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ABSTRACT. This paper is concerned with a practical inverse problem of si-
multaneously reconstructing the surface heat flux and the thickness of a solid
structure from the associated ultrasonic measurements. In a thermoacous-
tic coupling model, the thermal boundary condition and the thickness of a
solid structure are both unknown, while the measurements of the propagation
time by ultrasonic sensors are given. We reformulate the inverse problem as
a PDE-constrained optimization problem by constructing a proper objective
functional. We then develop an alternating iteration scheme which combines
the conjugate gradient method and the deepest decent method to solve the
optimization problem. Rigorous convergence analysis is provided for the pro-
posed numerical scheme. By using experimental real data from the lab, we
conduct extensive numerical experiments to verify several promising features
of the newly developed method.

1. Introduction. The heat conduction is a ubiquitous phenomenon which forms
the basis for many practical applications. Given the geometrical and material con-
figurations of a material structure as well as the heat source including the initial and
boundary temperature distributions, finding the temperature distribution as well
as its change on the material structure constitutes the so-called direct or forward
heat conduction problem. In many practical applications, one is more interested
in the so-called inverse heat conduction problem which reverses the above forward
problem through direct or indirect measurement data; see e.g. [1, 13, 14, 20, 24]
and the references cited therein for some related studies in the literature.

In this paper, motivated by practical applications (with experimental real data
from the lab), we are mainly concerned with the reconstruction of the surface heat
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flux and the thickness of a solid structure by using the associated ultrasonic measure-
ments. The reconstruction of the surface heat flux is one of the most typical inverse
heat conduction problems, and is widely encountered in aerospace, nuclear physics,
metallurgy, and other industrial fields; see [14] and the references cited therein for
more related discussions. Ultrasonic thickness measurement is a commonly used
non-destructive testing method, and is widely used in petroleum, machinery, ship,
chemical industry and other fields [20]. For most of existing results in the literature,
one either recovers the surface heat flux by assuming the thickness of the material
structure is a priori known, or recovers the thickness of the material structure by
assuming the surface heat flux is a priori known. However, it is a more practical
scenario that both the surface heat flux and the thickness of the material structure
are unknown and one recovers both of them.

In this paper, based on the ultrasonic echo method and the inverse analysis
method of the heat conduction, we propose a novel scheme for simultaneously re-
covering the surface heat flux and the thickness of the material structure through
the pulse-echo measurements by the ultrasonic probe. The study is posed as an
inverse problem associated with a thermoacoustic coupling model. We recast the
inverse problem as a PDE (partial differential equation)-constrained optimization
problem by constructing a proper objective functional. We then develop an alter-
nating iteration scheme which combines the conjugate gradient method and the
deepest decent method to solve the optimization problem. Rigours convergence
analysis is provided for the proposed numerical scheme. Finally, by using experi-
mental real data from the lab, we conduct extensive numerical experiments to verify
effectiveness and efficiency of the method.

The rest of this paper is organized as follows. In Section 2, we present the mathe-
matical formulation of the direct and inverse problems for our study and also briefly
discuss the corresponding physical setup. In Section 3, we give the optimization for-
mulation of the inverse problem and then derive the alternating iteration scheme
for solving the optimization problem. Sections 4 and 5 are, respectively, devoted to
the theoretical convergence analysis and numerical experiments.

2. Mathematical and physical setups. The physical principle of the ultrasonic
thickness measurement is to use the propagation time of the ultrasonic waves in the
medium to infer the thickness of the underlying solid structure. The propagation
time is mainly determined by the thickness, material properties, and internal tem-
perature field of the solid structure; see Figure 1 for a schematic illustration of the
physical setup. The propagation time of the ultrasonic wave in the solid structure
can be expressed as (see [23]):

L
AL(t) :2/0 mdx, t € (0,400), (2.1)

where L € R denotes the unidirectional propagation distance of the ultrasonic wave
in the medium, i.e. the thickness of the material structure being under detection.
Here, V is the propagation velocity of the acoustic wave in the solid medium and
is related to the material properties and the structure temperature. Usually, it has
an approximately linear relationship with the temperature, i.e.,

V(T)=aT +b, a,beR, (2.2)

where a and b are determined by the properties of the material and calibrated by
experiments. T'(z,t) is the internal temperature of the structure, which satisfies the
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FIGURE 1. A one-dimensional model based on ultrasonic detection.

following heat conduction system for T' € W3 ([0, L] x (0,7)):

oT 0 oT
o2k 2 (’“ax) , (2,1) € [0, 1] % [0,7],
or, ary 5 (2.3)
kel T Rae| =0 q(t) € L7[0,7],
T |y—o= T, z € [0, L],

where k(z), ¢(z) and p(z) are the thermal conductivity, specific heat capacity and
density of the material, respectively, and ¢(¢) denotes the heat flux density on the
boundary. In this paper, the parameters k, ¢, p are set to constants, which is in
accordance with the lab experiments, see the numerical part in Section 5.

In this paper, the inverse problem that we are concerned with is described as
follows:

Problem 1. Given the measured propagation time of the ultrasonic wave A, (t)
and the measured boundary temperature T,,(L,t), determine the surface heat flux
q(t) and the thickness L, i.e.,

{Am, (), T (L, 8)} = {q(t), L}, te]o,7]. (2.4)

We would like to point out that in the measured data, the temperature at the end
of the solid structure can be measured. However the thickness L of the structure
is unknown in the practical application of our interest. It can be directly verified
that the inverse problem (2.4) is nonlinear.

3. An alternating iteration scheme for the inverse problem. In this section,
we first recast the inverse problem (2.4) as an optimization problem by following
the general framework of Tikhonov regularization for inverse problems; see e.g. [9]
and the references cited therein. Then we present the newly proposed alternating
iteration scheme. To that end, we introduce the following objective functional with
respect to the unknown heat flux ¢(¢) and thickness L:

J(g, L) = ;/OT (AL (t) — A, (t))2 dt + % /OT (T(L,t) — Tm(L,t))2 dt, (3.1)
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where a € R,y signifies a regularization parameter. We then recast the inverse
problem (2.4) as the following PDE-constrained optimization problem:

J(¢,L) subject to T € W3 ([0, L] x (0,7)) satisfying (2.3).

(3.2)
We next convert the constrained optimization problem into an unconstrained one
by using the Lagrange multiplier method. Using the heat conduction equation (2.3),
with the boundary conditions and the initial condition, the augmented functional
is given as follows:

min
qeL?(0,7), LER}

J(q,L) :% /OT (AL (t) — A (t))thJr;/OT (T(L,t)—Tm(L,t)fdt

_ OL /OT {pcang,t) _a% (kaTg?t))}Al(%t)dtdx
+/OT <’f6T8(i’t) +q(t)> x*OAQ(t) dt+/OT (ﬁ%?ﬂ)

[ (re-mien)|

where A1(x,t), Aa(t), A\3(t) and A\y(z) denote the Lagrange multipliers.

As(t) dt
z=L

Ag(z) da.
=0

(3.3)

3.1. Gradients with respect to the parameters. To solve the optimization
problem (3.3), the gradients of the objective functional J with respective to ¢ and
L are required. However, it is difficult to solve the gradients directly. Thus, we
refer to [19] and use the adjoint state method to derive them. Noting that

L pT
/ / pcaT(x’ 2 Ai(z, t) dtdx

- ’ | P20 vt + [ ) (pcmmT w))

Similarly, one can deduce that

Lo ( oT(x,t) Erma (o (x,t)
[ L3 (e [ [ (2522 e

T

dx.
0

T BT(z,t)) o < O (z,1) > o
+/ (kA 2, t) =) | dt —/ DY e o)) | dt.
0 1) Ox 0 0 Ox (@) 0
Finally, the equation (3.3) can be rewritten as
1 T 9 o T 9
Ja D) =5 [ e = A @7+ [ (00~ TuL.0)dt
0 0
Lorm ox(x,t) 0 [ 0\(x,t)
T aT(z, 1)\ | T O (x,t) L
+/O (k:/\l(:v,t) - ) K /O (kaxT(x,t) e
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L T T T
- / (pc)\l(m,t)T(x,t)> dz +/ (kﬁ(x,t) + q(t)) Ao (t) dt
0 0 0 Oz =0
L
+/ ( BT(“)) As(t) dt — / <T(m,t) - To(x,t)> () dz.
0 Ox =L 0 t=0
To obtain the adjoint state equation, we set
aJ
ar ="
and it yields
a)\l(l’, t) Q 3)\1(1‘, t) o
N TR (k o) ~o@b);
_ k@)\l(az,t) _ 0, _kﬁz\l(x,t) _ 0,
Ox x=0 Ox =L
)‘1 (.’L‘, T) =
Aa(t) = ( t),
As(t) = =M1 (L, 1),
Aa(x) = —peri(x,0).
Here the source term is given by
a e

From (3.3), through a straightforward calculation, the gradients with respect to the

model parameters are given by
aJ

Aa(t) = A1(0,1),

3 q( ) = Xa(t) = A1(0,1)

oJ T OA L (t) /T 2(AL (t) — A (1)
L= (AL ()= A (t dt = dt.
L /0 (A (1) ") =5k 0 V(L,1)

In order to change the final condition to initial condition, a change of variables can
be employed :

(3.4)

:u('r7t) = )\1(213,7' - t)
Consequently, the adjoint state equation is rewritten as

Ca/i(l'vt) + E (kap‘éxvt)> = S(z,7— 1),

ot Ox
B kau(:c,t) 0, _kau(x,t) o,
Ox =0 ox x=L
w(z,0) =0.

Therefore, according to (3.4), the gradients with respect to ¢(t) and L can be
represented by

oJ

7(75) = Al(ovt) = ,L"(OvT - t)v

Jq
T ( ) _ T2(AL (t)—Am (t))
87:/0 (Az (8) = A (1) =57~ —/0 V(L,1) .

Next, we use the conjugate gradient method and the steepest descent method to
identify the heat flux ¢(t) and the thickness L, respectively.
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3.2. Update ¢ with the conjugate gradient method. To numerically recon-
struct the heat flux ¢, we shall discretize the heat flux with respect to the time t.
Suppose that [0, 7] is discretized as follows

O=tg<t1 <---<t; <t <+ <itn=T.

The reconstruction schemes of the heat flux based on the conjugate gradient (CG)
method is described as follows

@t = q + By, (3.5)

where the subscript ¢ indicates the discretization of the heat flux in time, and the
superscripts n and n + 1 denote the iteration steps. p! signifies the conjugate
direction and it is generated by the rule

pn B _g;n’ n= 13
’ 797’? + anp:.t—l, n Z 25

where ™ is the CG update parameter given by

N
> e gt -9
n _ =0
a = ~ 2 ;
-1
> llgr i
=0
with ||-|| denoting the Euclidean norm, and
aJ |
9i = 9a :
q \t=t;

In addition, the step size 5™ is obtained by the exact line search and can be described
as

N
D (AT () = A (£)) Aty

=0
=1 - ,

> At

=0

where A7 (¢) is the solution of the forward problem and At,, is the change in trans-
mission time and can be expressed as:

Lo
Aty (t) = / g
( ) 0 ‘/g"(xat)

Here Vyn = aTyn +b and Tyn (x, t) is the solution of the following sensitivity equation

or _ o (0T

pc@t_ax ox )’
oT . oT

ol TV e

Tl|i=o = To.

= 0,
x=L
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3.3. Update L with the steepest descent method. The reconstruction of the
thickness based on the steepest descent method is described as follows:
LM = L™ 4 Amd"™, (3.6)

where the superscripts n and n + 1 denote the iteration steps, and d” denotes the
negative gradient direction respect to L,

R  CHOES RO
OL|;_1n Jo V(L") '
And the step size A" is determined by an inexact line search technique called Wolfe-
Powell search method. Assuming that f(L) = J(q, L) is differentiable, the Wolfe-
Powell search method is used to find A" along d" such that
vf(Ln 4 )\ndn)Tdn > O'Vf(Ln)Tdn,

FLT+XM") < F(L™) + pV f(LM) T, p e (0,1/2),0 € (p,1).
Assuming that p(A") = f(L™ 4+ \"d"™), the strategy for computing the step length
A™ can be described as follows:

Stepl. Let \° = 0, \™2 > 0, and choose A\! € [A\°, \™%] p € (0,1/2),0 € (p, 1).
Evaluate ©(A\%) and ¢ (A?). Let ag = \°, by = A% n = 0.

Step2. Evaluate o(A"). If p(A") < p(\°) + pA"¢ (\°), go to Step3. Else, go to
Step4, set an+1 = an, bpyp1 = A"

Step3. Evaluate ¢ (A"). If ¢ (A\") > 0¢ (A?), stop. Else, set aps1 = A", bpy1 = by,
go to Step4.

&' =

Step4. Let A\t = %—i—bm’ set n =n + 1, go to Step2.

3.4. Optimize algorithm iteration format. In this paper, we iterate the heat
flux ¢ and the thickness L alternatively, and the proposed algorithm is listed as
follows:

Stepl. Choose an initial point ¢?, L°, ¢ € (0,1).
Step2. Fixed L". Update ¢; using the formular (3.5).
Step3. Fixed qzm'l update L using the formular (3.6).

Step4. Evaluate J(g]'™', L"), If J(g!™', L") < ¢, stop. Else, set n = n + 1,
go to Step2.

4. Convergence analysis. In this section, we shall analyze the convergence of the
reconstruction scheme proposed in the previous section. In recent decades, conver-
gence analysis of strongly convex functionals for inverse problems has attracted a
lot of interest and related therein has been studied. Klibanov et al[15, 16] proposed
a convexification method via constructing a globally strictly convex functionals for
the inverse coefficient problems. We also refer the readers to [2] and the references
algorithms for constructing weighted globally strictly convex cost functionals by the
Carleman estimates.
Let (¢f, L*) be the optimal solution to the optimization problem (3.3), i.e.,

J(q;, L") < J (g L"), Vg eRN, L"e€R. (4.1)
It is clear that the necessary condition of (4.1) is:
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Algorithm 1 Alternating iteration algorithm

Require: ¢°(N), L%, crl, npaz, €.
Ensure: ¢(N), L, T'(nl).
Lg" g% L™« LO J < JO.
2: while abs(J) > crl. AND.n < npq, do

3: call gradient

4: g" g1,

5: call cgm

6: p" <+ pl,

T call bet

8: 8"+ A1,

9: for i =1, N do
10: q"(3) < q" (i) — bet * p™(3)
11: 92(i) < g1(3)
12: p2(i) < pl(7)
13: end for

14: // update ¢
15: if abs(L — j1) > ¢ then

16: jl« L

17: call wolfe(j)

18: // update L

19: else

20: aa < aa/10

21: // update regularization parameter
22: end if

23: compute objective function J.

24: end while

and hence it is sufficient for us to prove
lim inf || (g7*,d")| = 0. (4.2)
n—oo
Next, we prove that the optimization algorithm that consists of (3.5) and (3.6)

satisfies the convergence condition (4.2). Before we discuss the convergence, we
introduce some notations and important lemmas.

Definition 4.1. Polka — Ribiére — Polyak(PRP) method is a nonlinear conjugate
gradient method, and it has the following form:

qn+1 — qn +6n n7
p =

—g"+a"p"t, n>2
where
gnT(gn _ gn—l)
n —
Qprp = o117 (4.4)

Definition 4.2. Exact line search: at each iteration, the step size 5" is selected so
that

flg"+p"p") = mﬁinf(q” + Bp"),
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where the objective functional is f(q) = J(q, L), q(t) € L? ([0, 7]).

Remark 4.1. Tteration algorithm (3.5) is a PRP conjugate method with the exact
line search.

Next, we prove the convergence of the PRP conjugate method with an exact
line search as well as its convergence condition. To that end, we first derive several
auxiliary lemmas.

Lemma 4.1. [21] Let 0,, be the angle between the searching direction p™ and the
negative gradient direction —g™. Then

cos, = 9P
o= .
R

When the line search is the exact line search, the angle 0, is represented by Figure 2.
If « is given by (4.4), we have

n+l _ . n
tan f,11 < secl, lg — 9"l . (4.5)
g™l
FI1GURE 2. The definition of figure
Proof. Figure 2 gives the equation
Ip" || = sec by [|g"| - (4.6)
Further, if n is replaced by n 4+ 1 in Figure 2 , we find the identity
o p"|| = tan O " (4.7)
By (4.4), one has
gt = W™ — ")
= - ,
g™l
and hence by the Cauchy-Schwarz inequality,
n+1 n+1 n
I ] n

lg™]1”
Next, by the elimination of ||g"| from (4.6) and(4.7), one can show the following
equality,

_ tanfny g™

a™tt , 4.9
secly o] )
which in combination with (4.8) and (4.9) readily yields that
lg"* — |

tan 9n+1 < sec Gn W .

The proof is complete. O
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Lemma 4.2. [6] Consider the iterative method of the form q" ™ = ¢+ B"p™, where
p" satisfies the descent condtion p"T g™ < 0, the step size 8" is obtained by the exact
line search, the objective functional f(q) is bounded below, and its gradient V f(q)
satisfies the Lipschitz condition, then

(gnTpn)Q

L : (4.10)
s el
and according to the definition of 0,,, (4.10) is equivalent to
Z g |17 cos 0, < . (4.11)

n>1

Lemma 4.3. [25] If the step size 8™ is obtained by the exact line search and the
objective function f(q) is uniformly convex, then

F@™) = f@" + ") = clls™|)?

holds, where s™ = q"*1 — q™, ¢ > 0 is a constant, and further there is ||s"|| — 0 as
n — oo.

Lemma 4.4. Assume that the objective function f(q) is uniformly convexr and
bounded from below, and its gradient V f(q) satisfies the Lipschitz condition. Con-
sider the algorithm (4.3)—(4.4), if the step size B™ is obtained by the exact line
search, then

lim inf|g"|| = 0.
n—oo
Proof. The proof follows a similar spirit to that of Theorem 1 in [21]. By an

absurdity argument, we assume that the theorem does not hold. Then there is a
constant ~y, such that for any n > 1,

g™l = . (4.12)

By Lemma 4.3, there is ||s™|| — 0,n — oo, which combines with the fact that V f(q)
is Lipschitz continuous implies that there exists a positive integer m, such that

1
lg™" = g™ = 57, (4.13)

which holds for any n > m. Noticing that for any 6,, € [0, 7/2), there is
secl, <1+tanb,,

which together with (4.5), (4.12) and (4.13) further implies that

1 1 1
tan 0,11 < 3 + 1 +- 4 (5)”_1_’"(1 +tanb,,) =1+tan6,,, Vn>m.

Therefore, the angle 6,, between the searching direction p,, and the negative gradient
direction —g" is always smaller than an angle bounded above by 7/2. Therefore,
by (4.11), we have ||g"|| — 0, which is a contradiction to (4.12). Thus the theorem
must hold true.

The proof is complete. O

Next, we establish the convergence of the steepest descent algorithm with the
Wolfe-Powell step search method.
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Lemma 4.5. [22] Let the objective function f(L) = J(q,L),L € R be differentiable

and bounded from below, and g(L) = V f(L) satisfy the Lipschitz condition. Suppose

that the steepest descent method generates a sequence L™, n > 1, using the recurrence
Ln+1 — " + )\ndn7

where the direction d"™ denotes the negative gradient direction. If the step size A
satisfies

(") > olg") ",
FLMTY) < FL™) = pA™(d")?, p e (0,1/2),0 € (p,1),
where g"t1 = g(L"*) = g(L™ + A™d"), then one has
1—-0
) = 1) > 22 g P st
Lemma 4.6. If the function f(L) is continuously differentiable and satisfys the
conditions of Lemma 4.5, then sequence L™ generated by the steepest descent method
satisfys:
lim [g"(|* =0

n— oo

Proof. By Lemma 4.5,

FE) — )y = A2 2 o

- M
Thus
FILO) = FL™) = [F(L° = FLH] + [f(Ll) + L))+ [FL7) = FLmT)]
— - [f(Lk) Lk—i—l Zp ||ng coS (dk _gk).
= (4.14)
Notice that cos?(dg, —gx) = 1,k =1,2,--- ,n. We therefore have from (4.14) that
S LD g2 < fz0) - pz. (4.15)
k=0

Since f(L) is bounded from below, one sees that f(L°) — f(L™*!) < oo, which
together with (4.15) readily implies that

. 2
lim |[g"(]" =
n—oo
The proof is complete. 0

Next we prove that the optimization algorithm consisting of (3.5) and (3.6)
satisfies the convergence condition (4.2).

Theorem 4.1. Consider the iterative algorithm consisting of (3.5) and (3.6):

= q + B8y
Ln+1 — Ln 4 )\ndn’
Assume that the objective functional J(q, L) satisfies the following conditions:
(a): J(q,L) is continuously differentiable with respect to q(t) and L;
(b): J(q, L) is uniformly convex;
(c): J(q,L) is bounded from below;
(d): Its gradient VJ(q, L) is Lipschitz continuous.
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Then the optimization algorithm consisting of (3.5) and (3.6) satisfies the conver-
gence condition (4.2), i.e.,

liminf || (¢7*,d"™) ||1 =0,
n—roo
where || - |1 denotes the I*-norm, namely || (g, d") |1 = |lg?|l1 + |d™|.

Proof. We first consider the iterative algorithm (3.5). Since the step size A" is
searched by the Powell-Wolfe method, it satisfies the following conditions:

P(A") < 9(0) + pA"¢ (0),
¢ (\") =00 (0), pe(0,1/2),0 € (p,1),

where ©(A") = J(¢™, L™ + A"d"™). By using conditions (a) (¢) (d) and (4.16), we see
that Lemma 4.6 holds. Hence by Lemma 4.6, we have

lim |d"| = 0. (4.17)

n—oo

(4.16)

We proceed to consider the iterative algorithm (3.6). By virtue of the conditions
(a) (b) (c) (d), we see that the iteration algorithm (3.5) is a PRP conjugate method
with the exact line search. By Lemma 4.4,

ILm inf ||g7*|| = 0, (4.18)
According to (4.17) and (4.18),
i inf (lg7] + ") = 0.

Thus,
Jiminf || (g7",d") [l = lim inf ([|g7']| + |d"]) = 0.
The proof is complete. O

5. Numerical examples. In this section, we present several numerical examples
to verify the effectiveness and robustness of the proposed scheme in simultane-
ously reconstructing the surface heat flux and the thickness of a solid structure
under different acoustic time accuracies, initial fluxes, and initial thicknesses. It is
emphasized that all the data in our numerical examples are collected by lab exper-
iments following the setup described in Figure 1. In fact , these measured data are
blind data without any priori information and we didn’t make any preprocessing
for these data.

The specimens with a thickness of L = 50 mm are heated at one boundary and
the surface heat flux is ¢(t) = 10° J/s. The ultrasonic wave probes are stalled on the
other boundary of the specimens with the detection frequency set to be w = 1Hz,
and the total detection time set to be 7 = 500s. Moreover, the thermal conductivity
of the specimens is k = 50W/(m -°C), specific heat is ¢ = 400J/(kg-°C) and
density of the material is p = 7800kg/m®. The initial tempareture is chosen as
Ty = 26°C. The relationship between the velocity and temperature is given as
follows:

V(T) = —0.4521T + 3259.9.

In the following numerical examples, the stopping criterion for the iterations is set to
be J(g, L) < 5x 10718, The Fortran software is used for implementing of Algorithm
1.

The reconstruction results of thickness under the acoustic time accuracy of 107,
10719 and 10~ are respectively shown in the Table 1.
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Acoustic time

initial heat flux

initial thickness

reconstructed

iterations

accuracy (s)  q°(J/s) LO(mm) thickness L(mm) n
107° 0 3 50.0006 138
10710 0 3 50.0006 64
10711 0 3 50.0006 63
107° 1x10? 45 50.0032 208
10719 1x10? 45 50.0028 115
101 1 x 10 45 50.0025 108

TABLE 1. Convergence of the iteration method with different ini-
tial guesses and measurement errors.

It can be found that the thickness can be reconstructed effectively under different
acoustics time accuracies. The error and the number of iterations show that under
the same initial value, the accuracy of acoustic time will affect the convergence
speed of the algorithm. If the accuracy of acoustic time reaches 107'° or 107!, one
can achieve much accurate reconstruction results. Thus, in the following numerical
examples, we adopt the measurement data with an acoustic time accuracy of 10719
or 107! to study the effect of the initial values on the inversion procedure.

Figure 3 presents the reconstruction results of the heat flux under different initial

thicknesses and different initial heat flux conditions. The acoustic accuracy is fixed
to be 10710,

14 14
12 12
107 —~ - ey 10 fr—e e e — A
[
o8 =8
< 1L0=3,g°=10% = e
6- 10=45,°=10° 6+ tg;i’qojoa
10=80,q°=10° Lo:a':o:mf,
4 4t
2 2
0 0
0 100 200 300 400 500 0 100 200 300 400 500
t t
(a) (b)
FiGure 3. Heat flux inversion results with the acoustic time

accuracy fixed to be 1071, (a): under a fixed initial heat flux and
different initial thicknesses, (b): under a fixed initial thickness and
different initial heat fluxes.

Figure 4 shows the reconstruction results of the heat flux under different initial
thicknesses and different initial heat flux conditions. The acoustic accuracy is fixed
to be 10711,

By observing the surface heat flux reconstruction results in Figures 3 and 4,
it can be found that when the acoustic time accuracy is 107!° and 10~!!, under
different initial conditions, the inversion value of the heat flux converges to the
real value. Moreover, when the acoustic time accuracy reaches 10!, the inversion
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FIGURE 4. Heat flux inversion results with the acoustic time

accuracy fixed to be 10711, (a): under a fixed initial heat flux and
different initial thicknesses, (b): under a fixed initial thickness and
different initial heat fluxes.

value of heat flux very close to the real value, which achieves a much accurate
reconstruction.

Table 2 lists the inversion results and the iteration times of the thickness under
different initial thicknesses and different initial heat fluxes initial conditions. The
acoustic time accuracy is 1070 or 10711,

acoustic time initial heat flux initial thickness reconstructed thickness iterations
accuracy q°(J/s) L°(mm) L(mm) n
10~10 0 3 50.0006 64
10~10 1x 10 3 50.0016 58
10-10 1x 10° 3 50.0000 133
1010 0 45 50.0025 126
1010 1% 103 45 50.0028 115
1010 0 80 50.0028 77
1010 1x 103 80 50.0046 92
10—t 0 3 50.0006 63
10— 1x 103 3 50.0016 57
10-11 1% 10° 3 50.0006 147
10-11 0 45 50.0025 126
10— 1x103 45 50.0025 108
10— 11 0 80 50.0028 77
10~ 1t 1x 10 80 50.0029 80

TABLE 2. Convergence of the proposed iteration method with dif-
ferent initial guesses and measurement errors.

The results show that the iterative algorithm converges very fast and robust with
different initial conditions.

6. Conclusion. Based on the ultrasonic echo method and the inverse problem
analysis method of the heat conduction, combined with the optimization model, a
method of simultaneously reconstructing the thickness and the surface heat flux of
a solid structure is established in this paper. This approach is non-destructive and
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non-contact and it can be used to recover the surface heat flux and the wall thick-
ness at the same time. It possesses a high engineering value. We provide a rigorous
convergence analysis of the proposed numerical scheme. By using experimental lab
data, we conducted extensive numerical experiments to verify the effectiveness and
efficiency of the newly developed method. It is found that as long as the acoustic
time accuracy reaches 10719 or 10711, the proposed iteration method converges very
fast and robust with respect to different initial guesses. The inverse problems of
simultaneously recovering more than one target objects can find important appli-
cations in geomagnetic anomaly detections [7, 8, 11], medical imaging [3, 10, 12] as
well as many other areas [4, 5, 17, 18]. We believe the numerical method developed
in this paper can be an inspiring source for the relevant numerical studies for those
inverse problems.
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