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ABSTRACT. We consider a two-species chemotaxis-Navier-Stokes system with
p-Laplacian in three-dimensional smooth bounded domains. It is proved that
for any p > 2, the problem admits a global weak solution.

1. Introduction. In this paper, we are concerned with the following two-species
chemotaxis-Navier-Stokes system:

(n1)e +u-Vny =V - (|VniP=2Vny) —x1V - (n1Ve)
+pini (1 —ny —aing),
(no): +u-Vng = Ang — x2V - (naVe) + panse (1 — agng — na), (1.1)
¢ +u-Ve=Ac— (any + Bna)e,
u+ (u-Viu=Au+VP+ (ng + n)VP®, V-u=0,

in Q = Q x[0,00), where Q C R? is a bounded domain with smooth boundary,
1, 2, o, By X1, X2, are positive constants, and a1, as > 0 are constants. This system
describes the evolution of two kinds of aerobic bacteria, that compete according to
Totka-Volterra competitive kinetics in a liquid surrounding environment. Here n;
and ng represent the population densities of two species respectively, ¢ stands for
the concentration of oxygen, u shows the fluid velocity field, and P represents the
pressure of the fluid. The given function ® represents the gravitational potential.

The problem (1.1) is a generalized system to the chemotaxis-fluid system, which
is proposed by Tuval et al. in [21]. The chemotaxis-Navier-Stokes system models
have been widely studied by many researchers ([22, 23, 25]).

What’s more, the investigation of the problems involving chemotaxis-Navier-
Stokes system models with p-Laplacian has been addressed by several authors. Tao
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and Li [19] discussed the following chemotaxis-Navier-Stokes system:

ne+u-Vn=V-(|Vn|P~2Vn) — V- (nx(c)Ve),

¢t +u-Ve=Ac—nf(c),

ug+ (u-V)u=Au+ VP +nVo,

V.u=0.
They got that if p > %, under appropriate assumptions on f and x, for all suffi-
ciently smooth initial data (ng, cg, ug), the system owns at least one global weak so-
lution in three dimensional spaces. Furthermore, Tao and Li [20] proved that global
bounded weak solutions of the chemotaxis-Stokes system exist whenever p > %
Liu [10] investigated the following problem:

pr+u-Vp=V-(|VplP~2Vp) =V - (pVe) — pm, z € Q,t>0,

¢t —u-Ve=Ac—c+m, e Nt>0,
my +u-Vm = Am — pm, xet>0,
ur +K(u-Viu=Au+ VP + (p+m)Ve, zeQt>0,
V-u=0, r e t>0,

where Q C RY is a bounded domain with smooth boundary. It is proved that if
either p > 2fork e R, N =2or p > % for k = 0, N = 3 is satisfied, then for
each properly chosen initial data and associated initial-boundary problem admits
a global weak solution which is bounded. The relevant equations have also been
studied in [11, 12].

On the other hand, two-species competitive chemotaxis systems have been stud-
ied by many authors [1, 15] recently, mainly about the global existence and asymp-
totic stability of solution. Cao, Kurima and Mizukami [3] considered the following
two-species chemotaxis-Stokes system:

(n1): +u-Vny = Any —x1V - (n1Ve)

+ping (1 —ny — ana), z€N,t>0,
(n2): +u-Vng = Ang — x2V - (naVe)

+pona(l — agny — na), zeQ,t>0, (1.2)
¢ +u-Ve=Ac— c(any + fnz), x €Q,t>0,
up + K(u- V)u=Au+ VP + (yng + dna) Ve, x€eN,t>0,
V-u=0, r e t>0.

They proved the global existence, boundedness and stabilization of solutions to
the above system in the 3-dimensional case. Hirata et al [6] gave more complete
stabilization of solutions for (1.2) in the 2-dimensional case. Moreover Liu and
Li [13] proved that the system (1.2) admits a time periodic solution under some
conditions. The relevant equations have also been studied in [8].

As mentioned above, two-species chemotaxis-Stokes system and one species che-
motaxis-Stokes system with p-Laplacian were studied by many authors. However
the combination of these two kinds of problems has not been studied. Thus, we
are inspired to investigate the case that the two species have different diffusion
law, namely one according to the p-Laplacian diffusion and the other according to
standard Laplacian diffusion. From a physical point of view, in the same liquid
surrounding environment, one species is influenced by ions and molecules and thus
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its mobility is described by a nonlinear function of the cells, but the other species
is not affected by ions or molecules thus diffuse by linear Laplacian diffusion.

Obviously, Cao, Kurima and Mizukami solved the problem (1.1) when p = 2.
If p > 2, from a mathematical point of view, p-Laplacian diffusion term V -
(|Vn1[P=2Vn,) lead to a lot of difficulties in our proof of main result because of
its nonlinear character. To be specific, a main difficulty arises in the estimate of
n1 in contrast to the case of Laplacian, and the property of the Neumann heat
semigroup becomes useless and so on. In order to overcome the difficulties bring
by the p-Laplacian diffusion term, we consider a regularized problems of (1.1) and
establish an energy-type inequality in Section 3 as a starting point to discuss the
problem.

In this paper, we shall consider (1.1) along with the boundary conditions

|Vn1|p_2% - % = ? =0 and v =0, on Qr, (1.3)
v 14 v

where Qr = 9Q x [0, 00), and the initial conditions
ni(z,0) =n;o(z), clx,0)=co(x), ulz,0)=up(z), z€Q, i=12 (1.4)
Assume that ny g, n2,0, co, uo and ® are given functions satisfying
d e WhHe(Q), (1.5)

and

nio € .[/2(9)7 and nio > 0,

n2o € Llog L(Q), and ngg > 0,

co € L>(Q), ¢ >0, and /cog € WH3(Q),
up € L2(Q),

(1.6)

where Llog L(f2) is the standard Orlicz space associated with the Young function
(0,00) 3 2+ zIn(1 + 2) and L2(Q2) := {p € (L*(Q))?|V - ¢ = 0}.
Let us first give the definition of weak solution.

Definition 1.1. We call (n1,n2, ¢, u) a global weak solution of (1.1), (1.3) and (1.4)
if

ny € L}OC([O,OO);L:L(Q))7 ng € Llloc([()?oo)); lel(Q))V

c € L, ([0,00); WHH(Q)),  u € (L,.([0,00): W' ()%,
such that n; > 0,n5 > 0 and ¢ > 0 a.e in Q and that

pini (1 —ny —ainz), penz(l—asny —n2), (ani + Bna)e € L}, ([0,00); L' (Q)),
|Vni|P~2Vny, niVe, naVe, niu, ngu, cu € (Llloc([O, o0); LY (Q)))3,

u@u € (Lipe([0,00); L'(€2))*,
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and that

Awémm@—émémwv@=—AMAHMW”WWV%
+/OOO/QX1n1Vc-V¢1+/OOO/QM1n1 (1 —=ny —an2) é1,

/Ooo/ﬂ(nz)t@—/ooc/gnzu-V%Z—/OOO/QV“2'V¢2
+/OOO/QX2n2VC.V¢2+/OOO/Q/L2n2(1a2n1n2)¢2,

AMAQ%AWA“““%AMLV“V%AMAmm+wmw&

as well as

/()Oo/§ZUt¢4_/ooo/szu®uv¢4:_/OOO/QVU'V¢4+/OOO/Q("1 +n2)V® - ¢y,

hold for all ¢y, ¢a, 3 € C°(Q x [0,00)) and ¢4 € (C°(Q x [0,00)))? satisfying
V¢4 =0.

The plan of this paper is as follows. In Section 2, we list some lemmas, which
will be used throughout this paper. In Section 3, we consider a family of regularized
problems and show the global existence of the regularized problems, by establish-
ing an energy-type inequality and using the Moser-Alikakos iteration procedure.
Finally, in Section 4, we show that the problem (1.1), (1.3) and (1.4) admits a
global-in-time weak solution.

2. Preliminaries. In this section, we recall some lemmas, which will be used
throughout the paper. Before going further, we first list the Gagliardo-Nirenberg
interpolation inequality [16] for the convenience of application.

Lemma 2.1. For functions u :  — R defined on a bounded Lipschitz domain
Q c RY, we have

j —b
[1D7ullpe < ClID™ |} ||ullfe® + Cllul

Ls,
wherelgq,rgoo,%gbgl,

1-b
+

and s > 0 is arbitrary.
Next, we list the following Lemma 2.2 [18].

Lemma 2.2. Let T > 0,7 € (0,T),a > 0,b > 0, and suppose that y : [0,T) —
[0,00) is absolutely continuous such that

y'(t) +ay(t) < h(t), fort €0, T),
where h > 0,h(t) € L}, ([0,T)) and

loc
t
/ h(s)ds <b, forallt e [r,T).
t—T1
Then
y(t) < max{y(0) + b, b +2b} for allt €[0,T).
ar
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Finally, we also give a generalized lemma of Lemma 2.2 [7].

Lemma 2.3. Let T > 0,7 € (0,T),0 > 0,a > 0,b > 0, and suppose that f :
[0,T) — [0,00) is absolutely continuous and satisfies

F(t) +afT7(t) < h(t), tER,
where h >0, h(t) € L} ([0,T)) and

loc

¢
/ h(s)ds <b, forallt e [r,T).
t—7
Then

sup f(t)+a sup /t o (s)ds

te(0,T) te(r,T) Jt—r
b
<b+2max{f(0) +b+ ar, — + 14 2b+ 2ar}.
at
3. Regularized problem. Inspired by the idea from [22], in order to construct

a global weak solution of (1.1), (1.3) and (1.4), we first consider the following
appropriately regularized problem:

Oinie + Ue - Vie =V - ((|Vn15|2 + 6)% Vma>

—x1V - (nicFl(n1e)Vee) + pinie(1 — nie — ainae), (2,t) € Q,
O¢nae + s - Vng. = Ang. — X2V - (naoFl(n2:)Ve:)

+pange (1 — agnie — nae), (z,t) € Q,
Orce + ue - Vee = Ace — (aF-(ni1e) + BF-(noe)) ce, (z,t) € Q, (3.1)
Opue + (Yeue - V)ue = Aue + VP + (nq1e + nae) VO, (z,t) € Q,
V- u. =0, (z,t) € Q,
e = Dz = G =0, =0, (@) € Q.

N e(2,0) = noie(z), c(,0) = coe(x), u(z,0) =upe(z), r € Q, i =1,2,

for e € (0,1). We take F.(s) := LIn(1 +¢s), for s > 0 and utilize the standard
Yosida approximation Y, [14, 17], which was defined by
Yov = (14+eA) 1w, forall v € L2(Q).

By P we mean the Helmholtz projection in L?(2), then we represent A as the
realization of Stokes operator —PA in LZ(Q), with domain D(A) = W?22(Q) N
WE2(), where Wo2(Q) = W(Q) N L2(Q) = Cgo (@) @ with Cgo,(Q) =
C§°(2) N L2(Q). Thereafter, it is obvious to see that our choice of F. ensures that

0< F.(s) <s, forall s >0, (3.2)

0< Fi(s) =

T os <1 and 0 < sFl(s) =

1
< foralls>0, (3.3)
1+es €

and

F.(s) /*sand Fl(s) /1, as € \ 0, for all s > 0. (3.4)
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The families of approximate initial date ngic(x) > 0, ng2:(x) > 0, coe(z) > 0 and
ug. satisfy that

nole € CO fQ No1e = fQ n1,0 for all € € (0 1) (3 5)
n01s%n1,o in L2( ) as € \ 0, )

No2e € CO fQ np2e = fQ 12,0 for all e € (0 1) (3 6)
No2e — n270 in LlogL( ) as e \(0, '

\/Coe € C(?O(Q), ||COEHLOO(Q) < ||COHLOC(Q) for all € € (O, 1), (3 7)
Coe — +/Co a.e. in Q@ and WH2(Q) as e \, 0, ‘

and
Uge € CS?U(Q), with ||’LL05HL2(Q) = HUOHLZ(Q) for all € € (0, 1) (38)

Firstly, we give the local smooth solutions existence result of the above approximate
problem as follows.

Lemma 3.1. Taking p > 2, then for each € € (0,1), there exist Tz € (0, 00]
and uniquely determined functions

n1e € C%Q x [0, Trax.c)) N C%1(Q x (

Noe € CO(Q X [07Tmax,€)) 02 1( ( 5 max,s))7

ce € COUQ % [0, Timax.c)) N CHHQ x (0, Tmax,c)) and

ue € COQ X [0, Trax.c); R?) N C%HQ x (0, Tax.c); R?),

such that (nie, Noe, e, ue) is a classical solution of (8.1) in @ x (0, Tax,c) with
some P. € CH(Q x (0, Timax.c)). Moreover, we have ni- > 0, na. > 0, and cc > 0
in QX (0, Tmax,e) and if Tax,e < 00, then

71 (5 D)oo () + IIm2e (5 )l Lo @) + llee (5 D)llwrag) + 1A e (1| L2) = o0,
ast /" Tmaxe, for all g > 3 and v > %.

Proof. Combination of arguments Lemma 2.1 in [23] and Lemma 2.1 in [19], which
is based on a standard Schauder fixed point argument and a parabolic regularity
theory, entails the existence of classical solution. Since (ni¢,noc, ce, ue) is a smooth
solution of (3.1), the nonnegativity of ni,no. and c. follows from the maximum
principle [23, 5, 2]. O

We are now ready to construct some basic estimates of (7115, Noe, Ce, Ue ). In what

max,e

follows, without special explanation, we take 7 = mln{l }, what’s more,
all constants C' denote some different constants from line to hne, which are only
depend on the given coefficients, initial date and €. All these estimates of this form
f:ﬁT -+ -ds in this paper can be replaced by fo --ds if 7 < 1, so these estimates
do not dependent on 7. The following estimates of ni., no. and c. are obvious but
important in the proof of our result.

max,e

Lemma 3.2. For each € € (0,1), the solution of (3.1) satisfies

sup  [nie(Dlliy - sup / [tdsis<c. o)
te(O;Tmam.s) TTmax 5) t—7

sup  [[n2:(, )1+ sup / / n3.dxds < C, (3.10)
t€(0,Trmaz,c) (7, Trmaz,e) Jt—7
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and
llce( )|l L) < llcollzoe() = 50 for all t € (0, Tz, ) (3.11)
Proof. Integrating the first equation in (3.1) to see
d 2
at ), +p1 [ (P +arnienge) = 1 | nae,
t Q Q

in both cases a; =0 and ay > 0, we have
d 2
me +ur | nie <pr | nae
<L wd v o),
2 Jo

with some C'(£2) > 0. We derive from the Hélder inequality that

(fQ n1€)2 2
o = /Q”

d 1251 2
n € T2l € S Q).
i Jyme g (fme) <c@

By Lemma 2.3, we can obtain (3.9). Then completely similar to the proof of (3.10).
Finally, an application of the maximum principle to the third equation in (3.1) gives
(3.11). m

hence we further have

Now we are in the position to derive an energy-type inequality which will be used
in the reduction of further estimates. To this end, we first list an inequality which
is crucial in the proof of the energy-type inequality. More details of the proof please
refer to [4].

Lemma 3.3. Suppose that h € C*(R). Then for all ¢ € C*(Q) fulfilling & (9(,0 =
on 0 we have

| verag == [ melael?+3 [ motel -5 [ v

SRR

Then we derive the decisive energy-type inequality from the first three equations
n (3.1). The main idea of the proof is similar to the strategy introduced in [22]
(see also [19]).

Lemma 3.4. Assume that p > 2. There exist constants C' > 0, K > 0 such that
for any € € (0,1), the solution of (3.1) satisfies

d (4 B 1 Ve |?
_ A/(n1slnn1g—ﬂ15)+3/(n251nn25—n%)_y—f/ @
dt Q Q 2 Q Ce
4 _— 2 9
{/ Ve / (V2 + o2 [V +/ |V }
Nie Q N2e

gK/ |Vul? + C, (3.12)
Q

B =

o 2
X1’ X2 "

where A =
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Proof. Testing the first equation of (3.1) by Inn;. and integrating by parts to com-
pute

d 2 |Vni|?
yr (n1elnnie — nye) + / (IVnie|? +¢) 2 [Vr[?
Q Q Nie
=X1 / VFs(nls) -Vee + / nls(]- —Nie — a1n25) Inn.
Q Q

=X1/ VF.(nie) - Ve + / nie(1 —nic) Innge —mal/ NieNoe INNqe,
Q Q Q

for all t € (0, Tinax,e). Here we use that slns > —=, for all s > 0 to see that

1 < Hiai
—H1a1 N1eN2e MN1e > N2e,
Q e Ja

for all t € (0, Tiax,c). Moreover, due to the fact that (1 — ni.)Inng. < 0 for all
(x,t) € Q % (0, Tinax,:), we have

,ul/ n1e(l —nye)Inng. <0,  for all t € (0, Tinax,e)-
Q

Furthermore, we see that

d p=2 Vn 2
- (nle Inn;. — nls) + / (|V7’L15|2 + 5) 2 ‘ 1E|
dt Jq Q nie
Hia1
SX;[ / VFE(THE) . VCE + / Noe. (313)
Q e Q
Proceeding similarly, we obtain
d Vinge|?
% Q(TLQE 11’1 Noe — Tlgg) + /Q %

:X2/ VFE(n26) Ve + /LQ/ n25(1 — a2Nie — n25) Innoe
Q Q

SXQ/ VFE(”QE) -Vee + fad2 / Nie- (3'14)
Q € Q

Finally7 we have the following inequality

/ |ch|2 1 |Vee|
2dt 224++v3) Jo ¢

— / Vee -V (aF:(nie) + BF:(n2e)) + 2 +2\/§S()/ |V |?, (3.15)
Q Q

for all t € (0, Tinax,c)- Indeed, by a straightforward calculation and integration by

parts we see
Ve > _ / Vel /Ace .
2dt e 2)g 2 )y e M

€

for all t € (0, Tax,e)- In view of the third equation of (3.1) and integration by
parts we further have

/ Ve |?
2dt

VEQ AE2 v52
= Tt [ g [ N 0t + 6t
Q

2
Cz
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2 Ac,
/Ace (aF:(n1e) + BF(n2e)) /|VCE\ -Vee —l—/

= (ue - Vee)

Ce

2 2 2
) |V05| /IACE\ _f/ Veel® (0B (nye) + B (ns))

Ve.|? Ac.
/ Vee -V (aF:(nie) + fFe(ng:)) — 5/ | 02| (ue - Vee) +/ ¢ (ue - Vee),
Q Q

cz Ce

for all t € (0, Tnax,c)- On the other hand, considering the Lemma 3.3 with ¢ = ¢,
and h(yp) = ,l to observe that

2 2,12 2 4
/\ACE\ /|Dc| |Vee| [Veel" £ [Vee| +%/ 1 3|V 2
7]

2 3
Q 2 Q c o Ce O

What’s more, we observe that

1 1 Vel
/cE|D21nc5|2:/—|D2 2 _2/ L (D%, Vo) - Veo + /‘ c|
Q Q Ce Ce3
4
:/ —|D%c| / = V|Vee|* - Ve +/ Ve
Q Ce
4
:/ f|D265|2+/ G‘VCE‘QACS_ |VC€| .
QCE QCE Q Ce3

Combining the above three equations, we further have

|ch|2 / 2 2 1/ 19 2

th/ Qc€|D Inc.| +2 o o 8V|Vc€\
Vcs2 Ace

—5 [ EL e + srm + [ S5 ve

\V05|2

1
Vee -V (aF:(nie) + BF:(nae)) 5/ e Veeo).

Q

Then applying Lemma 3.3 in [23], the inequality

4
|st| §(2+\/§)/CE|D21HCE|2
Q

3
Q Ce

holds for all ¢ € (0, Tinax,c)- Since the convexity of  and % = 0 on 01, it follows
that %|VCE|2 < 0 on 9([4]). Moreover because of V - u. = 0, integration by parts
and the Young’s inequality we find

/ ACE (ug ’ VCE)
Q

Ce

|Vc€|2(us -Vee) — vee (Vue - Vee) —/ % (D%. - Ve.)
Q Ce Q Ce
VP v - [T uvey - [ 2 v
:%/Q IVchP(ug.vcs)_ chc (V. - Ve.)
S% a |Vcc§|2(u€ Vee) + 2(2j\/§) o |V§§€|4 P20 QCWUSF
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<1
2 Jo 2

Ve |? 1 Ve |* 243 / )
us - Vee ) + + S \Y% .
( 5 E) 2(2+\/§) 0 Cg 0 ‘ u6|

Combined the above discussion with (3.2), we arrive at (3.15).
Finally, considering the consequence of Lemma 3.2 and combining (3.13)-(3.15)

5
with C = @fﬂnge + B’”“"’ Jonie, and K = max{H‘[So, (2+V3), % %}’
we arrive at (3.12). O

Lemma 3.5. Assume that p > 2. A, B and K be given in Lemma 3.4. Then for
any € € (0,1) there exists Ko > 0 large enough such that

d [+ _ 1 Ve |?
— (A/(nlslnnlsn15)+B/(n261nn25n25)+/ Vel +K/ |u€|2)
dt Q Q 2 Ja ¢ Q

1 Vel Vni.|P Vnoe|?
+~{/|i|+/|n1+/|n2|+/|Vu€|2}

Ko o € Q0 Nie Q Nae Q

<K, (3.16)

for allt € (0, Traze)-

Proof. Testing the fourth equation in (3.1) with u. and considering Holder’s in-
equality, the sobolev embedding W2(2) — L5(2) as well as Minkowski inequality

show that
33 [l + [ 19up

= / (nle + nQE)V(b *Ug
Q

§||V‘I’||L°°(Q)||nls +nzell o o luellzog)

<1Vl + 9O iy (Il g+ IaclZy ) @a17)

for all ¢t € (0, Thyax,e)- Here we have used that

1
/(Yaug.V)uE.ua:—/(V.YEuE)|u8|2—§/YEuE-V|u5|2
Q Q Q

1
=5 [ Yol =
Q

since V- u. =0 and V- (1+ed) tu. =0.
Let 6 := 5= 3) € (0,1), then 0 satisfies 5(pp1 = 9(7 -3+ (1- 0)E>=. An
application of the Gagliardo-Nirenberg inequality shows that

_2p_
p=1||p-1
2 _ P
maclzg = [z ||,
"( ) L5(—1) (Q)
2 2 2
p=1||p-10 po1(1=0) p=1||p=T
P P P
<G vnle Nie p + G Nye p
Lr(9) L7 (9) L7 (9)
w10 2(1-0
=0 Vme el 3y + Callmcll?a ).
Lr(Q)
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for all ¢ € (0, Tmax,c), with some C; > 0. Due to our assumption p > 2 > £

7

have %9 < p. Using the Young’s inequality together with (3.9) to estimate

P
+ C2Cs, (3.18)

p

p—1

Imaclit <6 Hw

for all t € (0 Tax,e), with some Cy > O
Let 1 := § € (0,1), then n satisfies 35 =7 (3 — ) + 3(1 —n). Once again we use
the Gaghardo Nirenberg inequality to see that

3
I 25” L) Hn25 L% @
<G|vnd|” nk ]+ o5k
= 3” M2 L2(Q) H 2 ) + 3Hn25 L2(Q)
= O Oni ] o Il + Collmaclifs .

for all t € (0, Tmax,e), with some C3 > 0. Since 4n < 2, we use Young’s inequality
together with (3.10) to estimate

Imacll2g o) < DIV 320y + CiCo, (3.19)

for all t € (0, Tiax,e), with some Cy > 0.

Noticing that
_ 2 P
[ v oz Bnek 5 [ITmel,
Q Nie Q

Then considering the consequence of Lemma 3.4 and combining (3.17)-(3.19) with
— P _ 1 . 2 1n
0= Au(”véﬁw and ¥ = W, we arrive at (316) O

We can thereby establish the following consequences.

Lemma 3.6. Assume that p > 2. A, B and K be given in Lemma 3.4. Then for
any € € (0,1), we have

A/ N1e N N1e —nls)—&-B/(ngElnngg—ngg)
2
/ [Veel” +K/ lu|? < C, (3.20)

for allt € (0, Thaze), and
T
/ /‘Vnzs v [ [ v
o Ja

ana

/ |Vce\

<C( T+ 1), for any ﬁxed T € (0, Thage)- (3.21)
Proof. Set

1 |Vc5|

ys(t) = / {A(nle lnnle - nle) + B(”QE 1nn25 - n25) + = 2 c
Q €

for all t € (0, Tinax,), and

Ve |t p=1
he(t) ::/ {| 036| + ‘ancf’
Q Ce

+ Klu | (1),

P

1
+ ‘ans

2
n |w62} (1),
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for all t € (0, Tiwax,e). Obviously, Lemma 3.5 shows that
1
yo(t) + th(t) <Ky forall te€ (0, Tmaxe)-
0

Now, we are going to show that y.(¢) is dominated by h.(t). Firstly, employing the
standard Poincaré inequality, there exists C7 > 0 such that

K/ lu-|? < C’l/ |Vuc|?  for all t € (0, Tiax.c)- (3.22)
Q Q

Obviously, using that slns < 25%7 for all s > 0 and combining the Young’s inequal-
ity together with (3.18), we see that

/ A(nls In Nie — nls) S A/ Nie In Nie
Q Q

p—1 ||P
ansp + 027 (323)

— 6
<24 / np. < Cy
Q Lr(Q)

with some C3 > 0. Similar to the proof of (3.23), due to the Young’s inequality and
(3.19), we can also obtain
2

1
B/(nga Inng. —mge) < Cj an225
Q

C 3.24
L2(Q) + 3, ( )

with some C5 > 0. Finally, according to the Young’s inequality and (3.11), there
exists Cy4 such that

1V82 Ve |* 1 Ve |
| C| /| C| TG/CES/| il + Cy. (325)
Q Q Ce

(3.22)-(3.25) ensure that Ye < Csh E(t) + Cs, with some C5 > 0. And then

1 1 1
")+ g+ ——h.(t) < K, for all t € (0, Thyax ).
VL) g e e he(t) < Ko g for all £ € (0. T )

By Lemma 2.2, it is easy to see that (3.20) and (3.21) hold. The proof is complete.
O

Lemma 3.7. Assume that p > 2, £ € (1,11 — —] ¢ € (1,5]. For any fized
T € (0, Thaze), there exists C > 0 such that the solutzon of (3.1) satisfies

/”15 / /n?jl / /n§6_2|Vn15|p <C(T+1), (3.26)
0 Q
T T
/ ns, +/ / n$t + / / nS=2|Vnge | < C(T +1). (3.27)
Q 0 0 Q

Proof. By Lemma 3.6, we have

//|VCE|4 //|V654 3 < B30(T +1). (3.28)

When multiplying the first equation of (3.1) by §n15 , and integrating by parts,
due to Young’s inequality and (3.3) we can estimate

d _
G [ nseree=n) [ nSeionp + g / s
Q Q

d
<z Qni%(&—l)/gnle (Vs +¢) " [Vnecl? + € /ni“

and
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:5(571)X1/n15F (nls)nlg Vnie - V05+§u1/n16 fﬂlal/n&l:gn%
Q Q

Q
-1 _

€0 [ 29, ver g [

3 Q @
1

355(5_1)/”§;2|ans|p+c2/n1a |Vee \p ! +§M1/n§5,
Q Q

<

with Cy = 21)%1(%)#5(5 — 1). Using the Young’s inequality again, we further
have

d _
G [ gee= [ SV + g [ it
Q Q

9)4(p—1)
g%/nﬁi e +03/ \VCEIH%/”%?WCMQI’
Q Q @

where C3 = (%)Lf, Cy =45 If ¢ e (1,1 ] we have (§— 2) (p 1) <E+1,

this implies that

d 1 _ 1
Dl ns s ey / RS2 VP + e / n$t < ¢y / Veel 1 Csl0,

where C5 = f% + C4. Considering Lemma 2.3 and (3.28), then there exists Cg > 0
such that [, n§, < Cg, for all t € (0,Taxc) and & € (1,11 — 2] Since p > 2,
ensuring that 11 — % > 5, we obtain fQ n‘?s < (g, for all t € (0, Thax,e)-

Next we test the second equation from (3.1) by Cn§;1 with ¢ € (1, 5], to see by
neglecting several non positive contributions and employing (3.3) as well as Young’s
inequality that

d _
G s cc=n) [ nS Tl + G [ n5H
Q Q

SC(C_l)XQ/nZEF (nZs)nze Vnge - vcs"‘Cﬂ?/nga
Q Q

X2y / n$T2Vna. - Veo + Cpiy / ns.
Q Q

€
1 = s X3 ¢—2 2 ¢
<SCC=1) [ n3 7| Vnee + 25C0(¢C—1) | ng " |Vee|” + Cua [ ns,.
2 Q 25 (9] Q

Considering the fact that 2(¢ — 2) < ¢ + 1, since ¢ € (1,5], and combining the
Young’s inequality, we see that

X% ¢—2 2
?C(C_ 1)/9”25 Ve |
1 _
§§(ju2/n§§ 2)‘*‘07/ Vee|
Q Q

1
<3¢ [ 57+ Cr [ Vet + 520l
Q

and that

1
G [ 5. < gona [ S+ 4%l
Q Q
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2.4
where Cy = 3=, Letting Cg = C% + 4%C 1o, then we have

H2E

d 1 _ 1
s v e / 0S|V nacl? + g / S < / Veel + Cxl9.
dt Jq 2 Q 4 Q Q

Finally, by Lemma 2.3 and (3.28), we also have that there exists Cio > 0 such that
Jon3. < Cio, for all t € (0, Thax,e)- O
Lemma 3.8. Assume that p > 2. For all e € (0,1), the solution of (3.1) is global

in time; that is, we have Ty qz = 00.

Proof. Assume that Tinax . < 00, for some ¢ € (0,1). By Lemma 3.6, it is easy to
see that the following inequality holds

Tmax,a
/ / Ve (o' <€y and / (- )2 < Co, (3.29)
0 Q Q

for all t € (0, Thax,e) , with some Cy,C2 > 0. Combining (3.26), (3.27) with (3.29),
we obtain

llue|| o) < C3 for all ¢ € (0, Tmax,e), (3.30)
and
||VC€||L4(Q) <(C, forall te (OaTmax,s)a (331)

with some C3 > 0, C4 > 0. Because the proof of (3.30) and (3.31) is similar to [22]
Lemma 3.9, we refer the reader to it for more details. Noticing the third equation
of (3.1) and using the variation-of-constant formula, we can obtain

ce(t) = e tetP ey,
t
+/ e_(t_s)e(t_sm(cE — aF.(nic)ce — BFe(n2e)ee — ue - Ve )(s)ds,
0

for all t € (0, Tinax.c), where the {e*2};>¢ is the Neumann heat semigroup in 2. For
more details of Neumann heat semigroup, please refer to [24]. In conjunction with
(3.2), (3.7), (3.26), (3.27), (3.30) and (3.31), we further have

Ve, )=o)

S ||67tvetA605HL°°(Q)

t
/ e~ (t=s)yelt—9)a (ce — aFe(nic)ce — BE-(nac)ce — ue - Vee) (s)ds

"
0

Lo(9)

<Cst™%e"|coe|| L o)

Lo /Ot e—(t—s)(t ~ s)_%_%% lcc — aFe(nic)ce — BF:(nge)ce — ue - Ve paq)ds
<Cs577 2 e leoe |l e ()

+Cq /Ot et — 8) T3 (14 ||nac peqay + 12l ey + IVeell o)) ds

<Cr, (3.32)

for all t € (7, Tinax,e) and any fixed 7 € (0, Tinax,c), with some C5, Cg, C7 > 0 since

1_3.1
1_§_§'Z>0.
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In what follows, we are in the position to estimate |[n1c||p(o) and [[noc|| L (q)-
We first combine the estimates for Neumann heat semigroup and Young’s inequality
to obtain that

26 (5 )| Los ()

¢
ey (1) — / Vet~ (yong F! (nge ) Vee + nocue) ds

¢
+/ R ong. (1 — agnye — no)ds

t
<Cs(t —7) "2 |na<(-,7) || 10 + Cs / (t—8)"37 55 (1 + |Inoe]| L2 (ay)ds
t 3.1 .
+Cs/ (t—5)" 22 ||uanac (1 — agnie — nae)||L2()

t

<Cs(t — 1) F||n2e (-, )| 1) + Cs / (t =) 225 (1 + |[noe| pa(y)ds

T

t s 1
+ C9/ (t—s)"%2 <||n2s||L2(Q) + el Fao) + ||n25||%4(n)> ds
SclOa

for all t € (27, Tyax,e) and any fixed 7 € (0, Tinax,c), with some Cs, Cgy, Cio > 0,
since (3.10), (3.26), (3.27), (3.30) and (3.32) hold.

Once again, we multiply the first equation in (3.1) by §n§;1, & > 1 to see upon
integrating by parts that again by Young’s inequality, (3.3) and (3.32)

d _
*/ "§s+§(f—1)/ n§€2|vn1€|1’+§m/n§jl
dt Jo Q Q

d _ p—2
<— ”§s+§(§*1)/ n$2? (IVnie® +¢) 2 Iane|2+£u1/n§s“
dt Jo Q Q

=£(& — 1)X1/ nlsFE/(nls)n§;2vnls -Vee + 5#1/ Tli— - fﬂlal/ Tlinzs
Q Q Q
<Cu [ n2? Vi + € [ nf.
Q Q
_ 1
S/ n§o 2 (E(& = 1)|Vnie|P + Cr2) + ifﬂl/ n$t + Cis
Q Q
_ 3
<6 1) [ nf19map + G [ 0+ Cus

for all ¢t € (7,Tmax,c). Then by Lemma 2.3, we have [, nfs < Cis, for all t €
(T, Tiax,e), with any £ > 1 and some Ci5 > 0.

Finally, based on a Moser-type iteration method, we achieve L> bounds for n..
Taking rp, = 2rg—1+2—p, k={1,2,3------ } and ro > p is a positive constant.
It is not hard to see that {ry}ren is a nonnegative strictly increasing sequence,
ri > p, for all k and r, 00, as k — oco. What’s more, there exist ¢q, cs > 0, which
are independent of k such that

128 <1 < p2F, for all k € N. (3.33)
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Letting

My, =

sup / nie *(z,t)dz, k € N, where ny. := max{n.(z,t),1},
te(7, Tmax,e) /2

forallz € Qand t € (7, Thax,e)-

We multiply the first equation of (3.1) by rknq’;_l and invoke the Young’s in-
equality along with (3.3) and (3.32) to see that

d r rE—2
G [t [ oz
+ Tkul/ Tl?{’;“ +/ nyk
Q Q
<rg(ry — 1)X1/ n’l”g_lFE’(mE)Vcs -Vnie + (repr + 1)/
Q Q
<Cierg(ry — 1)/ n{’;*l
Q

(Vinel + (g +1) [ it
Q
1
<Cieri(r —1/(71”“ 2| Vnq.|?
16 k( k ) 0 2C16 le | 16‘

1
p—1( p \ "' (G- /
rF—- . 1 b
+ » (2016> Ny, + (rppn +1) ine
]‘ Tk—2
girk(rk—l) nyg
Q
+wn +1) [ i,
Q

for all ¢t € (7, Tax,c)- Taking 6 := 2 -

p=2
(|ans|2 + 5) ? |an€|2

Tk
Nie

[VnieP + Crorg(ry — 1)/ nq’;ﬂ’ —2
Q

Ny = 2tp=2) 5 o g
T.k+p/_2 p— ) k . Tk iy
considering the Holder inequality, there must exist Cig > 0 fulfilling

d X 1 P P P
. Tk - -1 Tk
7 ins + 27’k(’f‘k ) <Tk —2+p> /Q 4—/9711E
fi Tk 1 Th—2 p Tk
= nit 4+ —rp(re — 1) [ n577 | Vnie|P + | nit
dt Jo 2 Q Q
e ve
’ k k
<Cigri(ri — 1) (/ nii-’“*p _2)9k> + Cigri(ry — 1) </ TM") ;o (3.34)
Q Q
for all ¢ € (7, Tiax,e), since rp — 1 > 1, for all k. Using the Gagliardo-Nirenberg
inequality and the Young’s inequality, there exists C19 > 0 such that

1

, O

Cis </ ngzk—Q-‘rp )ak) k
Q

T —2+p
P
Vn,,

2p
TEtp—2 W
=Cig ny "’
L2P(Q)
2pa 2p(1— 2
rAp=2 || By retp—2 p(ek 2 rtp=2 || oy
SClg ans P . nls P » +Olg Tlls P »
Lr () Lk @) Lk @)
2pa
retp=2 || B, ” 4(2—0) . ei
_ P k—1 k k—1 k
=Cho ||V, 'H”le HLl(Q) +019H"16 ”Ll(Q)
Lr(Q)
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4(;*‘1) rptp—2
<CioM, 7} (/ ’ane

p

) + CroM, ",

4(1 a)

Gk R i
+ ClQC _1 + Clng_p (3.35)

TEtp—2

P
Vn,,

<Ch9n
Q

for all t € (7, Tiax,e), with a =
Similarly, we also have

W\ R
Cis /nﬁk
Q

€ (0,1) satisfying - o =2 -3a+ %(1 —a).

_9
2P+6 P

2p
retp=2 || X,
=Cig || ”
L2 (Q)
2pa 2p(1—a) 2p
retr=2 || %, rptp—2 YN retr—2 || X,
<Cy ||Vn,. * ny " .t Cx|n.” .
LP(Q) L2(Q) L2(Q)
2pa
retP=2 || Xy , 4(1A
k—1 k—1
:OQO ans P Hn H ( +020||711 ||L1(Q)
Lr(Q)
4(1\7(}.) rptp—2 Aﬁa
§O20Mk_1k </ ‘ans ) +020Mk 1
rptp—2|P 4(&—@) Xp-2a &
SCQ()(S/ ‘ang P + CyCs (Mklk ) +020Mkj1, (336)
Q

for all ¢ € (7,Timax.), with some Cor > 0. Taking 7 = z7—(575=)
ﬁ(ﬁ)p and substituting (3.35) and (3.36) into (3.34), we obtain

d 4(1—a) 4
%/ nla / nla <Clgc Tk(?"k — ].)Mgk o + Clng(Tk — 1)M
Q

4(1—-a) 4

+ CooCsri(ry — )M ™ + Coory(re — 1) M *

where
_ 1 9 _ 2a
o — 05 %—1 TZ -1 . 0, — 2a Gk O —2a
O 772@ % o 9k 2a ’
Letting
b=27"a > 1,

then by (3.33) we have
C,<n” e

2a
o — 92\ % -2aP
= (4Cyp) = (Tk + ;} > ‘

Qfa sz—aQap
< (4C19) %2 | r +1
k

S (4019)ﬁ27‘ﬁp
< Oy b
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A quite similar computation gives
Cs5 < Coob",

4(l—a) 4 4(1-—a)
0r—2a’ 0’ Ag—2a
4(1—a) 4

d ~ —r o
%\/ nﬁﬁ +/ nﬁ SCngﬂ“}d?“k — ].)bkM’:_kll + Clgrk(Tk — ].)M:El
Q Q

with some Cy; > 0. Noticing that

and /\ik < 2, then we have

4(1—a) 4

+ CQQCQQTk(Tk — 1)Z~)kMkAf172a + OgoTk(Tk — 1)M,§1
SZC’lg(ngrk(rk — 1)6kM]§_1 + QCQQCQQTk(Tk — 1)EkM]§_1.
An integration of this ODI shows that

M, < max {/ ng’i‘e, (2019021 + 2020022) rk(rk — 1)BkM]3_1} .
Q
On the one hand, if
(2C19Co1 + 2C50C2) 11 (11 — l)i)le?—l < / ngfes
Q

holding for infinitely many k£ > 1, we see

1 JE
g\ TRl e 2rp—1
sup Mg < No1e )
t€(0,00) Q Q

for all such k, and hence conclude that |[n1.(t)|| =) < [|no1ell Lo (), for all £ > 0.
On the other hand, in the opposite case, upon enlarging C19 and Csy if necessary

we have that My < (2C19Co1 + 2C50Co) ri(ry — l)l;kM,ffl, for all k > 1. Let

Co3 1= (2C19Ca1 + 2C0C42) ¢3, then from the definition of b and (3.33), we see

M, < (2019031 + 2050C42) 120" M7,
< (2C19Ca1 + 2050Ca2) (c22%) 20" M7,
S 023(4B)kM/?—1a

for all £ > 1. Furthermore, we have

k=1 oj

My, < O30 % (4b)Zima =92 2",
for all £ > 1. A straight calculation shows that Z;:é 2 =9k 1 < 2% and
Zf;é(k —j)27 =2k — 2 — | < 2Kl then we have

My, < C2 (46)% " 2"
Finally, combining the definition of M}, we concludes that
||n1£(t)Hzloo(Q) < Coy- ||n016||L°°(Q)) for all t € (Tvaax,e)v

with Cpy = Ch3(4b)?, which confirms [n1e]| Lo (@) is bounded. By Lemma 3.1,
Tmax,e = 00. O

Lemma 3.9. There exists C > 0 such that for any € € (0,1), the solution of (3.1)
satisfies

/OT/Q ¥ < (T +1), (3.37)
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for allT > 0. And

T
/ / nt, < C(T +1), (3.38)
0
for all T > 0, where r € [1, 4p +3]. And

/0 /Q g < (T + 1), (3.39)

for all T >0, where m € [1, %7]

Proof. Fixing C; > 0 and C5 > 0 such that in accordance with Lemma 3.6, we have
that

/ w2 < CL(T + 1), (3.40)
Q

and that

T
/ |Vu|* < Co(T 4 1). (3.41)
0 Q

Then we combine the Gagliardo-Nirenberg inequality with Poincaré inequality to
fix C3,Cy4 > 0 such that

T
¥ [t
Py oy = Tl g

T 10.3 10 .2
<o [ IVulE el
0

T
<a / V20
< CCy(T +1).

Recalling Lemma 3.7, particularly, when £ = 5, we have

T P p T
3
|/ =(+p) / [ ntlvmap < esr+ 1),
0 Q Q

. . _ p+3_ (p+3)r 3(p43)(r—1) 4
with some C5 > 0. Taking a = ’{' T 5;3 = 124p+6) , when r < p + 3, we see
that @ € [0,1) and p’r -a < p. Thus 1nv0k1ng the Gaghardo—Nlrenberg inequality

along with (3.9), we obtain Cs > 0 and C7 > 0 such that

3+p

P
Vn, !

T T p+3 %
T — P
/ el @) —/ Nie pr
0 0 347 (Q)
T i3 || 5@ || p4s || a3 (178) T || pi3||t3
< 06/ Vnyt nyg . + 06/ nyl »
0 Lr(Q) L3 (Q) 0 LP+3(Q)
T p+3 ||P T a
I T a)o
<ci [ |vni? +Co [ (Il + Il o)
0 Lr(Q) 0

S C7(T + 1)3

p+3
p+3—ra”

with o =
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Again by Lemma 3.7 we also have

T 512
2
/ / ‘vnQE
0 Q

with some Cg > 0. Upon another application of the Gagliardo-Nirenberg inequality
in precisely the same way we see

T T 5

/ ||n25||?m(9)=/ ane
0 0
T 5
<C Hv 3

- 9/ e L@

<o [ e |7

where a = T“f%g, = 15 (11— —) Since m < 1—7 . we have 2.4 < 2. Then employing

5 T
- (5)2/ n3_|Vnoe|? < Cs(T + 1),
0

L% (@)

2m 4
5 a

‘ 5 %.(1_6)—#0 TH 5%
n 2 9 n 2
2e L3 @) 0 2e 2

L5 (Q)
m-(1—a) T
o I 565+ Co /0 ol

(3.10) and Young s 1nequahty, we have
T
| nac
0

Lemma 3.10. There exists C > 0 such that for any € € (0,1) and any T > 0, the
solution of (3.1) satisfies

Im) < Cro(T+1).

O

T
/0 ||6tn16||1()W1,p(Q))* < C(T + 1)a (342)
T 5
Ornoc (-t <C(T+ 3.43
| tomacn? g, <C@), (3.43)
T
[ 1oecon’ <o, (3.44)
0 @)
T 5
| 10O . < €T+ ) (3.45)

by any ¢ € C>(Q), and integrating by

Proof. Testing the first equation in (3.1)
(3.3) we can estimate

parts, due to Holder’s inequality, and

/ a1

2’ /(\Vn15| +5) =N Vnie Vgo—i—/XlnlsFE'(nlg)ch-ch—&—/nleuE-ch
Q

+/ pinie (1 —nie — aing:)
Q

< [ (191 +6) T (91| Pl + Callmse Vel oy 19 v
+ Inictell Lo @) Vel e + [ (1 = nie — ainge) || o () @l e )

p—1
<C1 (Ve + )% |l gy + e Veell o gy + Imictiell oo
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e (L= nie = el o)) 196l 0@,

with some Cy > 0. Then We use Young s inequality (3.26), (3.27), (3.28), (3.37)
and the fact that & —|— <z —|— 15 < 7 to see

T
/ lOsmie(-s )H(WlP(Q))*

(p=1p" T , T ,
/ / V2 +1) 77 / /|n1€Vca|p +/ /|n15u5|p
0 Q 0 Q
T ’ ! /
+/‘/w%w+mmp+mmmw
0 Q
T T T
<@</ [avmpsn+ [ [ pps [0 [ 9el
0 Q 0 Q 0 Q
T T 1o T
+/ /|n15\5+/ /|u5|7+/ /|n25|5+|Q|T <C(T+1).
0 Q 0 Q 0 Q

By Lemma 3.6, we see there exists Cy > 0 such that

T 2
/ /ﬂygﬂfgcuT+1)
0o Ja N2

Upon the Holder’s inequality, we furthermore see that

T T g
[ [ ini = (lwlﬁy.na
o Ja ) o Ja N2e %
(L) ([ L)
“\Jo Ja Cnae Q =

<Cs(T + 1), (3.46)

with some C5 > 0. We next test the second equation in (3.1) by any ¢ € C*(Q),
and integrate by parts, due to Holder’s inequality and (3.3) we can obtain

/ atn2€<'7 t)@’
Q

= ‘—/ Vng. - Vi +/ Xanae Fl(n2e)Vee - Vo +/ NocUe - Vo
Q Q Q

+u2/ nge (1 — agnie — nog) Qﬂ‘
Q

<Cs (HV”2€|| + [[n2:Vee|| . 5

L3 () LS(Q
lnocticl 5 g + Inze(1 = aomic = mac) 5 ) ) el

We notice that % + i < % + % < g By the Young’s inequality, we can find C7 > 0
such that

T 5
N
/0 ||6tn28( ’t)H(Wl’%(Q))*
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T 5 T 5
SCG/ /|Vn25\§+/ /|n25w5|§
0 Q 0 Q
T s T
+/ /|n2€u5|§ ""/ /|n2€(1_a2n15_n25)|
0 Q 0 Q
T ] T T
s [ i [ it [ e
Q
/ /|ua|s +/ /|n15\ QT

Recalling (3.26), (3.27), (3.28) with (3.37), we obtain (3.43).

Likewise, given any ¢ € C°°(Q), testing the third equation in (3.1) by ¢ to obtain
that

wlov

= ‘/ Vee - Vo — / (aFe(nle)Ce =+ BFE(”’Q,E)) Cep + / Celle * VQO‘
Q Q

<Cs (IVeell ) + Imaceell 1p ) + Imzecell ap ) + llestell g o)) 1009 -

Thereafter we use (3.11) to see
T
| 1ot ¥ o
r 10 10 r 10 T 10
<Cjs ‘VCE| 3+ |nlacs| 3+ ‘n2ace| 3+ |Caus| 3
0o Jo
T
<c | /\v«:srw/ /\m o[ /\n2€| o[ /\usws +lopT,
0o Ja

Combining (3.26), (3.27) (3.28) and (3.37) entail (3.44).

Finally, noticing that ||Yz v||Lz @) < |[v]lr2(q) for all v € L2(2) and the Young’s
inequality as well as that V& € L*°(), there exist constants Cig,C11 > 0 such
that for any ¢ € (C§%,(Q); R?)

T 5
| 100

<C10/ /|Vu5|4 Jr/ /|Yus®u5\4 Jr/ /|n15+n25 VCI)|
SCM(/ /|Vu5|2+/ /|5/5u8|2+/ /u*
0 Q 0 Q 0 Q
T T
+/ /n‘i’ng/ /n§€+|Q|T)§C(T+1).
0 Q 0 Q

The proof is complete. O

4. The main result and its proof. In this section, we are going to proof the
existence of weak solution for the problem (1.1), (1.3) and (1.4). With the above
compactness properties at hand, by means of a standard extraction procedure we
can now derive the following theorem which actually is our main result.
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Theorem 4.1. Let Q C R3 be a bounded convexr domain with smooth boundary.
Suppose that the assumptions (1.5) and (1.6) hold. Then for p > 2, there ewists
at least one global weak solution (in the sense of Definition 1.1) of (1.1),(1.3) and

(1.4).

Proof. It (n1e,noe, ce, ue) is the global solution of (3.1), considering Lemma 3.6-
Lemma 3.10 to see that

[naellze (0,00 wrr(e)) < C(T+1), (4.1)
”(nle)t”Lf’o/c([o,oo);(leP(Q))*) < C(T + 1)’ (4'2)
s < CO(T +1), 4.
2l 5 oyt gy < O+ D (4.3
Dl s < CO(T+1), 44
01,5 0t apyey < CT+D 44
and that
le=llza _(f0,00)w1(0)) < C(T + 1), (4.5)
10

[(ce)ell P10 10 <C(T+1), (4.6)

L2.([0,7);(Wh T (92)*)
uellzz (j0.00)wr2(0)) < C(T +1), (4.7)
usll s 3 <C(T+1). 4.8
| e||LI%C([OM);(W&,:(Q))*) ( ) (4.8)

According to the Aubin-Lions lemma ([9]), there exists (¢;)jen € (0,1) such that
€5 (0 as j — oo, and such that as ¢ = ¢; \, 0, we have

Nie — N1, in i, (2 x [0,00)) and a.e. in © x [0, 00), (4.9)
Mae = ma, i Li (2 x [0,00)) and a.e. in € x [0,00), (4.10)
Ce = ¢, in Lif (2 x [0,00)) and a.e. in  x [0, 00), (4.11)
Ue — U, in LZ (9 x [0,00)) and a.e. in Q x [0, 00). (4.12)
Considering Lemma 3.7-Lemma 3.9, we also have
4
nie —ny, in L. (2 x [0,00)), for r € [, gp +3], (4.13)
£-2+p £=2+4p 12
Vn, ¥ —=Vn; ” , inL} (2x[0,00)), for £ € (1,11 — —], (4.14)
b
17
Nge — N2, in L2 (2 x [0,00)), (4.15)
< <
Vn3. — Vn3, in L (9 x [0,00)), for ¢ € (1,5], (4.16)
as well as
ce = ¢, in L®(Q x [0,00)), (4.17)

Ve, — Ve, in L (9 x [0,00)), (4.18)



3532 JIAYT HAN AND CHANGCHUN LIU
10
us = u, in L3 (©2 x [0,00)), (4.19)
Vu. — Vu, in L (Q x [0,00)), (4.20)
as € \( 0. Combining the Lemma 6.1 and Lemma 6.2 in [19], we further see
nie — ny, in L) (Q x [0,00)), (4.21)
Noe — g, in L (Q x [0,00)), (4.22)
ceus — cu, in Li (Q x [0,00)), (4.23)
Niette — nyu, in Li (€ x [0,00)), (4.24)
and
Noctle — Nou, in Li (2 x [0,00)), (4.25)
Youe @ ue — u®@u, in L (2 x [0,00)), (4.26)
n1eFl(n1.)Vee — niVe, in LE (9 x [0, 00)), (4.27)
noe Fl(n2.)Vee — naVe, in L (9 x [0, 00)), (4.28)
as well as
(@F:(n1e) + BF(nze))ce = (any + Bng)e, in Lige(Q x [0, 00)), (4.29)
(IVn1? + €)% Vnie — [V [PV, in L7 (Q x [0, 00)), (4.30)

as € = g5 \¢ 0. According to these convergence properties, by using the standard
arguments and letting € = ¢; \, 0 in each term of the natural weak formulation of

(3.1
(1.3

) separately. Then we can verify that (nq,ne,c,u) is a weak solution of (1.1),
) and (1.4). The proof is complete. O
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