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Abstract. This article deals with the global stability of traveling waves of a

spatially discrete diffusion system with time delay and without quasi-monotonicity.

Using the Fourier transform and the weighted energy method with a suitably
selected weighted function, we prove that the monotone or non-monotone trav-

eling waves are exponentially stable in L∞(R) × L∞(R) with the exponential

convergence rate e−µt for some constant µ > 0.

1. Introduction. In this article, we consider the following spatially discrete diffu-
sion system with time delay{

∂tv1(x, t) = d1D[v1](x, t)− αv1(x, t) + h(v2(x, t− τ1)),

∂tv2(x, t) = d2D[v2](x, t)− βv2(x, t) + g(v1(x, t− τ2))
(1)

with the initial data

vi(x, s) = vi0(x, s), x ∈ R, s ∈ [−τi, 0], i = 1, 2, (2)

where t > 0, x ∈ R, di ≥ 0 and

D[vi](x, t) = vi(x+ 1, t)− 2vi(x, t) + vi(x− 1, t), i = 1, 2.

Here v1(x, t) and v2(x, t) biologically stand for the spatial density of the bacterial
population and the infective human population at point x ∈ R and time t ≥ 0, re-
spectively. Both bacteria and humans are assumed to diffuse, d1 and d2 are diffusion
coefficients; the term −αv1 is the natural death rate of the bacterial population and
the nonlinearity h(v2) is the contribution of the infective humans to the growth rate
of the bacterial; −βv2 is the natural diminishing rate of the infective population due
to the finite mean duration of the infectious population and the nonlinearity g(v1)
is the infection rate of the human population under the assumption that the total
susceptible human population is constant during the evolution of the epidemic, and
τ1, τ2 are time delays. The nonlinearities g and h satisfy the following hypothesis:
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(H1): g ∈ C2([0,K1],R), g(0) = h(0) = 0, K2 = g(K1)/β > 0, h ∈ C2([0,K2],
R), h(g(K1)/β) = αK1, h(g(v)/β) > αv for v ∈ (0,K1), where K1 is a positive
constant.

According to (H1), the spatially homogeneous system of (1) admits two constant
equilibria

(v1−, v2−) = 0 := (0, 0) and (v1+, v2+) = K := (K1,K2).

It is clear that (H1) is a basic assumption to ensure that system (1) is monostable
on [0,K]. When g′(u) ≥ 0 for u ∈ [0,K1] and h′(v) ≥ 0 for v ∈ [0,K2], system (1)
is a quasi-monotone system. Otherwise, if g′(u) ≥ 0 for u ∈ [0,K1] or h′(v) ≥ 0
for v ∈ [0,K2] does not hold, system (1) is a non-quasi-monotone system. In this
article, we are interested in the existence and stability of traveling wave solutions
of (1) connecting two constant equilibria (0, 0) and (K1,K2). A traveling wave
solution (in short, traveling wave) of (1) is a special translation invariant solution
of the form (v1(x, t), v2(x, t)) = (φ1(x + ct), φ2(x + ct)), where c > 0 is the wave
speed. If φ1 and φ2 are monotone, then (φ1, φ2) is called a traveling wavefront.
Substituting (φ1(x + ct), φ2(x + ct)) into (1), we obtain the following wave profile
system with the boundary conditions

cφ′1(ξ) = d1D[φ1](ξ)− αφ1(ξ) + h(φ2(ξ − cτ1)),

cφ′2(ξ) = d2D[φ2](ξ)− βφ2(ξ) + g(φ1(ξ − cτ2)),

(φ1, φ2)(−∞) = (v1−, v2−), (φ1, φ2)(+∞) = (v1+, v2+),

(3)

where ξ = x+ ct, ′ = d
dξ , D[φi](ξ) = φi(ξ + 1)− 2φi(ξ) + φi(ξ − 1), i = 1, 2.

System (1) is a discrete version of classical epidemic model{
∂tv1(x, t) = d1∂xxv1(x, t)− a1v1(x, t) + h(v2(x, t− τ1)),

∂tv2(x, t) = d2∂xxv2(x, t)− a2v2(x, t) + g(v1(x, t− τ2)).
(4)

The existence and stability of traveling waves of (4) have been extensively studied,
see [7, 19, 21, 24] and references therein. Note that system (1) is also a delay version
of the following system{

∂tv1(x, t) = d1D[v1](x, t)− a1v1(x, t) + h(v2(x, t)),

∂tv2(x, t) = d2D[v2](x, t)− a2v2(x, t) + g(v1(x, t)).
(5)

When system (5) is a quasi-monotone system, Yu, Wan and Hsu [27] established the
existence and stability of traveling waves of (5). To the best of our knowledge, when
systems (1) and (5) are non-quasi-monotone systems, no result on the existence
and stability of traveling waves has been reported. We should point out that the
existence of traveling waves of (1) can be easily obtained. Hence, the main purpose
of the current paper is to establish the stability of traveling waves of (1).

The stability of traveling waves for the classical reaction-diffusion equations with
and without time delay has been extensively investigated, see e.g., [4, 9, 10, 12,
13, 14, 16, 22, 24]. Compared to the rich results for the classical reaction-diffusion
equations, limited results exist for the spatial discrete diffusion equations. Chen and
Guo [1] took the squeezing technique to prove the asymptotic stability of traveling
waves for discrete quasilinear monostable equations without time delay. Guo and
Zimmer [5] proved the global stability of traveling wavefronts for spatially discrete
equations with nonlocal delay effects by using a combination of the weighted en-
ergy method and the Green function technique. Tian and Zhang [19] investigated
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the global stability of traveling wavefronts for a discrete diffusive Lotka-Volterra
competition system with two species by the weighted energy method together with
the comparison principle. Later on, Chen, Wu and Hsu [2] employed the similar
method to show the global stability of traveling wavefronts for a discrete diffusive
Lotka-Volterra competition system with three species. We should point out that
the methods for the above stability results heavily depend on the monotonicity of
equations and the comparison principle. However, the most interesting cases are
the equations without monotonicity. It is known that when the evolution equations
are non-monotone, the comparison principle is not applicable. Thus, the methods,
such as the squeezing technique, the weighted energy method combining with the
comparison principle are not valid for the stability of traveling waves of the spatial
discrete diffusion equations without monotonicity.

Recently, the technical weighted energy method without the comparison principle
has been used to prove the stability of traveling waves of nonmonotone equations,
see Chern et al. [3], Lin et al. [10], Wu et al. [22], Yang et al. [24]. In particular,
Tian et al. [20] and Yang et al. [26], respectively, applied this method to prove
the local stability of traveling waves for nonmonotone traveling waves for spatially
discrete reaction-diffusion equations with time delay. Later, Yang and Zhang [25]
established the stability of non-monotone traveling waves for a discrete diffusion
equation with monostable convolution type nonlinearity. Unfortunately, the local
stability (the initial perturbation around the traveling wave is properly small in a
weighted norm) of traveling waves can only be obtained. Very recently, Mei et al.
[15] developed a new method to prove the global stability of the oscillatory traveling
waves of local Nicholson’s blowflies equations. This method is based on some key
observations for the structure of the govern equations and the anti-weighted energy
method together with the Fourier transform. Later on, Zhang [28] and Xu et al.
[23], respectively, applied this method successfully to a nonlocal dispersal equation
with time delay and obtained the global stability of traveling waves. More recently,
Su and Zhang [17] further studied a discrete diffusion equation with a monostable
convolution type nonlinearity and established the global stability of traveling waves
with large speed. Motivated by the works [15, 28, 23, 17, 18], in this paper, we
shall extend this method to study the global stability of traveling waves of spatial
discrete diffusion system (1) without quasi-monotonicity.

The rest of this paper is organized as follows. In Section 2, we present some
preliminaries and summarize our main results. Section 3 is dedicated to the global
stability of traveling waves of (1) by the Fourier transform and the weighted energy
method, when h(u) and g(u) are not monotone.

2. Preliminaries and main results. In this section, we first give the equivalent
integral form of the initial value problem of (1) with (2), then recall the existence
of traveling waves of (1), and finally state the main result on the global stability of
traveling waves of (1). Throughout this paper, we assume τ1 = τ2 = τ .

First of all, we consider the initial value problem (1) with (2), i.e.,
∂tv1(x, t) = d1D[v1](x, t)− αv1(x, t) + h(v2(x, t− τ)),

∂tv2(x, t) = d2D[v2](x, t)− βv2(x, t) + g(v1(x, t− τ)),

vi(x, s) = vi0(x, s), x ∈ R, s ∈ [−τ, 0], i = 1, 2.

(6)

According to [8], with aid of modified Bessel functions, the solution to the initial
value problem
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{
∂tu(x, t) = d[u(x+ 1, t)− 2u(x, t) + u(x− 1, t)], x ∈ R, t > 0,

u(x, 0) = u0(x), x ∈ R,

can be expressed by

u(x, t) = (S(t)u0)(x) = e−2dt
∞∑

m=−∞
Im(2dt)u0(x−m),

where u0(·) ∈ L∞(R), Im(·), m ≥ 0 are defined as

Im(t) =

∞∑
k=0

(t/2)m+2k

k!(m+ k)!
,

and Im(t) = I−m(t) for m < 0. Moreover,

I′m(t) =
1

2
[Im+1(t) + Im−1(t)], ∀t > 0,m ∈ Z, (7)

and Im(0) = 0 for m 6= 0 while I0 = 1, and Im(t) ≥ 0 for any t ≥ 0. In addition,
one has

e−t
∞∑

m=−∞
Im(t) = e−t[I0(t) + 2I1(t) + 2I2(t) + I3(t) + · · · ] = 1. (8)

Thus, the solution (v1(x, t), v2(x, t)) of (6) can be expressed as
v1(x, t) = e−(2d1+α)t

∑∞
m=−∞ Im(2d1t)v10(x−m, 0)

+
∑∞
m=−∞

∫ t
0
e−(2d1+α)(t−s)Im(2d1(t− s))(h(v2(x−m, s− τ)))ds,

v2(x, t) = e−(2d2+β)t
∑∞
m=−∞ Im(2d2t)v20(x−m, 0)

+
∑∞
m=−∞

∫ t
0
e−(2d2+β)(t−s)Im(2d2(t− s))(g(v1(x−m, s− τ)))ds.

(9)

In fact, by [8, Lemma 2.1], we can differentiate the series on t variable in (9). Using
the recurrence relation (7), we obtain

∂tv1(x, t)

= −(2d1 + α)e−(2d1+α)t
∞∑

m=−∞
Im(2d1t)v10(x−m, 0)

+ e−(2d1+α)t
∞∑

m=−∞
2d1I

′
m(2d1t)v10(x−m, 0)

+

∞∑
m=−∞

Im(0)(h(v2(x−m, t− τ)))

− (2d1 + α)

∞∑
m=−∞

∫ t

0

e−(2d1+α)(t−s)Im(2d1(t− s))(h(v2(x−m, s− τ)))ds

+

∞∑
m=−∞

∫ t

0

e−(2d1+α)(t−s)2d1I
′
m(2d1(t− s))(h(v2(x−m, s− τ)))ds

= d1[v1(x+ 1, t)− 2v1(x, t) + v1(x− 1, t)]− αv1(x, t) + h(v2(x, t− τ))
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and

∂tv2(x, t)

= −(2d2 + β)e−(2d2+β)t
∞∑

m=−∞
Im(2d2t)v20(x−m, 0)

+ e−(2d2+β)t
∞∑

m=−∞
2d2I

′
m(2d2t)v20(x−m, 0)

+

∞∑
m=−∞

Im(0)(g(v1(x−m, t− τ)))

− (2d2 + β)

∞∑
m=−∞

∫ t

0

e−(2d2+β)(t−s)Im(2d2(t− s))(g(v1(x−m, s− τ)))ds

+

∞∑
m=−∞

∫ t

0

e−(2d2+β)(t−s)2d2I
′
m(2d2(t− s))(g(v1(x−m, s− τ)))ds

= d2[v2(x+ 1, t)− 2v2(x, t) + v2(x− 1, t)]− βv2(x, t) + g(v1(x, t− τ)).

Next we investigate the characteristic roots of the linearized system for the wave
profile system (3) at the trivial equilibrium 0. Clearly, the characteristic function
of (3) at 0 is

P1(c, λ) := f1(c, λ)− f2(c, λ)

for c ≥ 0 and λ ∈ C, where

f1(c, λ) := ∆1(c, λ)∆2(c, λ), f2(c, λ) := h′(0)g′(0)e−2cλτ ,

with

∆1(c, λ) = d1(eλ + e−λ − 2)− cλ− α, ∆2(c, λ) = d2(eλ + e−λ − 2)− cλ− β.

It is easy to see that ∆1(c, λ) = 0 admits two roots λ−1 < 0 < λ+1 , and ∆2(c, λ) = 0
has two roots λ−2 < 0 < λ+2 . We denote λ+m = min{λ+1 , λ

+
2 }.

Similar to [27, Lemma 3.1], we can obtain the following result.

Lemma 2.1. There exists a positive constant c∗ such that if c > c∗, then P1(c, λ) =
0 has two distinct positive real roots λ1 := λ1(c) and λ2 := λ2(c) with λ1(c) <
λ2(c) < λ+m, i.e. P1(c, λ1) = P1(c, λ2) = 0, and P(c, λ) > 0 for λ ∈ (λ1(c), λ2(c)).
In addition, limc→c∗ λ1(c) = limc→c∗ λ2(c) = λ∗ > 0, i.e., P1(c∗, λ∗) = 0.

Furthermore, we show the existence of traveling wave of (1). When system (1)
is a quasi-monotone system, the existence of traveling wavefronts follows from [6,
Theorem 1.1]. When system (1) is a non-quasi-monotone system, the existence of
traveling waves can also be obtained by using auxiliary equations and Schauder’s
fixed point theorem [21, 24], if we assume the following assumptions:

(H2): There exist K± = (K±1 ,K
±
2 )� 0 with K− < K < K+ and four continu-

ous and twice piecewise continuous differentiable functions g± : [0,K+
1 ] → R

and h± : [0,K+
2 ]→ R such that

(i) K±2 = g±(K±1 )/β, h±( 1
β g
±(K±1 )) = αK±1 , and h±( 1

β g
±(v)) > αv for

v ∈ (0,K±1 );
(ii) g±(u) and h±(v) are non-decreasing on [0,K+

1 ] and [0,K+
2 ], respectively;
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(iii) (g±)′(0) = g′(0), (h±)′(0) = h′(0) and

0 < g−(u) ≤ g(u) ≤ g+(u) ≤ g′(0)u for u ∈ [0,K+
1 ],

0 < h−(v) ≤ h(v) ≤ h+(v) ≤ h′(0)v for v ∈ [0,K+
2 ].

Proposition 1. Assume that (H1) and (H2) hold, τ ≥ 0, and let c∗ be defined as in
Lemma 2.1. Then for every c > c∗, system (1) has a traveling wave (φ1(ξ), φ2(ξ))
satisfying (φ1(−∞), φ2(−∞)) = (0, 0) and

K−1 ≤ lim inf
ξ→+∞

φ1(ξ) ≤ lim sup
ξ→+∞

φ1(ξ) ≤ K+
1 ,

0 ≤ lim inf
ξ→+∞

φ2(ξ) ≤ lim sup
ξ→+∞

φ2(ξ) ≤ K+
2 .

Finally, we shall state the stability result of traveling waves derived in Proposition
1. Before that, let us introduce the following notations.

Notations. C > 0 denotes a generic constant, while Ci(i = 1, 2, . . . ) represents a
specific constant. Let ‖ · ‖ and ‖ · ‖∞ denote 1-norm and ∞-norm of the matrix (or
vector), respectively. Let I be an interval, typically I = R. Denote by L1(I) the
space of integrable functions defined on I, and W k,1(I)(k ≥ 0) the Sobolev space of

the L1-functions f(x) defined on the interval I whose derivatives dn

dxn f(n = 1, . . . , k)

also belong to L1(I). Let L1
w(I) be the weighted L1-space with a weight function

w(x) > 0 and its norm is defined by

||f ||L1
w(I) =

∫
I

w(x)|f(x)|dx,

W k,1
w (I) be the weighted Sobolev space with the norm given by

||f ||Wk,1
w (I) =

k∑
i=0

∫
I

w(x)

∣∣∣∣dif(x)

dxi

∣∣∣∣ dx.
Let T > 0 be a number and B be a Banach space. We denote by C([0, T ];B)
the space of the B-valued continuous functions on [0, T ], and by L1([0, T ];B) the
space of the B-valued L1-functions on [0, T ]. The corresponding spaces of the B-
valued functions on [0,∞) are defined similarly. For any function f(x), its Fourier
transform is defined by

F [f ](η) = f̂(η) =

∫
R
e−ixηf(x)dx

and the inverse Fourier transform is given by

F−1[f̂ ](x) =
1

2π

∫
R
eixη f̂(η)dη,

where i is the imaginary unit, i2 = −1.
To guarantee the global stability of traveling waves of (1), we need the following

additional assumptions.

(H3): |g′(u)| ≤ g′(0) and |h′(v)| ≤ h′(0) for u, v ∈ [0,+∞).

(H4): d2 > d1, α > β, d2 − d1 < α−β
2 and max{h′(0), g′(0)} > β.

(H5): The initial data (v10(x, s), v20(x, s)) ≥ (0, 0) satisfies

lim
x→±∞

(v10(x, s), v20(x, s)) = (v1±, v2±) uniformly in s ∈ [−τ, 0].
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Consider the following function

P2(λ, c) = d2(eλ + e−λ − 2)− cλ− β + max{h′(0), g′(0)}e−λcτ .

Since max{h′(0), g′(0)} > β, it then follows from [20, Lemma 2.1] that there exists

λ∗ > 0 and c∗ > 0, such that P2(λ∗, c∗) = 0 and ∂P2(λ,c)
∂λ |(λ∗,c∗) = 0. When

c > c∗, the equation P2(λ, c) = 0 has two positive real roots λ\1(c) and λ\2(c)

with 0 < λ\1(c) < λ∗ < λ\2(c). When λ ∈ (λ\1(c), λ\2(c)), P2(λ, c) < 0. Moreover,

(λ\1)′(c) < 0 and (λ\2)′(c) > 0.
We select the weight function w(ξ) > 0 as the form

w(ξ) = e−2λξ,

where λ > 0 satisfies λ\1(c) < λ < λ\2(c). Now we are ready to present the main
result of this paper.

Theorem 2.2 (Global stability of traveling waves). Assume that (H1), (H3)-(H5)
hold. For any given traveling wave (φ1(x + ct), φ2(x + ct)) of (1) with speed
c > max{c∗, c∗} connecting (0, 0) and (K1,K2), whether it is monotone or non-
monotone, if the initial data satisfy

vi0(x, s)− φi(x+ cs) ∈ Cunif [−τ, 0] ∩ C([−τ, 0];W 1,1
w (R)), i = 1, 2,

∂s(vi0 − φi) ∈ L1([−τ, 0];L1
w(R)), i = 1, 2,

then there exists τ0 > 0 such that for any τ ≤ τ0, the solution (v1(x, t), v2(x, t)) of
(1)-(2) converges to the traveling wave (φ1(x+ ct), φ2(x+ ct)) as follows:

sup
x∈R
|vi(x, t)− φi(x+ ct)| ≤ Ce−µt, t > 0,

where C and µ are two positive constants, and Cunif [r, T ] is the uniformly contin-
uous space, for 0 < T ≤ ∞, defined by

Cunif [r, T ]

=
{
u ∈ C([r, T ]× R) such that lim

x→+∞
v(x, t) exists uniformly in t ∈ [r, T ]

}
.

3. Global stability of traveling waves. This section is devoted to proving the
stability theorem, i.e., Theorem 2.2. Let (φ1(x+ ct), φ2(x+ ct)) = (φ1(ξ), φ2(ξ)) be
a given traveling wave solution with speed c ≥ c∗ and define{

Vi(ξ, t) := vi(x, t)− φi(x+ ct) = vi(ξ − ct, t)− φi(ξ), i = 1, 2,

Vi0(ξ, s) := vi0(x, s)− φi(x+ cs) = vi0(ξ − cs, s)− φ(ξ), i = 1, 2.

Then it follows from (1) and (3) that Vi(ξ, t) satisfies
V1t + cV1ξ − d1D[V1] + αV1 = Q1(V2(ξ − cτ, t− τ)),

V2t + cV2ξ − d2D[V2] + βV2 = Q2(V1(ξ − cτ, t− τ)),

Vi(ξ, s) = Vi0(ξ, s), (ξ, s) ∈ R× [−τ, 0], i = 1, 2.

(10)

The nonlinear terms Q1 and Q2 are given by{
Q1(V2) := h(φ2 + V2)− h(φ2) = h′(φ̃2)V2,

Q2(V1) := g(φ1 + V1)− g(φ1) = g′(φ̃1)V1,
(11)

for some φ̃i between φi and φi+Vi, with φi = φi(ξ−cτi) and Vi = Vi(ξ−cτi, t−τi).
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We first prove the existence and uniqueness of solution (V1(ξ, t), V2(ξ, t)) to
the initial value problem (10) in the uniformly continuous space Cunif [−τ,+∞)×
Cunif [−τ,+∞).

Lemma 3.1. Assume that (H1) and (H3) hold. If the initial perturbation (V10, V20)
∈ Cunif [−τ, 0]× Cunif [−τ, 0] for c ≥ c∗, then the solution (V1, V2) of the perturbed
equation (10) is unique and time-globally exists in Cunif [−τ,+∞)×Cunif [−τ,+∞).

Proof. Let Ui(x, t) = vi(x, t)−φi(x+ ct), i = 1, 2. It is clear that Ui(x, t) = Vi(ξ, t),
i = 1, 2, and satisfies

U1t − d1D[U1] + αU1 = Q1(U2(x, t− τ)),

U2t − d2D[U2] + βU2 = Q2(U1(x, t− τ)),

Ui(x, s) = vi0(x, s)− φi(x+ cs) := Ui0(x, s), (x, s) ∈ R× [−τ, 0], i = 1, 2.

(12)

Thus, the global existence and uniqueness of solution of (10) are transformed into
that of (12).

When t ∈ [0, τ ], we have t− τ ∈ [−τ, 0] and Ui(x, t− τ) = Ui0(x, t− τ), i = 1, 2,
which imply that (12) is linear. Thus, the solution of (12) can be explicitly and
uniquely solved by
U1(x, t) = e−(2d1+α)t

∑∞
m=−∞ Im(2d1t)U10(x−m, 0)

+
∑∞
m=−∞

∫ t
0
e−(2d1+α)(t−s)Im(2d1(t− s))Q1(U20(x−m, s− τ))ds,

U2(x, t) = e−(2d2+β)t
∑∞
m=−∞ Im(2d2t)U20(x−m, 0)

+
∑∞
m=−∞

∫ t
0
e−(2d2+β)(t−s)Im(2d2(t− s))Q2(U10(x−m, s− τ))ds

(13)

for t ∈ [0, τ ].
Since Vi0(ξ, t) ∈ Cunif [−τ, 0], i = 1, 2, namely, lim

ξ→+∞
Vi0(ξ, t) exist uniformly

in t ∈ [−τ, 0], which implies lim
x→+∞

Ui0(x, t) exist uniformly in t ∈ [−τ, 0]. Denote

Ui0(∞, t) = lim
x→+∞

Ui0(x, t), i = 1, 2. Taking the limit x→ +∞ to (13) yields

lim
x→+∞

U1(x, t)

=e−(2d1+α)t
∞∑

m=−∞
Im(2d1t) lim

x→+∞
U10(x−m, 0)

+

∞∑
m=−∞

∫ t

0

e−(2d1+α)(t−s)Im(2d1(t− s)) lim
x→+∞

Q1(U20(x−m, s− τ))ds

=e−αtU10(∞, 0) +

∫ t

0

e−α(t−s)Q1(U20(∞, s− τ))

∞∑
m=−∞

e−2d1(t−s)Im(2d1(t− s))ds

= : U1(t) uniformly in t ∈ [0, τ ]

(14)

and

lim
x→+∞

U2(x, t)

=e−(2d2+β)t
∞∑

m=−∞
Im(2d2t) lim

x→+∞
U20(x−m, 0)
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+

∞∑
m=−∞

∫ t

0

e−(2d2+β)(t−s)Im(2d2(t− s)) lim
x→+∞

Q2(U10(x−m, s− τ))ds

=e−βtU20(∞, 0) +

∫ t

0

e−β(t−s)Q2(U10(∞, s− τ))

∞∑
m=−∞

e−2d2(t−s)Im(2d2(t− s))ds

= : U2(t) uniformly in t ∈ [0, τ ],

(15)

where we have used (8). Thus, we obtain that (U1, U2) ∈ Cunif [−τ, τ)×Cunif [−τ, τ).
When t ∈ [τ, 2τ ], system (12) with the initial data Ui(x, s) for s ∈ [0, τ ] is still

linear, because the source term Q1(U2(x, t− τ)) and Q2(U1(x, t− τ)) is known due
to t − τ ∈ [0, τ ] and Ui(s, t − τ) is solved in (13). Hence, the solution Ui(x, t) for
t ∈ [τ, 2τ ] is uniquely and explicitly given by

U1(x, t) =e−(2d1+α)(t−τ)
∞∑

m=−∞
Im(2d1(t− τ))U1(x−m, τ)

+

∞∑
m=−∞

∫ t

τ

e−(2d1+α)(t−s)Im(2d1(t− s))Q1(U2(x−m, s− τ))ds,

U2(x, t) =e−(2d2+β)(t−τ)
∞∑

m=−∞
Im(2d2(t− τ))U2(x−m, τ)

+

∞∑
m=−∞

∫ t

τ

e−(2d2+β)(t−s)Im(2d2(t− s))Q2(U1(x−m, s− τ))ds.

Similarly, by (14) and (15), we have

lim
x→+∞

U1(x, t)

=e−(2d1+α)(t−τ)
∞∑

m=−∞
Im(2d1(t− τ)) lim

x→+∞
U1(x−m, τ)

+

∞∑
m=−∞

∫ t

τ

e−(2d1+α)(t−s)Im(2d1(t− s)) lim
x→+∞

Q1(U2(x−m, s− τ))ds

=e−α(t−τ)U1(τ) +

∫ t

τ

e−α(t−s)Q1(U1(s− τ))

∞∑
m=−∞

e−2d1(t−s)Im(2d1(t− s))ds

= : Ū1(t) uniformly in t ∈ [τ, 2τ ],

and

lim
x→+∞

U2(x, t)

=e−(2d2+β)(t−τ)
∞∑

m=−∞
Im(2d2(t− τ)) lim

x→+∞
U2(x−m, τ)

+
∞∑

m=−∞

∫ t

τ

e−(2d2+β)(t−s)Im(2d2(t− s)) lim
x→+∞

Q2(U1(x−m, s− τ))ds

=e−β(t−τ)U2(τ) +

∫ t

τ

e−β(t−s)Q2(U2(s− τ))

∞∑
m=−∞

e−2d2(t−s)Im(2d2(t− s))ds
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= : Ū2(t) uniformly in t ∈ [τ, 2τ ].

By repeating this procedure for t ∈ [nτ, (n + 1)τ ] with n ∈ Z+, we prove that
there exists a unique solution (V1, V2) ∈ Cunif [−τ, (n + 1)τ ] × Cunif [−τ, (n + 1)τ ]
for (10), and step by step, we finally prove the uniqueness and time-global existence
of the solution (V1, V2) ∈ Cunif [−τ,∞) × Cunif [−τ,∞) for (10). The proof is
complete.

Now we state the stability result for the perturbed system (10), which automat-
ically implies Theorem 2.2.

Proposition 2. Assume that (H1), (H3)-(H5) hold. If

Vi0 ∈ Cunif [−τ, 0] ∩ C([−τ, 0];W 1,1
w (R)), i = 1, 2,

and

∂sVi0 ∈ L1([−τ, 0];L1
w(R)), i = 1, 2,

then there exists τ0 > 0 such that for any τ ≤ τ0, when c > max{c∗, c∗}, it holds

sup
ξ∈R
|Vi(ξ, t)| ≤ Ce−µt, t > 0, i = 1, 2, (16)

for some µ > 0 and C > 0.

In order to prove Proposition 2, we first investigate the decay estimate of Vi(ξ, t)
at ξ = +∞, i = 1, 2.

Lemma 3.2. Assume that Vi0 ∈ Cunif [−τ, 0], i = 1, 2. Then, there exist τ0 > 0
and a large number x0 � 1 such that when τ ≤ τ0, the solution Vi(ξ, t) of (10)
satisfies

sup
ξ∈[x0,+∞)

|Vi(ξ, t)| ≤ Ce−µ1t, t > 0, i = 1, 2,

for some µ1 > 0 and C > 0.

Proof. Denote

z+i (t) := Vi(∞, t), z+i0(s) := Vi0(∞, s), s ∈ [−τ, 0], i = 1, 2.

Since Vi0 ∈ Cunif [−τ, 0], i = 1, 2, by Lemma 3.1, we have Vi ∈ Cunif [−τ,+∞),
which implies

lim
ξ→+∞

Vi(ξ, t) = z+i (t)

exists uniformly for t ∈ [−τ,+∞). Taking the limit ξ → +∞ to (10), we obtain
dz+1
dt + αz+1 − h′(v2+)z+2 (t− τ) = P1(z+2 (t− τ)),
dz+2
dt + βz+2 − g′(v1+)z+1 (t− τ) = P2(z+1 (t− τ)),

z+i (s) = z+i0(s), s ∈ [−τ, 0], i = 1, 2,

where {
P1(z+2 ) = h(v2+ + z+2 )− h(v2+)− h′(v2+)z+2 ,

P2(z+1 ) = g(v1+ + z+1 )− g(v1+)− g′(v1+)z+1 .

Then by [9, Lemma 3.8], there exist positive constants τ0, µ1 and C such that when
τ ≤ τ0,

|Vi(∞, t)| = |z+i (t)| ≤ Ce−µ1t, t > 0, i = 1, 2, (17)
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provided that |z+i0| � 1, i = 1, 2.
By the continuity and the uniform convergence of Vi(ξ, t) as ξ → +∞, there

exists a large x0 � 1 such that (17) implies

sup
ξ∈[x0,+∞)

|Vi(ξ, t)| ≤ Ce−µ1t, t > 0, i = 1, 2,

provided that sup
ξ∈[x0,+∞)

|Vi0(ξ, s)| � 1 for s ∈ [−τ, 0]. Such a smallness for the

initial perturbation (V10, V20) near ξ → +∞ can be easily verified, since

lim
x→+∞

(v10(x, s), v20(x, s)) = (K1,K2) uniformly in s ∈ [−τ, 0],

which implies

lim
ξ→+∞

Vi0(ξ, s) = lim
ξ→+∞

[vi0(ξ, s)− φi(ξ)] = Ki −Ki = 0

uniformly for s ∈ [−τ, 0], i = 1, 2. The proof is complete.

Next we are going to establish the a priori decay estimate of supξ∈(−∞,x0] |Vi(ξ, t)|
by using the anti-weighted technique [3] together with the Fourier transform. First
of all, we shift Vi(ξ, t) to Vi(ξ + x0, t) by the constant x0 given in Lemma 3.2, and
then introduce the following transformation

Ṽi(ξ, t) =
√
w(ξ)Vi(ξ + x0, t) = e−λξVi(ξ + x0, t), i = 1, 2.

Substituting Vi = w−1/2Ṽi to (10) yields

Ṽ1t + cṼ1ξ + c1Ṽ1(ξ, t)− d1eλṼ1(ξ + 1, t)− d1e−λṼ1(ξ − 1, t)

= Q̃1(Ṽ2(ξ − cτ, t− τ)),

Ṽ2t + cṼ2ξ + c2Ṽ2(ξ, t)− d2eλṼ2(ξ + 1, t)− d2e−λṼ2(ξ − 1, t)

= Q̃2(Ṽ1(ξ − cτ, t− τ)),

Ṽi(ξ, s) =
√
w(ξ)Vi0(ξ + x0, s) =: Ṽi0(ξ, s), ξ ∈ R, s ∈ [−τ, 0], i = 1, 2,

(18)

where

c1 = cλ+ 2d1 + α, c2 = cλ+ 2d2 + β

and

Q̃1(Ṽ2) = e−λξQ1(V2), Q̃2(Ṽ1) = e−λξQ2(V1).

By (11), Q̃1(Ṽ2) satisfies

Q̃1(Ṽ2(ξ − cτ, t− τ)) =e−λξQ1(V2(ξ − cτ + x0, t− τ))

=e−λξh′(φ̃2)V2(ξ − cτ + x0, t− τ)

=e−λcτh′(φ̃2)Ṽ2(ξ − cτ, t− τ) (19)

and Q̃2(Ṽ1) satisfies

Q̃2(Ṽ1(ξ − cτ, t− τ)) = e−λcτg′(φ̃1)Ṽ1(ξ − cτ, t− τ). (20)

By (H3), we further obtain

|Q̃1(Ṽ2(ξ − cτ, t− τ))| ≤ h′(0)e−λcτ |Ṽ2(ξ − cτ, t− τ)|,

|Q̃2(Ṽ1(ξ − cτ, t− τ))| ≤ g′(0)e−λcτ |Ṽ1(ξ − cτ, t− τ)|.

Taking (19) and (20) into (18), one can see that the coefficients h′(φ̃2) and

g′(φ̃1) on the right side of (18) are variable and can be negative. Thus, the classical
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methods, such as the monotone technique and the Fourier transform cannot be

applied directly to establish the decay estimate for (Ṽ1, Ṽ2). Motivated by [15, 28,
17, 23], we introduce a new method which can be described as follows.

◦ By replacing h′(φ̃2) in the first equation of (18) with a constant h′(0), and

g′(φ̃1) in the second equation of (18) with a constant g′(0), we can obtain a linear
delayed reaction-diffusion system

V +
1t + cV +

1ξ + c1V
+
1 (ξ, t)− d1eλV +

1 (ξ + 1, t)− d1e−λV +
1 (ξ − 1, t)

= h′(0)e−λcτV +
2 (ξ − cτ, t− τ),

V +
2t + cV +

2ξ + c2V
+
2 (ξ, t)− d2eλV +

2 (ξ + 1, t)− d2e−λV +
2 (ξ − 1, t)

= g′(0)e−λcτV +
1 (ξ − cτ, t− τ),

(21)

with

V +
i (ξ, s) =

√
w(ξ)Vi0(ξ + x0, s) =: V +

i0 (ξ, s), i = 1, 2,

where ξ ∈ R, t ∈ (0,+∞] and s ∈ [−τ, 0]. Then we investigate the decay estimate
of (V +

1 , V
+
2 ) by applying the Fourier transform to (21);

◦ We prove that the solution (Ṽ1, Ṽ2) of (18) can be bounded by the solution
(V +

1 , V
+
2 ) of (21).

Now we are in a position to derive the decay estimate of (V +
1 , V

+
2 ) for the linear

system (21). We first recall some properties of the solutions to the delayed ODE
system.

Lemma 3.3. ([11, Lemma 3.1]) Let z(t) be the solution to the following scalar
differential equation with delay{

d
dtz(t) = Az(t) +Bz(t− τ), t ≥ 0, τ > 0,

z(s) = z0(s), s ∈ [−τ, 0].
(22)

where A,B ∈ CN×N , N ≥ 2, and z0(s) ∈ C1([−τ, 0],CN ). Then

z(t) = eA(t+τ)eB1t
τ z0(−τ) +

∫ 0

−τ
eA(t−s)eB1(t−τ−s)

τ [z′0(s)−Az0(s)]ds,

where B1 = Be−Aτ and eB1t
τ is the so-called delayed exponential function in the

form

eB1t
τ =



0, −∞ < t < −τ,
I, −τ ≤ t < 0,

I +B1
t
1! , 0 ≤ t < τ,

I +B1
t
1! +B2

1
(t−τ)2

2! , τ ≤ t < 2τ,
...

...

I +B1
t
1! +B2

1
(t−τ)2

2! + · · ·+Bm1
[t−(m−1)τ ]m

m! , (m− 1)τ ≤ t < mτ,
...

...

where 0, I ∈ CN×N , and 0 is zero matrix and I is unit matrix.

Lemma 3.4. ([11, Theorem 3.1]) Suppose µ(A) := µ1(A)+µ∞(A)
2 < 0, where µ1(A)

and µ∞(A) denote the matrix measure of A induced by the matrix 1-norm ‖ ·‖1 and

∞-norm ‖ · ‖∞, respectively. If ν(B) := ‖B‖+‖B‖∞
2 ≤ −µ(A), then there exists a
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decreasing function ετ = ε(τ) ∈ (0, 1) for τ > 0 such that any solution of system
(22) satisfies

‖z(t)‖ ≤ C0e
−ετσt, t > 0,

where C0 is a positive constant depending on initial data z0(s), s ∈ [−τ, 0] and
σ = |µ(A)| − ν(B). In particular,

‖eAteB1t
τ ‖ ≤ C0e

−ετσt, t > 0,

where eB1t
τ is defined in Lemma 3.3.

From the proof of [11, Theome 3.1], one can see that

µ1(A) = lim
θ→0+

‖I + θA‖ − 1

θ
= max

1≤j≤N

Re(ajj) +

N∑
j 6=i

|aij |


and

µ∞(A) = lim
θ→0+

‖I + θA‖∞ − 1

θ
= max

1≤i≤N

Re(aii) +

N∑
i 6=j

|aij |

 .
Taking the Fourier transform to (21) and denoting the Fourier transform of

V +(ξ, t) := (V +
1 (ξ, t), V +

2 (ξ, t))T by V̂ +(η, t) := (V̂ +
1 (η, t), V̂ +

2 (η, t))T , we obtain

∂
∂t V̂

+
1 (η, t) =

(
−c1 + d1(eλ+iη + e−(λ+iη))− icη

)
V̂ +
1 (η, t)

+h′(0)e−cτ(λ+iη)V̂ +
2 (η, t− τ),

∂
∂t V̂

+
2 (η, t) =

(
−c2 + d2(eλ+iη + e−(λ+iη))− icη

)
V̂ +
2 (η, t)

+g′(0)e−cτ(λ+iη)V̂ +
1 (η, t− τ),

V̂ +
i (η, s) = V̂ +

i0 (η, s), η ∈ R, s ∈ [−τ, 0], i = 1, 2.

(23)

Let

A(η) =

(
−c1 + d1(eλ+iη + e−(λ+iη))− icη 0

0 −c2 + d2(eλ+iη + e−(λ+iη))− icη

)
and

B(η) =

(
0 h′(0)e−cτ(λ+iη)

g′(0)e−cτ(λ+iη) 0

)
.

Then system (23) can be rewritten as

V̂ +
t (η, t) = A(η)V̂ +(η, t) +B(η)V̂ +(η, t− τ). (24)

By Lemma 3.3, the linear delayed system (24) can be solved by

V̂ +(η, t) =eA(η)(t+τ)eB1(η)t
τ V̂ +

0 (η,−τ)

+

∫ 0

−τ
eA(η)(t−s)eB1(η)(t−s−τ)

τ

[
∂sV̂

+
0 (η, s)−A(η)V̂ +

0 (η, s)
]
ds

:=I1(η, t) +

∫ 0

−τ
I2(η, t− s)ds, (25)
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where B1(η) = B(η)eA(η)τ . Then by taking the inverse Fourier transform to (25),
one has

V +(ξ, t) (26)

= F−1[I1](ξ, t) +

∫ 0

−τ
F−1[I2](ξ, t− s)ds

=
1

2π

∫ ∞
−∞

eiξηeA(η)(t+τ)eB1(η)t
τ V̂ +

0 (η,−τ)dη

+
1

2π

∫ 0

−τ

∫ ∞
−∞

eiξηeA(η)(t−s)eB1(η)(t−s−τ)
τ

[
∂sV̂

+
0 (η, s)−A(η)V̂ +

0 (η, s)
]
dηds.

(27)

Lemma 3.5. Let the initial data V +
i0 (ξ, s), i = 1, 2, be such that

V +
i0 ∈ C([−τ, 0];W 1,1(R)), ∂sV

+
i0 ∈ L

1([−τ, 0];L1(R)), i = 1, 2.

Then

‖V +
i (t)‖L∞(R) ≤ Ce−µ2t for c ≥ max{c∗, c∗}, i = 1, 2,

where µ2 > 0 and C > 0.

Proof. According to (26), we shall estimate F−1[I1](ξ, t) and
∫ 0

−τ F
−1[I2](ξ, t−s)ds,

respectively. By the definition of µ(·) and ν(·), we have

µ(A(η)) =
µ1(A(η)) + µ∞(A(η))

2

= max
{
−c1 + d1(eλ cos η + e−λ cos η),−c2 + d2(eλ cos η + e−λ cos η)

}
=− c2 + d2(eλ cos η + e−λ cos η)

=− c2 + d2(eλ + e−λ) cos η

=− cλ+ d2(eλ + e−λ − 2)− β −m(η),

where c2 = cλ+ 2d2 + β and

m(η) = d2(1− cos η)(eλ + e−λ) ≥ 0,

since d2 > d1, α > β and d2 − d1 < α−β
2 , and

ν(B(η)) = max{h′(0), g′(0)}e−λcτ .

By considering λ ∈ (λ\1(c), λ\2(c)), we get µ(A(η)) < 0 and

µ(A(η))+ν(B(η)) = −cλ+d2(eλ+e−λ−2)−β−m(η)+max{h′(0), g′(0)}e−λcτ < 0.

Furthermore, we obtain

|µ(A(η))| − ν(B(η)) =cλ− d2(eλ + e−λ − 2) + β +m(η)−max{h′(0), g′(0)}e−λcτ

=− P2(λ, c) +m(η),

where P2(λ, c) = d2(eλ + e−λ − 2) − cλ − β + max{h′(0), g′(0)}e−λcτ < 0 for c >
max{c∗, c∗}. It then follows from Lemma 3.4 that there exists a decreasing function
ετ = ε(τ) ∈ (0, 1) such that

‖eA(η)(t+τ)eB1(η)t‖ ≤ C1e
−ετ (|µ(A(η))|−ν(B(η)))t ≤ C1e

−ετµ0te−ετm(η)t, (28)
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where C1 is a positive constant and µ0 := −P2(λ, c) > 0 with c > c∗. By the
definition of Fourier’s transform, we have

sup
η∈R
‖V̂ +

0 (η,−τ)‖ ≤
∫
R
‖V +

0 (ξ,−τ)‖dξ =

2∑
i=1

‖V +
i0 (·,−τ)‖L1(R).

Applying (28), we derive

sup
ξ∈R
‖F−1[I1](ξ, t)‖ = sup

ξ∈R

∥∥∥∥ 1

2π

∫ ∞
−∞

eiξηeA(η)(t+τ)eB1(η)tV̂ +
0 (η,−τ)dη

∥∥∥∥
≤C

∫ ∞
−∞

e−ετm(η)te−ετµ0t‖V̂ +
0 (η,−τ)‖dη

≤Ce−ετµ0t sup
η∈R
‖V̂ +

0 (η,−τ)‖
∫ ∞
−∞

e−ετm(η)tdη

≤Ce−µ2t
2∑
i=1

‖V +
i0 (·,−τ)‖L1(R), (29)

with µ2 := ετµ0.
Note that

sup
η∈R
‖A(η)V̂ +

0 (η, s)‖ ≤ C
2∑
i=1

‖V +
i0 (·, s)‖W 1,1(R).

Similarly, we can obtain

sup
ξ∈R
‖F−1[I2](ξ, t− s)‖

= sup
ξ∈R

∥∥∥∥ 1

2π

∫ ∞
−∞

eiξηeA(η)(t−s)eB1(η)(t−s−τ)
[
∂sV̂

+
0 (η, s)−A(η)V̂ +

0 (η, s)
]
dη

∥∥∥∥
≤ C

∫ ∞
−∞

e−ετm(η)(t−s)e−ετµ0(t−s)
∥∥∥∂sV̂ +

0 (η, s)−A(η)V̂ +
0 (η, s)

∥∥∥ dη
≤ Ce−ετµ0teετµ0s sup

η∈R

∥∥∥∂sV̂ +
0 (η, s)−A(η)V̂ +

0 (η, s)
∥∥∥∫ ∞
−∞

e−ετm(η)(t−s)dη.

It then follows that∫ 0

−τ
sup
ξ∈R
‖F−1[I2](ξ, t− s)‖ds

≤ Ce−ετµ0t

∫ 0

−τ
eετµ0s sup

η∈R

∥∥∥∂sV̂ +
0 (η, s)−A(η)V̂ +

0 (η, s)
∥∥∥∫ ∞
−∞

e−ετm(η)(t−s)dηds

≤ Ce−ετµ0t

∫ 0

−τ
‖∂sV +

0 (·, s)‖L1(R) + ‖V +
0 (·, s)‖W 1,1(R)ds

≤ Ce−ετµ0t
(
‖∂sV +

0 (s)‖L1([−τ,0];L1(R)) + ‖V +
0 (s)‖L1([−τ,0];W 1,1(R))

)
. (30)

Substituting (29) and (30) to (26), we obtain the following the decay rate

2∑
i=1

‖V +
i (t)‖L∞(R) ≤ Ce−µ2t.

This proof is complete.

The following maximum principle is needed to obtain the crucial boundedness

estimate of (Ṽ1, Ṽ2), which has been proved in [17, Lemma 3.4].
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Lemma 3.6. Let T > 0. For any a1, a2 ∈ R and ν > 0, if the bounded function v
satisfies{

∂v
∂t + a1

∂v
∂ξ + a2v − deνv(t, ξ + 1)− de−νv(t, ξ − 1) ≥ 0, (t, ξ) ∈ (0, T ]× R,

v(0, ξ) ≥ 0, ξ ∈ R,
(31)

then v(t, ξ) ≥ 0 for all (t, ξ) ∈ (0, T ]× R.

Lemma 3.7. When (V +
10(ξ, s), V +

20(ξ, s)) ≥ (0, 0) for (ξ, s) ∈ R × [−τ, 0], then
(V +

1 (ξ, t), V +
2 (ξ, t)) ≥ (0, 0) for (ξ, t) ∈ R× [0,+∞).

Proof. When t ∈ [0, τ ], we have t− τ ∈ [−τ, 0] and

h′(0)e−λcτV +
2 (ξ − cτ, t− τ) = h′(0)e−λcτV +

20(ξ − cτ, t− τ) ≥ 0. (32)

Applying (32) to the first equation of (21), we get
V +
1t + cV +

1ξ + c1V
+
1 (ξ, t)− d1eλV +

1 (ξ + 1, t)− d1e−λV +
1 (ξ − 1, t)

≥ 0, (ξ, t) ∈ R× [0, τ ],

V +
10(ξ, s) ≥ 0, ξ ∈ R, s ∈ [−τ, 0].

By Lemma 3.6, we derive

V +
1 (ξ, t) ≥ 0, (ξ, t) ∈ R× [0, τ ]. (33)

Similarly, we obtain
V +
2t + cV +

2ξ + c2V
+
2 (ξ, t)− d2eλV +

2 (ξ + 1, t)− d2e−λV +
2 (ξ − 1, t)

≥ 0, (ξ, t) ∈ R× [0, τ ],

V +
20(ξ, s) ≥ 0, ξ ∈ R s ∈ [−τ, 0].

Using Lemma 3.6 again, we obtain

V +
2 (ξ, t) ≥ 0, (ξ, t) ∈ R× [0, τ ]. (34)

When t ∈ [nτ, (n + 1)τ ], n = 1, 2, · · · , repeating the above procedure step by step,
we can similarly prove

(V +
1 (ξ, t), V +

2 (ξ, t)) ≥ (0, 0), (ξ, t) ∈ R× [nτ, (n+ 1)τ ]. (35)

Combining (33), (34) and (35), we obtain (V +
1 (ξ, t), V +

2 (ξ, t)) ≥ (0, 0) for (ξ, t) ∈
R× [0,+∞). The proof is complete.

Now we establish the following crucial boundedness estimate for (Ṽ1, Ṽ2).

Lemma 3.8. Let (Ṽ1(ξ, t), Ṽ2(ξ, t)) and (V +
1 (ξ, t), V +

2 (ξ, t)) be the solutions of (18)
and (21), respectively. When

|Ṽi0(ξ, s)| ≤ V +
i0 (ξ, s) for (ξ, s) ∈ R× [−τ, 0], i = 1, 2, (36)

then

|Ṽi(ξ, t)| ≤ V +
i (ξ, t) for (ξ, t) ∈ R× [0,+∞), i = 1, 2.
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Proof. First of all, we prove |Ṽi(ξ, t)| ≤ V +
i (ξ, t) for t ∈ [0, τ ], i = 1, 2. In fact, when

t ∈ [0, τ ], namely, t− τ ∈ [−τ, 0], it follows from (36) that

|Ṽi(ξ − cτ, t− τ)| = |Ṽi0(ξ − cτ, t− τ)|
≤ V +

i0 (ξ − cτ, t− τ)

= V +
i (ξ − cτ, t− τ) for (ξ, t) ∈ R× [0, τ ]. (37)

Then by |h′(φ̃2)| < h′(0) and |g′(φ̃1)| < g′(0) and (37), we get

h′(0)e−λcτV +
2 (ξ − cτ, t− τ)± h′(φ̃2)e−λcτ Ṽ2(ξ − cτ, t− τ)

≥ h′(0)e−λcτV +
2 (ξ − cτ, t− τ)− |h′(φ̃2)|e−λcτ |Ṽ2(ξ − cτ, t− τ)|

≥ 0 for (ξ, t) ∈ R× [0, τ ] (38)

and

g′(0)e−λcτV +
1 (ξ − cτ, t− τ)± g′(φ̃1)e−λcτ Ṽ1(ξ − cτ, t− τ)

≥ 0 for (ξ, t) ∈ R× [0, τ ]. (39)

Let

U−i (ξ, t) := V +
i (ξ, t)− Ṽi(ξ, t) and U+

i (ξ, t) := V +
i (ξ, t) + Ṽi(ξ, t), i = 1, 2.

We are going to estimate U±i (ξ, t) respectively.
From (18), (19), (21) and (38), we see that U−1 (ξ, t) satisfies

U−1t + cU−1ξ + c1U
−
1 (ξ, t)− d1eλU−1 (ξ + 1, t)− d1e−λU−1 (ξ − 1, t)

≥ 0, (ξ, t) ∈ R× [0, τ ],

U−10(ξ, s) = V +
10(ξ, s)− Ṽ10(ξ, s) ≥ 0, ξ ∈ R, s ∈ [−τ, 0].

By Lemma 3.6, we obtain

U−1 (ξ, t) ≥ 0, (ξ, t) ∈ R× [0, τ ],

namely,

Ṽ1(ξ, t) ≤ V +
1 (ξ, t), (ξ, t) ∈ R× [0, τ ]. (40)

Similarly, one has
U−2t + cU−2ξ + c2U

−
2 (ξ, t)− d2eλU−2 (ξ + 1, t)− d2e−λU−2 (ξ − 1, t)

≥ 0, (ξ, t) ∈ R× [0, τ ],

U−20(ξ, s) = V +
20(ξ, s)− Ṽ20(ξ, s) ≥ 0, ξ ∈ R, s ∈ [−τ, 0].

Applying Lemma 3.6 again, we have

U−2 (ξ, t) ≥ 0, (ξ, t) ∈ R× [0, τ ],

i.e.,

Ṽ2(ξ, t) ≤ V +
2 (ξ, t), (ξ, t) ∈ R× [0, τ ]. (41)

On the other hand, U+
1 (ξ, t) satisfies

U+
1t + cU+

1ξ + c1U
+
1 (ξ, t)− d1eλU+

1 (ξ + 1, t)− d1e−λU+
1 (ξ − 1, t)

≥ 0, (ξ, t) ∈ R× [0, τ ],

U−10(ξ, s) = V +
10(ξ, s)− Ṽ10(ξ, s) ≥ 0, ξ ∈ R, s ∈ [−τ, 0].

Then Lemma 3.6 implies that

U+
1 (ξ, t) = V +

1 (ξ, t) + Ṽ1(ξ, t) ≥ 0, (ξ, t) ∈ R× [0, τ ],
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that is,

−V +
1 (ξ, t) ≤ Ṽ1(ξ, t), (ξ, t) ∈ R× [0, τ ]. (42)

Similarly, U+
2 (ξ, t) satisfies

U+
2t + cU+

2ξ + c2U
+
2 (ξ, t)− d2eλU+

2 (ξ + 1, t)− d2e−λU+
2 (ξ − 1, t)

≥ 0, (ξ, t) ∈ R× [0, τ ],

U−20(ξ, s) = V +
20(ξ, s)− Ṽ10(ξ, s) ≥ 0, ξ ∈ R, s ∈ [−τ, 0].

Therefore, we can prove that

U+
2 (ξ, t) = V +

2 (ξ, t) + Ṽ2(ξ, t) ≥ 0, (ξ, t) ∈ R× [0, τ ],

namely

−V +
2 (ξ, t) ≤ Ṽ2(ξ, t), (ξ, t) ∈ R× [0, τ ]. (43)

Combining (40) and (42), we obtain

|Ṽ1(ξ, t)| ≤ V +
1 (ξ, t) for (ξ, t) ∈ R× [0, τ ], (44)

and combining (41) and (43), we prove

|Ṽ2(ξ, t)| ≤ V +
2 (ξ, t) for (ξ, t) ∈ R× [0, τ ]. (45)

Next, when t ∈ [τ, 2τ ], namely, t−τ ∈ [0, τ ], based on (44) and (45), we can similarly
prove

|Ṽi(ξ, t)| ≤ V +
i (ξ, t) for (ξ, t) ∈ R× [τ, 2τ ], i = 1, 2.

Repeating this procedure, we then further prove

|Ṽi(ξ, t)| ≤ V +
i (ξ, t), (ξ, t) ∈ R× [nτ, (n+ 1)τ ], n = 1, 2, · · · ,

which implies

|Ṽi(ξ, t)| ≤ V +
i (ξ, t) for (ξ, t) ∈ R× [0,∞), i = 1, 2.

The proof is complete.

Let us choose V +
i0 (ξ, s) such that

V +
i0 ∈ C([−τ, 0];W 1,1(R)), ∂sV

+
i0 ∈ L

1([−τ, 0];L1(R)),

and

V +
i0 (ξ, s) ≥ |Vi0(ξ, s)|, (ξ, s) ∈ R× [−τ, 0], i = 1, 2.

Combining Lemmas 3.5 and 3.8, we can get the convergence rates for Ṽ (ξ, t).

Lemma 3.9. When Ṽi0 ∈ C([−τ, 0];W 1,1(R)) and ∂sṼi0 ∈ L1([−τ, 0];L1(R)), then

‖Ṽi(t)‖L∞(R) ≤ Ce−µ2t,

for some µ2 > 0, i = 1, 2.

Lemma 3.10. It holds that

sup
ξ∈(−∞,x0]

|Vi(ξ, t)| ≤ Ce−µ2t, i = 1, 2,

for some µ2 > 0.
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Proof. Since Ṽi(ξ, t) =
√
w(ξ)Vi(ξ+x0, t) = e−λξVi(ξ+x0, t) and

√
w(ξ) = e−λξ ≥ 1

for ξ ∈ (−∞, 0], then we obtain

sup
ξ∈(−∞,0]

|Vi(ξ + x0, t)| ≤ ‖Ṽi(t)‖L∞(R) ≤ Ce−µ2t,

which implies

sup
ξ∈(−∞,x0]

|Vi(ξ, t)| ≤ Ce−µ2t.

Thus, the estimate for the unshifted V (ξ, t) is obtained. The proof is complete.

Proof of Proposition 3.2. By Lemmas 3.2 and 3.10, we immediately obtain (16) for
0 < µ < min{µ1, µ2}.
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