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ABSTRACT. This article deals with the global stability of traveling waves of a
spatially discrete diffusion system with time delay and without quasi-monotonicity.
Using the Fourier transform and the weighted energy method with a suitably
selected weighted function, we prove that the monotone or non-monotone trav-
eling waves are exponentially stable in L°°(R) x L°°(R) with the exponential
convergence rate e~ #! for some constant u > 0.

1. Introduction. In this article, we consider the following spatially discrete diffu-
sion system with time delay

01 (z,t) = d1D[v1](x, t) — avy (x,t) + h(ve(z,t — 1)),
Dyvs(,1) = dyDlus) (i, 1) — Bus(, 1) + glvn(a, t — 7))
with the initial data

(1)

'Ui(fE,S) = UiO(xﬂS)7 T e Ra s € [_Tiao]a i= 1727 (2)
where t > 0, z € R, d; > 0 and
Dvil(x,t) = vi(x + 1,t) — 2v3(x, t) + vi(xz — 1,¢), 1 =1,2.

Here v (x,t) and va(x,t) biologically stand for the spatial density of the bacterial
population and the infective human population at point z € R and time ¢ > 0, re-
spectively. Both bacteria and humans are assumed to diffuse, d; and ds are diffusion
coefficients; the term —aw; is the natural death rate of the bacterial population and
the nonlinearity h(vs) is the contribution of the infective humans to the growth rate
of the bacterial; — v is the natural diminishing rate of the infective population due
to the finite mean duration of the infectious population and the nonlinearity g(v;)
is the infection rate of the human population under the assumption that the total
susceptible human population is constant during the evolution of the epidemic, and
71, To are time delays. The nonlinearities g and A satisfy the following hypothesis:
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(H1): g € C*([0, K1, R), g(0) = h(0) = 0, K3 = g(K1)/B > 0, h € C*([0, K2],
R), h(g9(K1)/B) = oKy, h(g(v)/B) > av for v € (0, K1), where K is a positive
constant.

According to (H1), the spatially homogeneous system of (1) admits two constant
equilibria

(1}1,,’02,) =0:= (070) and (’U1+,'U2+) =K := (K17K2).

It is clear that (H1) is a basic assumption to ensure that system (1) is monostable
on [0,K]. When ¢'(u) > 0 for u € [0, K;] and h'(v) > 0 for v € [0, K2], system (1)
is a quasi-monotone system. Otherwise, if ¢’(u) > 0 for u € [0, K] or A'(v) > 0
for v € [0, K] does not hold, system (1) is a non-quasi-monotone system. In this
article, we are interested in the existence and stability of traveling wave solutions
of (1) connecting two constant equilibria (0,0) and (K1, K3). A traveling wave
solution (in short, traveling wave) of (1) is a special translation invariant solution
of the form (vyi(z,t),va(x,t)) = (¢1(x + ct), d2(z + ct)), where ¢ > 0 is the wave
speed. If ¢1 and ¢ are monotone, then (¢1,¢s) is called a traveling wavefront.
Substituting (¢1(x + ct), p2(x + ct)) into (1), we obtain the following wave profile
system with the boundary conditions

¢ (§) = diD[¢1](§) — a1 (&) + h(2(§ — cm1)),
ey (§) = daD[g2](§) — B2(€) + g(#1(€ — c72)), (3)
(¢1a¢2)(_oo) = (Ul—vUQ—)7 (¢1a¢2)( ) = (U1+7’02+)7

where § = 2 +ct, ' = &, D[pi](€) = ¢i(§ +1) —26i(&) + di(€ — 1), 7= 1,2.

System (1) is a discrete version of classical epidemic model

{8t111(m, t) = d10yv1 (2, 1) — a1v1 (2, 1) + h(va(a,t — 71)),

Opva(x,t) = doOprva(x,t) — agva(a,t) + g(vi(x,t — 72)). )

The existence and stability of traveling waves of (4) have been extensively studied,
see [7, 19, 21, 24] and references therein. Note that system (1) is also a delay version
of the following system

{am(x, t) = diD[v1](z,t) — arvi (@, t) + h(va(z, 1)),

Opva(z,t) = doDlvo](x, t) — agve(x,t) + g(v1(z,t)). (5)

When system (5) is a quasi-monotone system, Yu, Wan and Hsu [27] established the
existence and stability of traveling waves of (5). To the best of our knowledge, when
systems (1) and (5) are non-quasi-monotone systems, no result on the existence
and stability of traveling waves has been reported. We should point out that the
existence of traveling waves of (1) can be easily obtained. Hence, the main purpose
of the current paper is to establish the stability of traveling waves of (1).

The stability of traveling waves for the classical reaction-diffusion equations with
and without time delay has been extensively investigated, see e.g., [4, 9, 10, 12,
13, 14, 16, 22, 24]. Compared to the rich results for the classical reaction-diffusion
equations, limited results exist for the spatial discrete diffusion equations. Chen and
Guo [1] took the squeezing technique to prove the asymptotic stability of traveling
waves for discrete quasilinear monostable equations without time delay. Guo and
Zimmer [5] proved the global stability of traveling wavefronts for spatially discrete
equations with nonlocal delay effects by using a combination of the weighted en-
ergy method and the Green function technique. Tian and Zhang [19] investigated
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the global stability of traveling wavefronts for a discrete diffusive Lotka-Volterra
competition system with two species by the weighted energy method together with
the comparison principle. Later on, Chen, Wu and Hsu [2] employed the similar
method to show the global stability of traveling wavefronts for a discrete diffusive
Lotka-Volterra competition system with three species. We should point out that
the methods for the above stability results heavily depend on the monotonicity of
equations and the comparison principle. However, the most interesting cases are
the equations without monotonicity. It is known that when the evolution equations
are non-monotone, the comparison principle is not applicable. Thus, the methods,
such as the squeezing technique, the weighted energy method combining with the
comparison principle are not valid for the stability of traveling waves of the spatial
discrete diffusion equations without monotonicity.

Recently, the technical weighted energy method without the comparison principle
has been used to prove the stability of traveling waves of nonmonotone equations,
see Chern et al. [3], Lin et al. [10], Wu et al. [22], Yang et al. [24]. In particular,
Tian et al. [20] and Yang et al. [26], respectively, applied this method to prove
the local stability of traveling waves for nonmonotone traveling waves for spatially
discrete reaction-diffusion equations with time delay. Later, Yang and Zhang [25]
established the stability of non-monotone traveling waves for a discrete diffusion
equation with monostable convolution type nonlinearity. Unfortunately, the local
stability (the initial perturbation around the traveling wave is properly small in a
weighted norm) of traveling waves can only be obtained. Very recently, Mei et al.
[15] developed a new method to prove the global stability of the oscillatory traveling
waves of local Nicholson’s blowflies equations. This method is based on some key
observations for the structure of the govern equations and the anti-weighted energy
method together with the Fourier transform. Later on, Zhang [28] and Xu et al.
[23], respectively, applied this method successfully to a nonlocal dispersal equation
with time delay and obtained the global stability of traveling waves. More recently,
Su and Zhang [17] further studied a discrete diffusion equation with a monostable
convolution type nonlinearity and established the global stability of traveling waves
with large speed. Motivated by the works [15, 28, 23, 17, 18], in this paper, we
shall extend this method to study the global stability of traveling waves of spatial
discrete diffusion system (1) without quasi-monotonicity.

The rest of this paper is organized as follows. In Section 2, we present some
preliminaries and summarize our main results. Section 3 is dedicated to the global
stability of traveling waves of (1) by the Fourier transform and the weighted energy
method, when h(u) and g(u) are not monotone.

2. Preliminaries and main results. In this section, we first give the equivalent
integral form of the initial value problem of (1) with (2), then recall the existence
of traveling waves of (1), and finally state the main result on the global stability of
traveling waves of (1). Throughout this paper, we assume 71 = 75 = T.

First of all, we consider the initial value problem (1) with (2), i.e.,

o1 (x,t) = diDlvy](x,t) — avy(z,t) + h(ve(x,t — 7)),
0o (z,t) = doDlva](z,t) — Bva(z, t) + g(v1(z,t — 7)), (6)
vi(x,8) = vio(x,s),  €R, s€[-7,0], i=1,2.

According to [8], with aid of modified Bessel functions, the solution to the initial
value problem
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Owu(x,t) = du(z + 1,t) — 2u(x,t) +u(z — 1,t)], z € R, t >0,
u(z,0) = ug(z), z € R,

can be expressed by

(oo}

u(z,t) = (S(t)up)(x) = e 24 Z L, (2dt)ug(z — m),

where ug(-) € L*(R), I,,(-), m > 0 are defined as

St t/2 m+2k

Z El(m + k)

k=0

and I, (t) = I_,,,(¢) for m < 0. Moreover,
1
L, (t) =

5[1m+1(t) + Imfl(ﬂ]v vt > Ovm € Za (7)
and I,,(0) = 0 for m # 0 while Iy = 1, and I,,,(¢) > 0 for any ¢ > 0. In addition,
one has

oo

e Y Ln(t) = e "[Io(t) + 20y (t) + 20a () + Ts(t) + -] = 1. (8)

m=—0o0

Thus, the solution (vy(x,t),v2(x,t)) of (6) can be expressed as

vy(z,t) = e Cdata)t Zm_fool (2d1t)vio(z —m,0)

+ Zm__oo fo e~ Rdita)t=9)1 (2d,(t — 5))(h(ve(z — m, s — T)))ds,
vo(x,t) = e (2d2tP)t Zm__oo I, (2dat)voo(z — m, 0)

+ Zm:_oo fo e~ RdtB) =91 (2dy(t — 5))(g(vi(z —m,s — 7)))ds.

(9)

In fact, by [8, Lemma 2.1], we can differentiate the series on ¢ variable in (9). Using
the recurrence relation (7), we obtain

8#11(%, t)
—(2dy + a)e” ChFIT N T (2dyt)vig(z — m, 0)
+ 6_(2d1+a)t Z 2d11;n(2d1t)’010($ —-m, O)

+ Y Lu(0)(h(va2(x —m,t — 1))

m=—0o0

—(2d; + @) Z / ~QhAE=)T (2d(t — 5)) (h(va(x — My s — T)))ds

m=—0oo

N Z / ~Q@d+a)(t=9)9q, T (2d; (t — 5))(h(ve(z — m, s — 7)))ds

m=—0o0

=di[vi(z + 1,t) — 2vi(x,t) + vi(x — 1,t)] — avi(x, t) + h(ve(z,t — 7))
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and
8tv2(x, t)
= —(2dy + B)e” LN L, (2dat)vae (x — m, 0)
4 e~ (2248t Z 2do1), (2dat)vao(x — m, 0)
+ Y La(0)(g(vi(z —m,t —7)))
0 t
—@d+8) Y / A, (2dy(t — 5)) (g(va(@ — m,s — 7)))ds
m=—0o0 0
) t
+ 0y / e~ Cd2tB) (=)0, 1 (2dy(t — 5))(g(vi(z —m, s —7)))ds
m=—00 0

= dolva(x + 1,t) — 2v9(x, t) + va(x — 1,t)] — Bua(z,t) + g(vi(z,t — 7).

Next we investigate the characteristic roots of the linearized system for the wave
profile system (3) at the trivial equilibrium 0. Clearly, the characteristic function
of (3) at 0 is

Pi(e, N) := fi(e, N) — fa(c, A)
for ¢ > 0 and A € C, where

file,A) i= As(e, NAs(e, ), fale, A) i= W (0)g' (0)e 2,
with
Al(Cy /\) = dl(e)‘ +e M= 2) —ch —a, AQ(C, /\) — d2(6)‘ L 2) A -,

It is easy to see that A1(c, A) = 0 admits two roots A\] < 0 < Af, and Ax(c,\) =0
has two roots A; < 0 < A\J. We denote A\, = min{\]",\J}.
Similar to [27, Lemma 3.1], we can obtain the following result.

Lemma 2.1. There exists a positive constant c, such that if ¢ > ¢y, then P1(c, ) =
0 has two distinct positive real roots A1 := Ai1(c) and Ay := Aa(c) with Ai(c) <
Aa(c) < AL, dee. Pi(c, A1) = Pi(e, A2) =0, and P(e, ) > 0 for X € (A1(c), Aa(c)).
In addition, lim.—.  A1(c) = lime—¢, Aa(c) = A > 0, i.e., Pi(cs, i) = 0.

Furthermore, we show the existence of traveling wave of (1). When system (1)
is a quasi-monotone system, the existence of traveling wavefronts follows from [6,
Theorem 1.1]. When system (1) is a non-quasi-monotone system, the existence of
traveling waves can also be obtained by using auxiliary equations and Schauder’s
fixed point theorem [21, 24], if we assume the following assumptions:

(H2): There exist K= = (K7, K3) > 0 with K~ < K < K+ and four continu-
ous and twice piecewise continuous differentiable functions ¢* : [0, K;] — R
and h* : [0, K] — R such that
() KF = g=(KE)/8, h*(Lg*(KF)) = aKF, and h¥(Lg*(v)) > av for
v e (0,K7);

(ii) g% (u) and h*(v) are non-decreasing on [0, K] and [0, K], respectively;
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(iii) (9%)'(0) = ¢(0), (h*)'(0
0<g (u) <glu) <
0<h™(v) <h(w) <

\/

= 1’(0) an
T(u) < ¢'(0)u for u € [0, K],
*(v) < B (0)v for v € [0, K.

:'la

Proposition 1. Assume that (H1) and (H2) hold, T > 0, and let c. be defined as in
Lemma 2.1. Then for every ¢ > c., system (1) has a traveling wave (¢1(§), p2(&))

satisfying (61(~00), 62(=20)) = (0,0) and
Ky < liminf 61(6) < limsup 1 (6) < K

{—+o0
0 < liminf ¢ (¢) < limsup ¢2(€) < Ky .
§—+o0 E—+oo
Finally, we shall state the stability result of traveling waves derived in Proposition
1. Before that, let us introduce the following notations.

Notations. C > 0 denotes a generic constant, while C;(i = 1,2,...) represents a
specific constant. Let || -] and || - ||o denote 1-norm and oco-norm of the matrix (or
vector), respectively. Let I be an interval, typically I = R. Denote by L!(I) the
space of integrable functions defined on I, and W*!(I)(k > 0) the Sobolev space of
the L'-functions f(x) defined on the interval I whose derivatives jl—,"n fln=1,...k)
also belong to L'(I). Let L. (I) be the weighted L'-space with a weight function
w(x) > 0 and its norm is defined by

1l = / w(@)| £ (x)\da,

WEL(I) be the weighted Sobolev space with the norm given by

1 lhwgo o Z/

Let T > 0 be a number and B be a Banach space. We denote by C([0,T]; B)
the space of the B-valued continuous functions on [0, 7], and by L!([0,T]; B) the
space of the B-valued L!-functions on [0,7]. The corresponding spaces of the B-
valued functions on [0, 00) are defined similarly. For any function f(x), its Fourier
transform is defined by

dx.
da?’ .

FIf) = Fln) = / e~ f(2)da

and the inverse Fourier transform is given by
P 1 NN
FA@ = o [ @ Fn
T JR

where 4 is the imaginary unit, i2 = —1.

To guarantee the global stability of traveling waves of (1), we need the following
additional assumptions.

(H3): |¢'(u)| < ¢'(0) and |h'(v)| < K'(0) for u,v € [0, +00).

(H4): dy > di, a > B, do — di < %52 and max{h’(0), ¢'(0)} > S.

(H5): The initial data (vio(x,s),veo(x,s)) > (0,0) satisfies

hrf (v10(z, 8), v20(x, 8)) = (v14, Va4 ) uniformly in s € [—7,0].
Tr—rL 00O
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Consider the following function
Pa(\,¢) = do(e* + e —2) — X — B+ max{h/(0), ¢’ (0) }e .

Since max{h/(0),¢’(0)} > B, it then follows from [20, Lemma 2.1] that there exists
A* > 0 and ¢ > 0, such that Py(A*,¢*) = 0 and 87)26(;"6”()\*76*) = 0. When
¢ > c¢*, the equation P2(A,¢) = 0 has two positive real roots )\?(c) and )\g(c)
with 0 < )\5(0) <A <L )\g(c). When A € ()\hl(c),)\g(c)), Pa(A,¢) < 0. Moreover,
(A)'(c) < 0 and (A3)'(c) > 0.

We select the weight function w(§) > 0 as the form

w(e) = e,

where A > 0 satisfies )\q () < A< )\g(c). Now we are ready to present the main
result of this paper.

Theorem 2.2 (Global stability of traveling waves). Assume that (H1), (H3)-(H5)
hold. For any given traveling wave (¢1(x + ct), pa(x + ct)) of (1) with speed
¢ > max{c, c*} connecting (0,0) and (K1, Ks), whether it is monotone or non-
monotone, if the initial data satisfy

vio(, 8) — ¢i(x + ¢8) € Cunif[—7,01 N CO([—7,0; Wit (R)), i = 1,2,
ds(vio — &) € L'([~7,0]; L, (R)), i = 1,2,
then there exists 7o > 0 such that for any 7 < 19, the solution (vy(x,t),va(x,t)) of
(1)-(2) converges to the traveling wave (¢1(x + ct), po2(x + ct)) as follows:

sup [v;(2,t) — ¢s(a +ct)| < Ce™™, >0,
z€R

where C and p are two positive constants, and Cyynif[r,T| is the uniformly contin-
wous space, for 0 < T < oo, defined by

Cunif [7’7 T}
={u € C([r,T] x R) such that lim v(z,t) ezists uniformly int € [r,T]}.

T—+00

3. Global stability of traveling waves. This section is devoted to proving the
stability theorem, i.e., Theorem 2.2. Let (¢1(x 4 ct), da(x +ct)) = ($1(€), p2(£)) be
a given traveling wave solution with speed ¢ > ¢, and define

V;(gat) = ’Ui(xﬂt) - ¢2(x + Ct) = vz(f - Ctat) - ¢l(€)v 1=1,2,
Vio(§,8) := vip(x, 8) — ¢i(x + ¢s) = vip(§ — ¢s,8) — d(E), i =1,2.
Then it follows from (1) and (3) that V;(&,t) satisfies
Vig + cVig = diDVi] + aVi = Q1(Va(§ —cr,t — 7)),

Vat 4 cVag — doD[Va] + Vo = Qa(Vi(§ —c7,t — 7)), (10)
Vi(€,s) = Vig(€,5), (€,5) € Rx [-7,0], i =1,2.

The nonlinear terms Q; and Q5 are given by

Qu(V2) 1= h(d2 +V2) = h(¢a) = W' ($2)Va,
Q2(V1) := g(¢1 + V1) — g(é1) = g'(¢1) V1,

for some ¢; between ¢; and ¢; + V;, with ¢; = di(E—cm) and V; = Vi(E—cmy, t— 7).

(11)
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We first prove the existence and uniqueness of solution (V;(&,t),Va(&,t)) to
the initial value problem (10) in the uniformly continuous space Cypif[—T, +00) X
Cunzf [—T, —|—OO)

Lemma 3.1. Assume that (H1) and (H3) hold. If the initial perturbation (Vig, Vao)
€ Cunif[—T,0] X Cynif[—T7,0] for ¢ > c., then the solution (V1,Va) of the perturbed
equation (10) is unique and time-globally exists in Cyyif[—T, 400) X Cypif[—T, +00).
Proof. Let U;(x,t) = vi(x,t) — ¢pi(x+ct), i = 1,2. Tt is clear that U;(z,t) = Vi (&, t),
i = 1,2, and satisfies

Uiy — diD|UL) + aUy = Q1 (Ua(x,t — 7)),

Uat — d2D[Us] + U2 = Q2(Us (z,t — 7)),

Ui(z,s) = vig(z,8) — di(x + ¢s) := Uip(z, s), (z,8) € R x[-7,0], i=1,2.

(12)

Thus, the global existence and uniqueness of solution of (10) are transformed into
that of (12).

When t € [0, 7], we have t — 7 € [—7,0] and U;(z,t — 1) = Ujo(z,t — 7), i = 1,2,
which imply that (12) is linear. Thus, the solution of (12) can be explicitly and
uniquely solved by

Up(w,t) = e~ Cate)t 5700 1 (2d1t)Uo(x — m,0)

+3 fot e~ Chita) =) (2d; (t — 5))Q1(Uso(x —m, s — 7))ds,
Us(z,t) = e~ Cd2tBES™C T (2dyt)Uso(z — m,0)
+ o Jo e BRI, (2, (¢ — 5))Q2(Uro(x — my s — 7))ds
(13)
for ¢t € [0, 7).
Since Vo(&,t) € Cunig[—7,0], ¢ = 1,2, namely, flirf Vio(&,t) exist uniformly
—+00
in t € [—7,0], which implies 113_1 Uio(z,t) exist uniformly in ¢t € [—7,0]. Denote

Uip(oo,t) = xgrfoo Uio(z,t), i = 1,2. Taking the limit z — +o00 to (13) yields

I, )
(o)
——2di+a)t ; L. (2d;t) zgr-ir-loo Uro(x —m,0)

) t
+ ) /0 e’(2d1+“)(t’s)1m(2d1(t—s))z lim Qu(Uso(x —m, s —7))ds

t 00
=e~ Uy (00, 0) —i—/ e~ 1=9Q; (Uzo (00,5 — 7)) Z e MU=, (2dy (1 — 5))ds
0 m=—00
=:U(t) uniformly in ¢ € [0, 7]
(14)
and
o V25 1)

00
26*(2d2+5)t Z Im(Qth) zgr}rloo Ugo(ai —m, 0)

m=—0o0
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+ Z / ~QRdaAB) (=) ((2da(t = 5)) lm Qs(Uro(w —m, s —7))ds

m=—0o0
oo

t
=e 7' Us0(o0,0) +/ e Qs (Urg(o0,s — 7)) D e 22U, (2ds(t — 5))ds

0 m=—o00
=:Us(t) uniformly in ¢ € [0, 7],
(15)
where we have used (8). Thus, we obtain that (Uy, Us) € Cynif[—7,T)XCunif[—T, T).
When ¢ € [r,27], system (12) with the initial data U;(x,s) for s € [0, 7] is still
linear, because the source term Q1 (Usz(z,t — 7)) and Q2(Uy(z,t — 7)) is known due
tot — 7 € [0,7] and U;(s,t — 7) is solved in (13). Hence, the solution U;(z,t) for
t € [1,27] is uniquely and explicitly given by

U (a,t) =e~Ctedt=m) N1 (2dy (t — 7)) Ur (& — m, 7)

m=—0oQ

+ Z / SEAE UYL (2, (¢ — $)Qu(Us(w — m, s — 7))ds,

m=—0o0

Us(a,t) =e~ =TT N1 (2dy(t — 7)) Uz (2 — m, 7)

m=—0o0

+ Z / —Qda4B)(t=5) (2d2(t — $))Q2(Ur(x — m,s — 7))ds.

m=—0o0

Similarly, by (14) and (15), we have
lim Ul(.’lﬁ,t)

T—r+00
o0

——(2di+a)(t=7) Z L, (2dy(t — 7)) IETOO Ui(z —m,T)

+ Z / e~ GhiFa)t=s)1 (24, (t — s)) zll)r-ﬁr-loo Q1(Us(z —m,s —1))ds

m=—0o0

t ]
— et () + / QU (s— 7)) S e 2T, (20, (¢ — 5))ds

m=—0o0

=: U (t) uniformly in t € [7,27],

and
e U2 )
——(2d2+B)(t=7) Z L, (2da(t — 7)) IETOO Us(z —m,T)
+ Z / e~ GBI, (2dy(t — 5)) zll)r-ﬁr-loo Q2(Ur(z —m,s —71))ds
m=—oo

t

—e Py (1) +/ e P Qy(Un(s — 7) Z e 22— (2dy(t — 5))ds

T m=—o00
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= :Uy(t) uniformly in t € [r,27].

By repeating this procedure for ¢ € [n1, (n + 1)7] with n € Z,, we prove that
there exists a unique solution (V1,V2) € Cunif[—7, (n + 1)7] X Cynif[—T, (n + 1)7]
for (10), and step by step, we finally prove the uniqueness and time-global existence
of the solution (Vi,V2) € Cuynif[—7,00) X Cynis[—7,00) for (10). The proof is
complete. O

Now we state the stability result for the perturbed system (10), which automat-
ically implies Theorem 2.2.

Proposition 2. Assume that (H1), (H3)-(H5) hold. If
Vio € Cunif[=7,00 N C([=7,0]; Wy (R)), i = 1,2,
and
0sVio € L' ([-7,0]; L, (R)), i = 1,2,
then there exists 7o > 0 such that for any 7 < 79, when ¢ > max{c.,c*}, it holds

sup [Vi(6,8)| < Ce ™, >0, i=1,2, (16)
£ER

for some p >0 and C > 0.

In order to prove Proposition 2, we first investigate the decay estimate of V;(&,t)
at £ = oo, i=1,2.
Lemma 3.2. Assume that Vio € Cyunif|—7,0], i = 1,2. Then, there exist 19 > 0
and a large number xo > 1 such that when T < 79, the solution V;(&,t) of (10)
satisfies

sup V(& 1) < Ce Mt t>0, i=1,2,
£€lzo,+00)

for some p1 >0 and C > 0.

Proof. Denote
z(t) == Vi(00,t), zi5(s) = Vio(oo,s), s € [-7,0], i =1,2.

Since Vo € Cunif[—7,0], i = 1,2, by Lemma 3.1, we have V; € Clypif[—T, +00),
which implies
lim Vi(&,t) =z (t)
£——+o0

exists uniformly for ¢ € [—7, +00). Taking the limit £ — 400 to (10), we obtain
Z+
G+ aef — (o) (t - 1) = P (8= 1),

+
dzg

7 B2 — g/ (i) (t—7) = Po(z (t = 7)),
z(s) = 25(s), s € [-7,0], i = 1,2,

?

where

Pa(z) = glory + 2) — g(viy) — g’ (v14) 2

Then by [9, Lemma 3.8], there exist positive constants 79, 41 and C such that when
T S 70,

{P1<z;> h(vas + 23) = h(vay) — I (va1)23
+
!

[Vi(oo,t)| = |z (t)| < Ce ™t £ >0, i=1,2, (17)
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provided that |25 < 1,i=1,2.
By the continuity and the uniform convergence of V;(,t) as & — +oo, there
exists a large xo > 1 such that (17) implies

sup  |Vi(&,1)] < Ce™™f £ >0, i=1,2,
£€[xg,+00)

provided that  sup |Vjo(&,s)] < 1 for s € [-7,0]. Such a smallness for the
§€[zo,+00)
initial perturbation (Vig, Vag) near £ — +oco can be easily verified, since

lim (vig(x,s),vao(z,s)) = (K1, K2) uniformly in s € [—7,0],
xr——+00
which implies

lim Vip(&,s) = gggloo[vio(és) —¢i(§)] =K —K; =0

{—+oo

uniformly for s € [—7,0], i = 1,2. The proof is complete. O

Next we are going to establish the a priori decay estimate of supg¢(_ o 40 [Vi(€, 7))
by using the anti-weighted technique [3] together with the Fourier transform. First
of all, we shift V;(&,t) to V;(€ + xo,t) by the constant zy given in Lemma 3.2, and
then introduce the following transformation

Vi€, t) = Vw@Vil€ + w0, t) = e Vi€ +ao,t), i = 1,2,
Substituting V; = w=/2V; to (10) yields
‘71t~+ 6?15 +aVi(e,t) — dieVi(E+1,t) — die Vi (€~ 1,1)
= Ql(‘{g(ﬁ —erit— 7)), - ~
Vot + cVac + e2ValE,t) — dae Vo€ + 1,1) — doe (€ — 1,1) (18)
fQ2(V1(§—CT,t—T)), N
Vi(¢,s) = Vw(&)Vio(€ + z0,8) = Vio(€,5), E €R,s € [-7,0], i =1,2,
where
ci=cA+2di+a, co=cA+2dy+ [
and
Qi(V2) = e MQ1(Va),  Q2(V1) = € Q2(V1).
By (11), Q.(Va) satisfies
@1(172(5 —cr,t — 7)) = MQ1(Va(€ — et 4 20, t — 7))
=e NN ($2)Va(€ — o7 + 20,1 — 7)
= TR (¢o) Vo (€ — eyt — 1) (19)
and @2(171) satisfies
Qi€ — et —7)) = e TG (G1)Vi(§ —ert — 7). (20)
By (H3), we further obtain
Q1 (Va(& — em,t = 7)) < W(0)e 7 |Va(§ —er,t — 7)),
Q2(Vi(€ —emt = 7)) < g'(0)e AT [VA(¢ —ert —7)].

Taking (19) and (20) into (18), one can see that the coefficients h'(¢s) and
g'(¢1) on the right side of (18) are variable and can be negative. Thus, the classical
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methods, such as the monotone technique and the Fourier transform cannot be
applied directly to establish the decay estimate for (‘71, ‘72) Motivated by [15, 28,
17, 23], we introduce a new method which can be described as follows.

o By replacing h'(¢2) in the first equation of (18) with a constant h’(0), and
¢'(¢1) in the second equation of (18) with a constant g’(0), we can obtain a linear
delayed reaction-diffusion system

Vit + chJg + Vit (€ t) —dierViT(E+ 1,t) — die VT (€ - 1,8)
= hl(o)ei)\m—‘/Q+(£ —crl— T)7
Vab + cVak + eVt (6,1) — dae?ViT (€4 1,8) — dae™ 2V5H (€ — 1,1)
=g (0)e "V (¢ —ert — 1),

(21)

with
Vi (€ 8) = Vw(©)Vio(§ + o, 5) = Vig (§5), i = 1,2,

where £ € R, t € (0,+00] and s € [—7,0]. Then we investigate the decay estimate
of (V;7, V") by applying the Fourier transform to (21);

o We prove that the solution (V4,V3) of (18) can be bounded by the solution
(VT V5h) of (21).

Now we are in a position to derive the decay estimate of (V7 V;") for the linear
system (21). We first recall some properties of the solutions to the delayed ODE
system.

Lemma 3.3. ([11, Lemma 3.1]) Let z(t) be the solution to the following scalar
differential equation with delay

(22)

{id@—Adﬂ+Bdt7% t>0,7>0,
2(s) = z0(s), se€[-7,0].

where A, B € CN*N N > 2 and zy(s) € C'([~7,0],CN). Then
0
2(t) = et eBit () —|—/ eAl=9)Bilt=T=5) [0 5) — Azo(s)]ds,
where By = Be™ AT and eBit is the so-called delayed exponential function in the
form

0, —o0o <t < —T,

1, —7<t<0,

I+ B4, 0<t<r,
eflt: I+B1%+B%%, T <t <27,

m

[_1_31%4_35%4_...4’_31”%7 (m—1)71 <t<mr,

where 0,1 € CN*N | and 0 is zero matriz and I is unit matriz.

Lemma 3.4. ([11, Theorem 3.1]) Suppose u(A) := M < 0, where pu1(A)
and poo(A) denote the matrixz measure of A induced by the matriz 1-norm ||-||1 and
00-norm || « ||eo, Tespectively. If v(B) := % < —u(A), then there exists a
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decreasing function e, = (1) € (0,1) for 7 > 0 such that any solution of system
(22) satisfies

()] < Coe 77, ¢ >0,

where Cy is a positive constant depending on initial data zo(s),s € [—7,0] and
o= |u(A)| —v(B). In particular,

let et || < Goe™*", >0,

Bqt

where e2'" is defined in Lemma 3.5.

From the proof of [11, Theome 3.1], one can see that

N
|1 +0A -1 _

pi(A) = 0L0+ 9 = lgljang Re(ajj) + ; laij]

Ve

and
N
o T+ 0A] e —1

oo (4) = 91—1>%1+ 9 T isiEw Re(ais) + ; ]

i#j

Taking the Fourier transform to (21) and denoting the Fourier transform of
v (& t) = (V1+ (& 1), V2Jr & t))T by vt (777 t) = (Vl+ (777 t), V2Jr (1, t))T7 we obtain

V1 ( n, ) ( 1 +d1<e,\+in +e—(A+z’n)) —icn) Vfr(nat)
I (0)e = TOHMVE (5, ¢ — 7),

%V2+ (77’ t) = (_02 + d2(6)\+i77 :‘_ 67()\+in)) - 7'67]) V+ (na ) (23)
+9' (0)e T ATV (5t — 1),
7

Vir(n,8) = Vi (n.9), n €R, s € [-,0], i =1,2.
Let
Aly) = —cp + dy (M eIy e 0

"= 0 —cg + do (M 4 e~ (FIN) —jep
and
0 h/(O)efc‘r()\+in)
B(n) = < g/(o)efcr()wkin) 0 :
Then system (23) can be rewritten as
Vit (n.t) = AmV*(n,0) + Bm)V* (n,t — 7). (24)

By Lemma 3.3, the linear delayed system (24) can be solved by
7 (1, 8) =eA O BT, 1)

0
+/ eA(n)(t—s)efl(n)(t—s—’r) (‘)SVOJ’_(U, s) — A(n)VO+(77, 8)} ds

0
L) + / (.t — s)ds, (25)

-7
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where Bi(n)
one has

V(&) (26)

B(n)eA7T. Then by taking the inverse Fourier transform to (25),

0
=F L&) + | F ULt — s)ds

—T

1 . .
= % 61577614(77)(734‘7)651 (U)tVOJr (777 _T)d’l]
I S R )
+ %/ / 6%577614(71)(75—8)651(ﬁ)(t—s—‘r) [33‘/0+(,,77 s) — A(n)%Jr(n’ s)| dnds.
-1 J—00

(27)
Lemma 3.5. Let the initial data V3§ (€, ), i = 1,2, be such that
Vid € C([-7,0; WHY(R)), 9,Vi§ € LY ([—7,0); L' (R)), i =1,2.
Then
||Vi+(t)||Loo(R) < Ce *2! for ¢ > max{c,,c*}, i=1,2,
where py >0 and C' > 0.

Proof. According to (26), we shall estimate F~1[I1](£,t) and fET FHIL) (&, t—s)ds,
respectively. By the definition of u(-) and v(-), we have

i (AG) + pee(A())
H(AWm) = 5

=max {—c; + di(e* cosn + e * cosn), —ca + da(e* cosn + e > cosn) }

= — ¢y + dy(e* cosn + e > cosn)
= — ¢y +dy(e +e ) cosn
=—cA+dy(e* +e —2)— B —m(n),
where ¢ = cA + 2ds + 8 and
m(n) = dy(1 — cosn)(e* + e ) >0,
since do > di, a > f and dy — dy < %, and
v(B(n)) = max{h'(0),¢'(0)}e ™.
By considering A € ()\q (¢), )\g(c)), we get (1(A(n)) < 0 and
#(A(n))+v(B(n)) = —cA+dz(e* +e™* =2) — f—m(n) +max{h’(0),¢'(0) }e " < 0.
Furthermore, we obtain
[u(A())| = v(B(n)) =eA — d2(e* + €™ = 2) + § + m(n) — max{h'(0), g'(0) }e =7
== P2(A ¢) +m(n),

where Pa()\, ¢) = da(e* + e * —2) — cA — B + max{h/(0),¢'(0)}e~**" < 0 for ¢ >
max{c., c*}. It then follows from Lemma 3.4 that there exists a decreasing function
er =¢&(7) € (0,1) such that

|eAM AT Brmt|| < O gmer (IHAMI=VBME < ¢ g=ertote=ermmt, (28)
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where C is a positive constant and po :
definition of Fourier’s transform, we have

—Pa2(A,¢) > 0 with ¢ > ¢*. By the

sup 175, <) < [ IVt €~ = levg )
Applying (28), we derive

sup | F~HL](E, )| =sup
£ER

1 . .
<C/ —e-m(n)t, Er/iotHVOJr(n, —7’)||d77

<Ce=omtsup [T (g, )]l [ ey
neR

2
<Ce SV (=)l (29)
=1
with po 1= e po.
Note that

sup 401 Vg (1,9l < O IV G lhwscer
=1
Similarly, we can obtaln

sup || F 7 [R] (€, — 5
¢er

= sup
£ER

— 00

1 * i —s —s—T Y Y
7/ etn A (t—s) o B1(n)(t ) [(‘QSV()+(777 s) — A(n)VOJr(n, s)} dnH
(n,8) — Ayt (n, s)

LT 1,5) = AV ()| [ e -ay,

< O/OO efefm(n)(t s) 757.;1,0 (t—s)

< Ce—eTuoteefuos sup
neRr

It then follows that

0
/ sup | FU L) (€. 1 — 5)]lds

—7 €€R

0 [e%s)
< Cemerit / esr0” sup |0, V5 (n, 5) = A)V5 (n,9)| / e =) gy s

-7 neRr
0
< Ceertot / 102V (o )2y + Vit G )l oy ds

< Cem " ([10: V" ()l L2 (= oniz @) + Ve ()| (=m0 ry)) - (30)
Substituting (29) and (30) to (26), we obtain the following the decay rate

ZHV ()] oo (r) < Ce™H21,

This proof is complete. O

The followNinanaximum principle is needed to obtain the crucial boundedness
estimate of (V1,V3), which has been proved in [17, Lemma 3.4].
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Lemma 3.6. Let T > 0. For any a1,a2 € R and v > 0, if the bounded function v
satisfies

% + al%z +asv —de’v(t,E+ 1) —de v(t,£—1) >0, (t,£) € (0,T] xR,
v(0,§) >0, EE€R,
(31)

then v(t,§) > 0 for all (¢,€) € (0,T] x R.

Lemma 3.7. When (V;5(£,5),Voh(€,8)) > (0,0) for (£,5) € R x [~7,0], then
(Vi™(&,1), V5" (&,1)) > (0,0) for (&,t) € R x [0, +00).

Proof. When t € [0, 7], we have t — 7 € [—7,0] and
R (0)e 2TV (€ —eryt — 1) = W (0)e A TV,h (€ — ert — 1) > 0. (32)
Applying (32) to the first equation of (21), we get

Vit + chg +a Vit (€ t) —dierViT(E+ 1,t) — die VT (€ - 1,8)
>0, (£,t) e Rx[0,7],
Vﬁ(f,s) Z Oa 6 S R7 s € [_Ta 0]

By Lemma 3.6, we derive
Vif(€) 20, (&1) eRx[0,7]. (33)
Similarly, we obtain

Vap + cVot 4 c2V5' (6,1) = doe V5T (€ 4 1,1) — doe V57 (€ — 1,1)
>0, ({t) e Rx[0,7],
Vop(€,8) >0, £ €R s € [-7,0].

Using Lemma 3.6 again, we obtain
V' (6,) 20, (&) eRx[0,7]. (34)

When t € [n1,(n + 1)7], n = 1,2,-- -, repeating the above procedure step by step,
we can similarly prove

(Vi7 (&), V3" (1)) > (0,0), (&) ER x [n7, (n+ 1)7]. (35)

Combining (33), (34) and (35), we obtain (V;"(£,t), Vo (€,t)) > (0,0) for (&,t) €
R X [0, +00). The proof is complete. O

Now we establish the following crucial boundedness estimate for (ffl, ‘72)

Lemma 3.8. Let (V;(¢,1), Va(€, 1)) and (VIT(&,1), V5T (€,1)) be the solutions of (18)
and (21), respectively. When

Vio(&,5)| < Vig (&,5) for (£,8) €Rx [-7,0], i =1,2, (36)
then

Vi€, )] S ViH(Et) for (6,t) €Rx [0, +00), i =1,2.
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Proof. First of all, we prove |‘~/i(§,t)| < V(&) for t € [0,7],i = 1,2. In fact, when
t € [0, 7], namely, t — 7 € [—7,0], it follows from (36) that

Vi — et = 7)| = [Vio(§ — emt = 7)|
<ViE—crt—1)

=V (& —ecrt—1) for (&t) € Rx[0,7]. (37)
Then by |1/ (¢2)| < B'(0) and |¢/(¢1)] < ¢'(0) and (37), we get
B (0)e TV (€ — eyt — 7) £ W (¢o)e Vo (€ — eryt — 7)

> 1(0)e V3 (€ = eryt —7) = W (o) T|Va (€ — er,t — 7)]

>0 for (£,¢) € R x [0, 7] (38)
and
g0 V(€ — et —7) £ ¢ ($1)e M TVA(E — eTit — 7)
>0 for (&) € R x[0,7]. (39)
Let

U (6.1) = VT (6,t) = Vi(&,t) and U (& 1) := VT (&) +Vil&t), i=1.2.

We are going to estimate U (€, t) respectively.
From (18), (19), (21) and (38), we see that U; (&,t) satisfies

Uy + cUre + Uy (6,8) — die?Uy (E+ 1,t) — die U (€= 1,1)

>0, (&t)eRx][0,7],

Uip(&,8) = Vib(€,5) = Vio(€,5) >0, E€R, sel-7,0].
By Lemma 3.6, we obtain

U (1) =0, (&1) eRx[0,7],
namely,
Vi(6,6) < ViH(E ), (&1) € Rx[0,7]. (40)

Similarly, one has

Us; + cUse + Uy (§,1) — dae*Uy (€ + 1,t) — dae Uy (€ — 1,1)

>0, (&t)eRx][0,7],

Uso(§,8) = Vah(€,8) = Vao(€,5) 2 0, £ €ER, s € [-7,0].
Applying Lemma 3.6 again, we have

Uy (§,t) 20, (&1t) eRx[0,7],
ie.,
Va6, t) <V5H(E 1), (68) eRx [0,7]. (41)

On the other hand, U;" (¢, t) satisfies

Ul + cUse + a1UTF (6,8) — iU (4 1,1) — die MU (€ = 1,1)

>0, (&t)eRx][0,7],

Upgl&5) = Vih(&,9) = Vio(§,5) >0, £€R, s € [-7,0].
Then Lemma 3.6 implies that

UF(66) = ViH (&) + Vi€ 20, (6) eRx [0,7],
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that is,
—Vi (& 1) < VA& 1), (&1) eRx[0,7]. (42)
Similarly, Uy (&, t) satisfies

Us; + cUse + Uy (€,1) — doe?Uy (€4 1,1) — dae™ U5 (€ — 1,1)
>0, (§t) eRx[0,7],
Usp(é,8) = V;g(f,s) —Vio(&,5) >0, £€R, se[-7,0]

Therefore, we can prove that

US(6,1) = Vo (&,8) + Val&,t) >0, (&,t) € R x [0,7],

namely
—V5" (&) <Va(&1),  (&1) eRx[0,7]. (43)
Combining (40) and (42), we obtain
Vi(&, 0 <ViT(&, 1) for (&,1) €R x [0,7], (44)

and combining (41) and (43), we prove
V(& D] V57 (6,1) for (&1) R x[0,7] (45)

Next, when ¢ € [7, 27], namely, t—7 € [0, 7], based on (44) and (45), we can similarly
prove

Vi, t)| <ViF(t) for (&) eRx[r2r], i=1,2.

Repeating this procedure, we then further prove
V& DI < V6D, (6t) ERxInr,(n+ 1)7], n=1,2,---,

which implies

Vi€, 0)] S ViT(Et) for (&1) eRx[0,00), i=1,2.
The proof is complete. O

Let us choose V& (€, s) such that

Vig € C([=7, 0, WH(R)),  0,Vi§ € L ([-7,0); L' (R),

and

%3(575) Z |V%0(€,S)|, (57’9) € R x [77, O]a 1= 172

<

Combining Lemmas 3.5 and 3.8, we can get the convergence rates for ‘7(5, t).
Lemma 3.9. When Vig € C([—7,0); WEL(R)) and 8,Vig € LY ([—7,0]; LY (R)), then
Vi)l @) < Ce2t,

for some py >0, i =1,2.
Lemma 3.10. It holds that

sup Vi, 0)] < Ce #2t i=1,2,
£e(—o0,x0)

for some pg > 0.
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Proof. Since V;(&,t) = Jw(©)V;(E+ao,t) = e Vi (E420, t) and V@) =e X >1

for £ € (—o0, 0], then we obtain

(5 Vi€ a0, )] < IVi(t)]| ooy < Ce™#2t,
€(—00,0

which implies

sup  |V;(&,1)] < CeH2t,
£€(—00,z0]

Thus, the estimate for the unshifted V' (£, t) is obtained. The proof is complete. [

Proof of Proposition 3.2. By Lemmas 3.2 and 3.10, we immediately obtain (16) for
0 < p < minf{pug, ot O
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