, and rate

of convergence of positive solutions of the following systems of exponential

difference equations

xn+1 =
α1 + β1e

−xn−1

γ1 + yn
, yn+1 =

α2 + β2e
−yn−1

γ2 + xn
,

xn+1 =
α1 + β1e

−yn−1

γ1 + xn
, yn+1 =

α2 + β2e
−xn−1

γ2 + yn
,

where the parameters αi, βi, γi for i ∈ {1, 2} and the initial conditions
x−1, x0, y−1, y0 are positive real numbers. Some numerical example are given

to illustrate our theoretical results.

1. Introduction. Mathematical models of population dynamics are often described
by difference equations and systems of difference equations. In particular, the popu-
lation models involving exponential difference equations are quite popular, although
their stability analysis can be complicated. In recent years, the global asymptotic
behavior of the difference equations of exponential form has been one of the main
topics in the theory of difference equations (see [2, 3, 4, 5, 7, 12, 13, 14, 15, 16, 17,
8, 20] and reference cited therein).

In [4], El-Metwally et al. investigated the following population model:

xn+1 = α+ βxn−1e
−xn , (1)

where the parameters α and β are positive numbers and the initial conditions x−1
and x0 are arbitrary non-negative numbers. Later in [5], Fotiades et al. studied the
existence, uniqueness and attractivity of prime period two solution of this equation.

Papaschinopoulos et al. [15] and Papaschinopoulos and Schinas [17] investigated
the dynamical properties of two-species model described by systems of difference
equations, which is natural extension of single-species population model depicted in
1.
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Ozturk et al. [12] have investigated the following difference equation:

yn+1 =
α+ βe−yn

γ + yn−1
, (2)

where the parameters α, β, γ are positive numbers and the initial conditions are
arbitrary non-negative numbers.

Papaschinopoulos et al. [16] have studied the following systems of two difference
equations of exponential form:

xn+1 =
α+ βe−yn

γ + yn−1
, yn+1 =

δ + εe−xn

η + xn−1
,

xn+1 =
α+ βe−yn

γ + xn−1
, yn+1 =

δ + εe−xn

η + yn−1
,

xn+1 =
α+ βe−xn

γ + yn−1
, yn+1 =

δ + εe−yn

η + xn−1
,

where α, β, γ, δ, ε, η are positive constants and the initial values x−1, x0, y−1, y0 are
positive numbers.

In 2016, Wang and Feng [20] have investigated the dynamics of positive solution
of the following difference equation which is naturally a new form of single-species
model described in 1:

xn+1 = α+ βxne
−xn−1 ,

where the parameters α and β are positive numbers and the initial conditions x−1
and x0 are arbitrary non-negative numbers.

Motivated by the aforementioned study, our goal in this paper is to investigate the
qualitative behavior of positive solutions of some systems of exponential difference
equations

xn+1 =
α1 + β1e

−xn−1

γ1 + yn
, yn+1 =

α2 + β2e
−yn−1

γ2 + xn
, (3)

xn+1 =
α1 + β1e

−yn−1

γ1 + xn
, yn+1 =

α2 + β2e
−xn−1

γ2 + yn
, (4)

where the parameters αi, βi, γi for i ∈ {1, 2} and the initial conditions x−1, x0, y−1,
y0 are positive real numbers.

More precisely, we investigate the boundedness character, persistence, existence
of invariant rectangle, local asymptotic stability and global behavior of unique pos-
itive equilibrium point, and rate of convergence of positive solutions of system 3
and 4 which converges to its unique positive equilibrium point. For applications
and basic theory of difference equations we refer to [1, 6, 10, 11, 19].

2. Preliminaries. In this section, we present some definitions and theorems which
are used throughout this study.

Let us consider fourth-dimensional discrete dynamical system of the following
form:

xn+1 = f(xn, xn−1, yn, yn−1), yn+1 = g(xn, xn−1, yn, yn−1), n = 0, 1, .... (5)

where f : I2×J2 → I and g : I2×J2 → J are continuously differentiable functions
and I, J are some intervals of real numbers. Furthermore, a solution {xn, yn}∞n=−1 of
system 5 is uniquely determined by initial conditions (xi, yi) ∈ I×J for i ∈ {−1, 0}.
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Along with system 5, we consider the corresponding vector map F = (f, xn, g, yn).
An equilibrium point of 5 is a point (x, y) that sitisfies

x = f(x, x, y, y), y = g(x, x, y, y).

The point (x, x, y, y) is also called a fixed point of the vector map F .

Definition 2.1. Let (x, y) be an equilibrium point of system 5.
(i) An equilibrium point (x, y) is called stable if for any ε > 0 there is δ > 0 such

that for every initial conditions (x−1, y−1) and (x0, y0), if ||(x−1, y−1) − (x, y)|| +
||(x0, y0)− (x, y)|| < δ implies that ||(xn, yn)− (x, y)|| < ε for all n > 0, where ||.||
is usual Euclidean norm in R2.

(ii) An equilibrium point (x, y) is called unstable if it is not stable.
(iii) An equilibrium point (x, y) is called locally asymptotically stable if it stable

and if, in addition, there exists r > 0 such that (xn, yn) → (x, y) as n → ∞ for all
(x−1, y−1) and (x0, y0) that satisfy ||(x−1, y−1)− (x, y)||+ ||(x0, y0)− (x, y)|| < r.

(iv) An equilibrium point (x, y) is called global attractor if (xn, yn) → (x, y) as
n→∞.

(v) An equilibrium point (x, y) is called globally asymptotically stable if it stable
and a global attractor.

Definition 2.2. Let (x, x, y, y) be a fixed point of a map F = (f, xn, g, yn) where
f and g are continuously differentiable functions at (x, y). The linearized system of
5 about the equilibrium point (x, y) is

Xn+1 = JFXn,

where Xn =


xn
xn−1
yn
yn−1

 and JF is the Jacobian matrix of system 5 about the equi-

librium point (x, y).

Lemma 2.3. (see [19]) Assume that Xn+1 = F (Xn), n = 0, 1, ..., is a system of
difference equations such that X is a fixed point of F . If all eigenvalues of the
Jacobian matrix JF about X lie inside the open unit disk |λ| < 1, then X is locally
asymptotically stable. If one of them has a modulus greater than one, then X is
unstable.

Definition 2.4. A positive solution {xn, yn}∞n=−1 of system 5 is bounded and per-
sists if there exist positive constants m,M and an interger N ≥ −1 such that

m ≤ xn, yn ≤M, n ≥ N.

In order to study the asymptotic behavior of positive equilibrium, we state the
following lemma which is a slight modification of Theorem 1.16 of [6] and for readers
convenience we state it without its proof.

Lemma 2.5. Assume that f : (0,∞)× (0,∞)→ (0,∞) and g : (0,∞)× (0,∞)→
(0,∞) be continuous functions and a, b, c, d are positive real numbers with a < b, c <
d. Moreover, suppose that f : [a, b]× [c, d]→ [a, b] and g : [a, b]× [c, d]→ [c, d] such
that following conditions are satisfied:

(i) f(x, y), g(x, y) are decreasing with respect to x (resp. y) for all y (resp. x);
(ii) Let m1,M1,m2,M2 are real numbers such that

m1 = f(M1,M2),M1 = f(m1,m2),m2 = g(M1,M2),M2 = g(m1,m2) (6)
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then m1 = M1 and m2 = M2.
Then the systems of difference equations

xn+1 = f(xn−1, yn), yn+1 = g(xn, yn−1), (7)

xn+1 = f(xn, yn−1), yn+1 = g(xn−1, yn) (8)

have a unique equilibrium point (x, y) and every solution (xn, yn) of the system 7
(resp. 8) with x−1, x0 ∈ [a, b], y−1, y0 ∈ [c, d] converges to the unique equilibrium
(x̄, ȳ).

The following results give the rate of convergence of solutions of a system of
difference equations

Xn+1 = [A+B(n)]Xn (9)

where Xn is a m-dimensional vector, A ∈ Cm×m is a constant matrix, and B :
Z+ −→ Cm×m is a matrix function satisfying

‖B(n)‖ → 0 when n→ ∞, (10)

where ||.|| denotes any matrix norm which is associated with the vector norm

‖(x, y)‖ =
√
x2 + y2.

Proposition 2.6 (Perron’s theorem [18]). Assume that condition 10 holds. If Xn

is a solution of system 9, then either Xn = 0 for all large n or

ρ = lim
n→∞

n
√
‖Xn‖ (11)

exists and is equal to the modulus of one of the eigenvalues of matrix A.

Proposition 2.7 (See [18]). Assume that condition 10 holds. If Xn is a solution
of system 9, then either Xn = 0 for all large n or

ρ = lim
n→∞

‖Xn+1‖
‖Xn‖

(12)

exists and is equal to the modulus of one of the eigenvalues of matrix A.

3. Main results.

3.1. Global behavior of solutions of system 3.

3.1.1. Boundedness and persistence. In this section, we show the boundedness and
persistence of the positive solutions of system 3.

Lemma 3.1. Every positive solution {(xn, yn)} of system 3 is bounded and persists.

Proof. For any positive solution {(xn, yn)} of system 3, one has

xn+1 ≤
α1 + β1
γ1

= b1, yn+1 ≤
α2 + β2
γ2

= d1, n = 0, 1, 2, . . . (13)

Furthermore, from system 3 and 13, we obtain that

xn+1 ≥
α1 + β1e

−b1

γ1 + d1
= a1, yn+1 ≥

α2 + β2e
−d1

γ2 + b1
= c1, n = 2, 3, 4, . . . (14)

From 13 and 14, it follows that

a1 ≤ xn ≤ b1, c1 ≤ yn ≤ d1, n = 3, 4, 5, . . .

So the proof is complete.
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Lemma 3.2. Let {(xn, yn)} be a positive solution of system 3. Then [a1, b1]×[c1, d1]
is an invariant set for system 3.

Proof. The proof follows by induction.

3.1.2. Stability analysis. In this section, we shall investigate the asymptotic behav-
ior of system 3. Similar method can be found in [9].
Let (x, y) be the equilibrium point of system 3 then

x =
α1 + β1e

−x

γ1 + y
, y =

α2 + β2e
−y

γ2 + x
.

The linearized form of system 3 about the equilibrium point (x, y) is given by

Xn+1 = JF (x, y)Xn,

where Xn =


xn
xn−1
yn
yn−1

 and JF (x, y) =


0 − β1e

−x

γ1 + y
− x

γ1 + y
0

1 0 0 0

− y

γ2 + x
0 0 − β2e

−y

γ2 + x
0 0 1 0

.

In the following theorem, we show the asymptotic behavior of the positive solu-
tions of system 3.

Theorem 3.3. Suppose that the following relation holds true:

β1 < γ1, β2 < γ2. (15)

Then system 3 has a unique positive equilibrium (x, y) and every positive solution
of system 3 tends to the unique positive equilibrium as n→∞.

Proof. Consider the following functions:

f(x, y) =
α1 + β1e

−x

γ1 + y
, g(x, y) =

α2 + β2e
−y

γ2 + x
,

where x ∈ I1 = [a1, b1], y ∈ I2 = [c1, d1] which implies that f(x, y) ∈ I1, g(x, y) ∈ I2
and so that f : I1 × I2 → I1, g : I1 × I2 → I2. Then, it is easy to see that
f(x, y), g(x, y) are decreasing with respect to x (resp. y) for all y (resp. x). Let
(m,M, r,R) be a solution of the system

m = f(M,R), M = f(m, r),

r = g(M,R), R = g(m, r).

Then, one has

m =
α1 + β1e

−M

γ1 +R
, M =

α1 + β1e
−m

γ1 + r
, r =

α2 + β2e
−R

γ2 +M
, R =

α2 + β2e
−r

γ2 +m
. (16)

Moreover arguing as in the proof of Theorem 1.16 of [6], it suffices to assume that

m ≤M, r ≤ R. (17)

From 16, we get

β1e
−m = M(γ1 + r)− α1, β1e

−M = m(γ1 +R)− α1,

β2e
−r = R(γ2 +m)− α2, β2e

−R = r(γ2 +M)− α2,
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which imply that

β1(e−m − e−M ) = γ1(M −m) +Mr −mR,
β2(e−r − e−R) = γ2(R− r) +mR−Mr.

(18)

Then by adding the two relations 18, we obtain

β1(e−m − e−M ) + β2(e−r − e−R) = γ1(M −m) + γ2(R− r).
Moreover, we get

eR − er = eξ(R− r), min{R, r} ≤ ξ ≤ max{R, r},

eM − em = eθ(M −m), min{M,m} ≤ θ ≤ max{M,m}.
(19)

Then from 19, imply that

β1e
−m−M+θ(M −m) + β2e

−r−R+ξ(R− r) = γ1(M −m) + γ2(R− r). (20)

Hence from 20, we have

γ1(M −m)

(
1− β1

γ1
e−m−M+θ

)
+ γ2(R− r)

(
1− β2

γ2
e−r−R+ξ

)
= 0. (21)

Finally, from 15, 17 and 21, it follows that M = m and R = r. Therefore, from
Lemma 2.5, it follows that system 3 has a unique positive equilibrium (x, y) and
every positive solution of system 3 tends to the unique positive equilibrium as
n→∞. This completes the proof of the theorem.

In the next theorem of this section, we will study the global asymptotic stability
of the positive equilibrium of system 3.

Theorem 3.4. Consider system 3 where 15 holds true. Also suppose that

β1e
−a1

γ1 + c1
+
β2e
−c1

γ2 + a1
+
b1d1 + β1β2e

−a1−c1

(γ1 + c1)(γ2 + a1)
< 1. (22)

Then the unique positive equilibrium point (x, y) of system 3 is globally asymptoti-
cally stable.

Proof. First we will prove that (x, y) is locally asymptotically stable. The chara-
teristic equation of the Jacobian matrix JF (x, y) about (x, y) is given by

λ4 + p2λ
2 + p4 = 0, (23)

where

p2 =
β1e
−x

γ1 + y
+
β2e
−y

γ2 + x
− x.y

(γ1 + y)(γ2 + x)
,

p4 =
β1e
−x

γ1 + y
.
β2e
−y

γ2 + x
.

From condition 22, we get

|p2|+ |p4| =
β1e
−x

γ1 + y
+
β2e
−y

γ2 + x
+

x.y

(γ1 + y)(γ2 + x)
+
β1e
−x

γ1 + y
.
β2e
−y

γ2 + x

≤ β1e
−a1

γ1 + c1
+
β2e
−c1

γ2 + a1
+
b1d1 + β1β2e

−a1−c1

(γ1 + c1)(γ2 + a1)
< 1.

Therefore, follows Remark 1.3.1 of reference [10], all the roots of equation 23 are
of modulus less than 1, and it follows from Lemma 2.3 that the unique positive
equilibrium point (x, y) of system 3 is locally asymptotically stable. Using Theorem
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3.3, we obtain that (x, y) is globally asymptotically stable. This completes the proof
of the theorem.

3.1.3. Rate of convergence. In this section, we give the rate of convergence of a
solution that converges to the equilibrium of the systems 3. Similar method can be
found in [8, 9].

Let {(xn, yn)} be an arbitrary solution of system 3 such that limn→∞ xn = x,
and limn→∞ yn = y, where x ∈ [a1, b1], and y ∈ [c1, d1]. To find the error terms,
one has from the system 3

xn+1 − x =
α1 + β1e

−xn−1

γ1 + yn
− α1 + β1e

−x

γ1 + y

=
(α1 + β1e

−xn−1)(γ1 + y)− (α1 + β1e
−x)(γ1 + yn)

(γ1 + yn)(γ1 + y)

=
−α1(yn − y) + β1γ1(e−xn−1 − e−x) + β1(e−xn−1y − e−xyn)

(γ1 + yn)(γ1 + y)

=
−α1(yn − y)− β1γ1e−xn−1(exn−1−x − 1)

(γ1 + yn)(γ1 + y)

+
β1(e−xn−1y − e−xn−1yn + e−xn−1yn − e−xyn)

(γ1 + yn)(γ1 + y)

= −β1e
−xn−1(exn−1−x − 1)

(γ1 + y)(xn−1 − x)
(xn−1 − x)− α1 + β1e

−xn−1

(γ1 + yn)(γ1 + y)
(yn − y),

and

yn+1 − y =
α2 + β2e

−yn−1

γ2 + xn
− α2 + β2e

−y

γ2 + x

=
(α2 + β2e

−yn−1)(γ2 + x)− (α2 + β2e
−y)(γ2 + xn)

(γ2 + xn)(γ2 + x)

=
−α2(xn − x) + β2γ2(e−yn−1 − e−y) + β2(e−yn−1x− e−yxn)

(γ2 + xn)(γ2 + x)

=
−α2(xn − x)− β2γ2e−yn−1(eyn−1−y − 1)

(γ2 + xn)(γ2 + x)

+
β2(e−yn−1x− e−yn−1xn + e−yn−1xn − e−yxn)

(γ2 + xn)(γ2 + x)

= − α2 + β2e
−yn−1

(γ2 + xn)(γ2 + x)
(xn − x)− β2e

−yn−1(eyn−1−y − 1)

(γ2 + x)(yn−1 − y)
(yn−1 − y).

Let e1n = xn − x, and e2n = yn − y, then one has

e1n+1 = ane
1
n−1 + bne

2
n,

e2n+1 = cne
1
n + dne

2
n−1,

where

an = −β1e
−xn−1(exn−1−x − 1)

(γ1 + y)(xn−1 − x)
, bn = − α1 + β1e

−xn−1

(γ1 + yn)(γ1 + y)
,

cn = − α2 + β2e
−yn−1

(γ2 + xn)(γ2 + x)
, dn = −β2e

−yn−1(eyn−1−y − 1)

(γ2 + x)(yn−1 − y)
.
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Moreover,

lim
n→∞

an = − β1e
−x

γ1 + y
, lim

n→∞
bn = − x

γ1 + y
,

lim
n→∞

cn = − y

γ2 + x
, lim

n→∞
dn = − β2e

−y

γ2 + x
.

So, the limiting system of the error terms can be written as


e1n+1

e1n
e2n+1

e2n

 =


0 − β1e

−x

γ1 + y
− x

γ1 + y
0

1 0 0 0

− y

γ2 + x
0 0 − β2e

−y

γ2 + x
0 0 1 0




e1n
e1n−1
e2n
e2n−1


which similar to the linearized system of 3 about the equilibrium point (x, y). Using
Proposition 2.6 and 2.7, one has the following result.

Theorem 3.5. Assume that {(xn, yn)} be a positive solution of system 3 such that
limn→∞ xn = x, and limn→∞ yn = y, where x ∈ [a1, b1] and y ∈ [c1, d1]. Then the

error vector en =


e1n
e1n−1
e2n
e2n−1

 of every solution of (3) satisfies both of the following

asymptotic relations:

lim
n→∞

(||en||)
1
n = |λi|, lim

n→∞

||en+1||
||en||

= |λi|, i = 1, 2, 3, 4,

where λi is one of the charateristic roots of Jacobian matrix JF (x, y).

3.2. Global behavior of solutions of system 4.

3.2.1. Boundedness and persistence. In the following lemma, we study the bound-
edness and persistence of the positive solutions of system 4.

Lemma 3.6. Every positive solution {(xn, yn)} of system 4 is bounded and persists.

Proof. Let {(xn, yn)} be a positive solution of system 4. Similarly as Lemma 3.1,
for n = 3, 4, 5, . . . by induction, we get

xn ∈ [a2, b2], yn ∈ [c2, d2],

where

a2 =
α1 + β1e

−α2+β2
γ2

γ1 + α1+β1

γ1

, b2 =
α1 + β1
γ1

,

c2 =
α2 + β2e

−α1+β1
γ1

γ2 + α2+β2

γ2

, d2 =
α2 + β2
γ2

.

So the proof is complete.

Corollary 3.7. Let {(xn, yn)} be a positive solution of system 4. Then [a2, b2] ×
[c2, d2] is an invariant set for system 4.
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3.2.2. Stability analysis. In this section, we shall investigate the asymptotic behav-
ior of system 4. Let (x, y) be the equilibrium point of system 4 then

x =
α1 + β1e

−y

γ1 + x
, y =

α2 + β2e
−x

γ2 + y
.

The linearized form of system 4 about the equilibrium point (x, y) is given by

Xn+1 = JF (x, y)Xn,

where Xn =


xn
xn−1
yn
yn−1

 and JF (x, y) =


− x

γ1 + x
0 0 − β1e

−y

γ1 + x
1 0 0 0

0 − β2e
−x

γ2 + y
− y

γ2 + y
0

0 0 1 0

.

In the following theorem, we show the asymptotic behavior of the positive solu-
tions of system 4.

Theorem 3.8. Suppose that the following relation holds true:

β1β2 < γ1γ2. (24)

Then system 4 has a unique positive equilibrium (x, y) and every positive solution
of system 4 tends to the unique positive equilibrium as n→∞.

Proof. Consider the following functions:

f(x, y) =
α1 + β1e

−y

γ1 + x
, g(x, y) =

α2 + β2e
−x

γ2 + y
,

where x ∈ I3 = [a2, b2], y ∈ I4 = [c2, d2] which implies that f(x, y) ∈ I3, g(x, y) ∈ I4
and so that f : I3 × I4 → I3, g : I3 × I4 → I4. Then, it is easy to see that
f(x, y), g(x, y) are decreasing with respect to x (resp. y) for all y (resp. x). Let
(m,M, r,R) be a solution of the system

m = f(M,R), M = f(m, r),

r = g(M,R), R = g(m, r).

Then, one has

m =
α1 + β1e

−R

γ1 +M
, M =

α1 + β1e
−r

γ1 +m
, r =

α2 + β2e
−M

γ2 +R
, R =

α2 + β2e
−m

γ2 + r
. (25)

From 25, we get

β1e
−r = M(γ1 +m)− α1, β1e

−R = m(γ1 +M)− α1,

β2e
−m = R(γ2 + r)− α2, β2e

−M = r(γ2 +R)− α2,

which imply that

β1(e−r − e−R) = γ1(M −m),

β2(e−m − e−M ) = γ2(R− r).
(26)

Moreover, we get

eR − er = eξ(R− r), min{R, r} ≤ ξ ≤ max{R, r},

eM − em = eθ(M −m), min{M,m} ≤ θ ≤ max{M,m}.
(27)
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Then from 26 and 27, we have

M −m =
β1
γ1

(e−r − e−R) =
β1
γ1
e−r−R(eR − er) =

β1
γ1
e−r−R+ξ(R− r),

R− r =
β2
γ2

(e−m − e−M ) =
β2
γ2
e−m−M (eM − em) =

β2
γ2
e−m−M+θ(M −m),

(28)

and so

|M −m| ≤ β1
γ1
|R− r|, |R− r| ≤ β2

γ2
|M −m|.

Therefore, we get(
1− β1β2

γ1γ2

)
|M −m| ≤ 0,

(
1− β1β2

γ1γ2

)
|R− r| ≤ 0. (29)

Finally, from 24 and 29, it follows that M = m and R = r. Therefore, from Lemma
2.5, it follows that system 4 has a unique positive equilibrium (x, y) and every
positive solution of system 4 tends to the unique positive equilibrium as n → ∞.
This completes the proof of the theorem.

In the next theorem of this section, we will study the global asymptotic stability
of the positive equilibrium of system 4.

Theorem 3.9. Consider system 4 where 24 holds true. Also suppose that

b2
γ1 + a2

+
d2

γ2 + c2
+
b2d2 + β1β2e

−a2−c2

(γ1 + a2)(γ2 + c2)
< 1. (30)

Then the unique positive equilibrium point (x, y) of system 4 is globally asymptoti-
cally stable.

Proof. First we will prove that (x, y) is locally asymptotically stable. The chara-
teristic equation of the Jacobian matrix JF (x, y) about (x, y) is given by

λ4 + q1λ
3 + q2λ

2 + q4 = 0, (31)

where

q1 =
x

γ1 + x
+

y

γ2 + y
,

q2 =
x.y

(γ1 + x)(γ2 + y)
,

q4 = − β1e
−y

γ1 + x
.
β2e
−x

γ2 + y
.

From condition 30, we get

|q1|+ |q2|+ |q4| =
x

γ1 + x
+

y

γ2 + y
+

x.y

(γ1 + x)(γ2 + y)
+
β1e
−y

γ1 + x
.
β2e
−x

γ2 + y

≤ b2
γ1 + a2

+
d2

γ2 + c2
+
b2d2 + β1β2e

−a2−c2

(γ1 + a2)(γ2 + c2)
< 1.

Therefore, follows Remark 1.3.1 of reference [10], all the roots of equation 31 are
of modulus less than 1, and it follows from Lemma 2.3 that the unique positive
equilibrium point (x, y) of system 4 is locally asymptotically stable. Using Theorem
3.8, we obtain that (x, y) is globally asymptotically stable. This completes the proof
of the theorem.
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3.2.3. Rate of convergence. In this section, we give the rate of convergence of a
solution that converges to the equilibrium of the systems 4.

Let {(xn, yn)} be an arbitrary solution of system 4 such that limn→∞ xn = x,
and limn→∞ yn = y, where x ∈ [a2, b2], and y ∈ [c2, d2]. To find the error terms,
one has from the system 4

xn+1 − x =
α1 + β1e

−yn−1

γ1 + xn
− α1 + β1e

−y

γ1 + x

=
(α1 + β1e

−yn−1)(γ1 + x)− (α1 + β1e
−y)(γ1 + xn)

(γ1 + xn)(γ1 + x)

=
−α1(xn − x) + β1γ1(e−yn−1 − e−y) + β1(e−yn−1x− e−yxn)

(γ1 + xn)(γ1 + x)

=
−α1(xn − x)− β1γ1e−yn−1(eyn−1−y − 1)

(γ1 + xn)(γ1 + x)

+
β1(e−yn−1x− e−yn−1xn + e−yn−1xn − e−yxn)

(γ1 + xn)(γ1 + x)

= − α1 + β1e
−yn−1

(γ1 + xn)(γ1 + x)
(xn − x)− β1e

−yn−1(eyn−1−y − 1)

(γ1 + x)(yn−1 − y)
(yn−1 − y),

and

yn+1 − y =
α2 + β2e

−xn−1

γ2 + yn
− α2 + β2e

−x

γ2 + y

=
(α2 + β2e

−xn−1)(γ2 + y)− (α2 + β2e
−x)(γ2 + yn)

(γ2 + yn)(γ2 + y)

=
−α2(yn − y) + β2γ2(e−xn−1 − e−x) + β2(e−xn−1y − e−xyn)

(γ2 + yn)(γ2 + y)

=
−α2(yn − y)− β2γ2e−xn−1(exn−1−x − 1)

(γ2 + yn)(γ2 + y)

+
β2(e−xn−1y − e−xn−1yn + e−xn−1yn − e−xyn)

(γ2 + yn)(γ2 + y)

= −β2e
−xn−1(exn−1−x − 1)

(γ2 + y)(xn−1 − x)
(xn−1 − x)− α2 + β2e

−xn−1

(γ2 + yn)(γ2 + y)
(yn − y).

Let e1n = xn − x, and e2n = yn − y, then one has

e1n+1 = fne
1
n + gne

2
n−1,

e2n+1 = hne
1
n−1 + kne

2
n,

where

fn = − α1 + β1e
−yn−1

(γ1 + xn)(γ1 + x)
, gn = −β1e

−yn−1(eyn−1−y − 1)

(γ1 + x)(yn−1 − y)
,

hn = −β2e
−xn−1(exn−1−x − 1)

(γ2 + y)(xn−1 − x)
, kn = − α2 + β2e

−xn−1

(γ2 + yn)(γ2 + y)
.

Moreover,

lim
n→∞

fn = − x

γ1 + x
, lim

n→∞
gn = − β1e

−y

γ1 + x
,
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lim
n→∞

hn = − β2e
−x

γ2 + y
, lim

n→∞
kn = − y

γ2 + y
.

So, the limiting system of the error terms can be written as


e1n+1

e1n
e2n+1

e2n

 =


− x

γ1 + x
0 0 − β1e

−y

γ1 + x
1 0 0 0

0 − β2e
−x

γ2 + y
− y

γ2 + y
0

0 0 1 0




e1n
e1n−1
e2n
e2n−1


which similar to the linearized system of 4 about the equilibrium point (x, y). Using
Proposition 2.6 and 2.7, one has the following result.

Theorem 3.10. Assume that {(xn, yn)} be a positive solution of system 4 such
that limn→∞ xn = x, and limn→∞ yn = y, where x ∈ [a2, b2] and y ∈ [c2, d2]. Then

the error vector en =


e1n
e1n−1
e2n
e2n−1

 of every solution of 4 satisfies both of the following

asymptotic relations:

lim
n→∞

(||en||)
1
n = |λi|, lim

n→∞

||en+1||
||en||

= |λi|, i = 1, 2, 3, 4,

where λi is one of the charateristic roots of Jacobian matrix JF (x, y).

4. Numerical simulations. In an effort to affirm our theoretical dialogue, we
consider several numerical examples. These examples represent different types of
qualitative behavior of solutions of the systems 3 and 4. All plots in this section
are drawn with MATLAB.

Example 4.1. Let α1 = 30, β1 = 1.4, γ1 = 1.5, α2 = 45, β2 = 2.5, and γ2 = 2.8.
Then system 3 can be written as

xn+1 =
30 + 1.4e−xn−1

1.5 + yn
, yn+1 =

45 + 2.5e−yn−1

2.8 + xn
, (32)

with initial conditions x−1 = 0.59, x0 = 0.61, y−1 = 0.96, and y0 = 0.94.

Figure 1. Plot of xn for the system 32
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In this case, the unique positive equilibrium point of the system 32 is given by
(x, y) = (3.455959, 7.193442). Moreover, the plot of xn is shown in Figure 1, the
plot of yn is shown in Figure 2, and an attractor of the system 32 is shown in Figure
3.

Figure 2. Plot of yn for the system 32

Figure 3. An attractor of the system 32

Example 4.2. Let α1 = 0.2, β1 = 19, γ1 = 4, α2 = 0.3, β2 = 20, and γ2 = 2. Then
system 3 can be written as

xn+1 =
0.2 + 19e−xn−1

4 + yn
, yn+1 =

0.3 + 20e−yn−1

2 + xn
, (33)

with initial conditions x−1 = 1, x0 = 1, y−1 = 3, and y0 = 3.

In this case, the unique positive equilibrium point of the system 33 is unstable.
Moreover, the plot of xn is shown in Figure 4, the plot of yn is shown in Figure 5,
and a phase portrait of system 33 is shown in Figure 6.

Example 4.3. Let α1 = 401, β1 = 1, γ1 = 1.75, α2 = 395, β2 = 1.5, and γ2 = 1.
Then system 4 can be written as

xn+1 =
401 + 1e−yn−1

1.75 + xn
, yn+1 =

395 + 1.5e−xn−1

1 + yn
, (34)

with initial conditions x−1 = 15, x0 = 24.5, y−1 = 15, and y0 = 25.
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Figure 4. Plot of xn for the system 33

Figure 5. Plot of yn for the system 33

Figure 6. Phase portrait of system 33

In this case, the unique positive equilibrium point of the system 34 is given by
(x, y) = (19.169092, 19.380895). Moreover, the plot of xn is shown in Figure 7, the
plot of yn is shown in Figure 8, and an attractor of the system 34 is shown in Figure
9.

Example 4.4. Let α1 = 4, β1 = 10, γ1 = 1.6, α2 = 5.5, β2 = 10.8, and γ2 = 1.
Then system 4 can be written as

xn+1 =
4 + 10e−yn−1

1.6 + xn
, yn+1 =

5.5 + 10.8e−xn−1

1 + yn
, (35)
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Figure 7. Plot of xn for the system 34

Figure 8. Plot of yn for the system 34

Figure 9. An attractor of the system 34

with initial conditions x−1 = 1.3, x0 = 1.5, y−1 = 2, and y0 = 1.7.

In this case, the unique positive equilibrium point of the system (35) is unstable.
Moreover, the plot of xn is shown in Figure 10, the plot of yn is shown in Figure
11, and a phase portrait of system 35 is shown in Figure 12.

5. Conclusion. In this study, we investigate the qualitative behavior of some sys-
tems of exponential difference equations. We have proved the boundedness and
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Figure 10. Plot of xn for the system 35

Figure 11. Plot of yn for the system 35

Figure 12. Phase portrait of system 35

persistence of positive solutions of system 3 and 4. Moreover, we have shown that
unique positive equilibrium point of system 3 and 4 is locally as well as globally
asymptotically stable under certain parametric conditions. Furthermore, the rate
of convergence of positive solutions of 3 and 4 which converges to its unique positive
equilibrium point is demonstracted. Finally, some illustrative numerical examples
are provided.
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