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THE WELL-POSEDNESS AND REGULARITY OF A ROTATING
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LIN SHEN, SHU WANG* AND YONGXIN WANG

College of Applied Science, Beijing University of Technology
Beijing 100124, China

ABSTRACT. In this paper, a rotating blades equation is considered. The ar-
bitrary pre-twisted angle, arbitrary pre-setting angle and arbitrary rotating
speed are taken into account when establishing the rotating blades model.
The nonlinear PDEs of motion and two types of boundary conditions are de-
rived by the extended Hamilton principle and the first-order piston theory.
The well-posedness of weak solution (global in time) for the rotating blades
equation with Clamped-Clamped (C-C) boundary conditions can be proved by
compactness method and energy method. Strong energy estimates are derived
under additional assumptions on the initial data. In addition, the existence and
regularity of weak solutions (global in time) for the rotating blades equation
with Clamped-Free (C-F) boundary conditions are proved as well.

1. Introduction. Rotating blades (thin-walled beam) are important structures
widely used in mechanical and aerospace engineering as aviation engine blades,
various cooling fans, windmill blades, helicopter rotor blades, airplane propellers
etc. The study of the dynamics of rotating blades is important to design purposes,
optimization, and control.

If the shear effect is not considered, the Euler-Bernoulli beam equation is used to
model vibration of thin-walled beam. Chen et al.[6] studied the boundary feedback
stabilization of a linear Euler-Bernoulli beam equation, they proved that the total
energy of the equation decays uniformly and exponentially with ¢, when the beam
is clamped at the left end and subjected to a feedback boundary conditions at the
right end. Then Guo et al.[12] proved the well-posedness and stability of the system
proposed by Chen et al.[14] considered a nonlinear Euler-Bernoulli beam equation
with a feedback force applied at the free end, the existence of the weak and classical
solutions were proved. Other relevant studies are referred to Refs. [4, 18, 19, 17, 13].
Note that the above literatures studied the longitudinal vibration in one direction.

A very extensive work devoted to the longitudinal vibration in two directions
were done by Librescu and Song[21, 32, 33] and their co-workers[25, 28]. Under
assumption of the cross-section to be rigid in its own plane, they modelled the ro-
tating blades by 1-D linear governing equations. The influence of many factors on
rotating blades, such as the anisotropy and heterogeneity of constituent materials,
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functionally graded materials (FGM), temperature, shear effects, primary and sec-
ondary warping phenomena (Vlasov effect), centrifugal and Coriolis forces etc have
been taken into account in the 1-D linear governing equations.

Following Librescu’s approach, various blades models were derived. Georgiades
et al.[11] modelled a rotating blades by means of linear strain-displacement rela-
tionships, considering arbitrary pitch (presetting) angle and non-constant rotating
speed. Choi et al.[8] studied bending vibration control of the pre-twisted rotating
composite blades, who emphasized the important of piezoelectric effect in single cell
composite blades. Fazelzadeh et al.[9] considered a thin-walled blades made of FGM
which is used in turbomachinery under aerothermodynamics loading. In the paper,
quasi-steady aerodynamic pressure loadings was determined by the first-order pis-
ton theory, and steady beam surface temperature was obtained from gas dynamics
theory. Fazelzadeh et al.[10] studied the governing equations which included the
effects of the presetting angle and the rotary inertia. The effects of steady wall
temperature and quasi-steady aerodynamic pressure loadings due to flow motion
were also taken into account.

The models in Refs.[21, 32, 33, 25, 28, 11, 8, 9, 10] are linear. When the engine
blades rotate at a low speed, the linear approximation can completely meet the
needs of practical application. However, when the blade rotate at a high speed, the
simple linear approximation can not accurately describe the dynamic behavior of
the system. So the non-linear analysis of rotating blades has attracted considerable
attention.

The nonlinear governing equations of a rotating blades at constant angular ve-
locity was presented by Anderson[1], and the author linearized the equation under
the assumption that a small perturbed motion occurred at an initially stressed
equilibrium configuration. Chen et al.[7] considered the effects of geometric non-
linearity, shear deformation and rotary inertia. Arvin et al.[2] builded a nonlinear
governing equation for rotating blades considering centrifugal forces by means of
von-Karmans strain-displacement relationships under assumption of the constant
rotation speed and zero pitch (presetting) angle. Yao et al.[39] employed the Hamil-
ton’s principle to derive the nonlinear governing equations with periodic rotating
speed, arbitrary pitch (presetting) angle and linear pre-twist angle. Under the as-
sumption that the location of shear centre is different from the centre of gravity,
Avramov et al.[3] obtained results of the investigations on flexural-flexural-torsional
nonlinear vibrations of twisted rotating blades described by the model of three
nonlinear integro-differential equations. Other nonlinear models can be found in
Refs.[34, 29, 27, 37, 15, 31, 36].

To the best of the author’s knowledge, all the above literatures about the longi-
tudinal vibration in two directions skipped the existence proof of solutions to the
governing equations, and directly used the finite element method to study the influ-
ence of various parameters on blades vibration. To address this situation, we first
try to model a governing equations of the blades with arbitrary rotating speed, ar-
bitrary pre-setting angle and pre-twist angle. In the process of building the model,
we take into account the free vibration at the right end of the blade and the non-
linear relationship between stress and strain. In the paper we aim to investigate
the well-posedness and regularity of the governing equations. The well-posedness
of other nonlinear blade vibration models can be found in Refs. [5, 38, 26, 35, 16].
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2. Model building. Let us consider a slender, straight blades mounted on a rigid
hub of radius Ry rotating with the angular velocity w(t). The length of the blades is
denoted by I, its wall thickness by h, the length and the width of the cross section of
the blades are a and b, respectively. The sum of pre-twist angle a(z) and pre-setting
angle S is defined by 6(z), as shown in Figure 1 and 2.

2.1. Assumptions. To derive the model of the rotating blades, the following kine-
matic and static assumptions are postulated:

(i) The blades is perfectly elastic bodies, the blades material is isotropic and is
not affected by temperature,

(ii) The cross section of the blades is rectangular and all its geometrical dimen-
sions remain invariant in its plane,

(iii) The ratio of wall thickness h to the radius of curvature r at any point of the
blade wall is negligibly small while compared to unity,

(iv) The transverse shear effect of the cross section is neglected,

(v) The axial displacement w is much smaller than u or v and the derivatives of
w can be neglected in the strain-displacement relations. where u, v, w represent the
displacement of the middle line of cross-sections along the y, z, x axis, respectively.

2.2. Four coordinate systems are defined to describe the motion of the
blades. Inertial Cartesian coordinate systems (X,Y, Z) attached to the center of
the hub O, the unit vectors of the inertial coordinate systems (X,Y, Z) is defined
as (I, J, K).

Rotating coordinate systems (z,y, z) located at the blade root, the origin o of
the rotating coordinate systems is set at the center of the beam cross section, the
unit vectors of the inertial coordinate systems (z,y, z) is defined as (i, j, k).

Transformation between XY Z and xyz frames can be written in the form

(X,Y,Z):(m,y,z)—i—(RO,O,O). (1)

Local coordinates systems (2P, yP, zP) also located at the blade root and oriented
with respect to plane of rotation (y, z) at angle w(t). So (z,y,z)" = B(aP,y?, 2P)’,
where the rotation matrix B is

1 0 0
0 cosw —sinw
0 sinw cosw

Local, curvilinear coordinate systems (z, n, s) related to blade cross section (Fig-
ure 2). Its origin is set conveniently at the point on a mid-line contour. s and n
are the circumferential and thickness coordinate variables, the unit vectors of axis
n and s are defined as e,, e, respectively.

In order to determine the relationship between the two coordinate systems (z, y, z)
and (z,n,s), one defines the position vector r(= r(s,x)) from the reference z-axis
of the blades to an arbitrary point A located on the middle surface as

r=zi+y(s)j+ z(s)k. (2)

The position vector r* of an arbitrary point A* off the mid-surface of the blades
can be expressed as

r* =1+ ne,, (3)
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Ficure 1. Rotating blades
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FIGURE 2. The cross-section of rotating blades

FI1GURE 3. Position vectors of ponit A* in reference frames

As a result
dr  dy(s), dz(s)
_ & K
= 1 ds 9 + ds
. dz(s).  dy(s)
= = — k
e e, x i P j Is

=X

(4)
(5)

Moreover, in order to avoid confusion, the notation (z,y, z) represents the points
associated with the middle surface, the notation A* = (z*,y*, 2*) represents the
points off the middle surface, the two notations (z,y, z) and (z*, y*, 2*) are presented

as follows:

=z, yY=r-j=y+n—, 2=r"k=z-—n—.
ds ds

(6)
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2.3. Displacement field. Based on the assumptions (iv) and (v), the axial dis-
placement D, Dy, D, (see Figure 3) are expressed as (see Ref. [21])

@ dz

D, = ¢y (z,t)(2(s) — nds) + ¢ (z,t)(y(s) + na)7 D, =u, D, =v. (7)

where ¢, ¢, denote rotation of the cross-section about y and z axis. For non-
shearable blades, The expression of ¢, and ¢, can be written in the form

¢y = Vg, P, = —Ug. (8)

where u,, v, denote derivatives with respect to x.

2.4. Strains and stress. Based on the assumptions (v), the displacement-strain
relationships is expressed as follows[20]:

=3 l(7) + (5) ] ©

Thanks to (8), we can get

Exx = Ezz + EzazM,

where
1 _ d d
Epm = §(ui 4+ 02) = (Ugey(8) + Vpe2(8)), Epw = —umd—z + vmd—z. (10)
The shear strain ¢,, can be expressed as
1,0U, Ow
s gwy. 11
e =5 (G +50) (11)
where U, represents the components of (D,, D, D.) along the n axis,
dz dy
Un = (D2, Dy, D) - ey = — o2 (12)

Substituting (7) and (12) into (11), we deduce &,, = 0. Using the coordinate trans-
formation of strain component, taking into account assumptions (iv), the shear
strain €4, can be expressed as

_1,dy dz

Esx = 5(&79:3} + E'}%z) =0. (13)

where vy, 7. are the transverse shear effect of the cross section.
Since these materials are isotropic, the corresponding thermoelastic constitutive
law adapted to the case of structures is expressed as

Oss Q1 Q12 0 0 0 Ess

Ozx QQI QQQ 0 0 0 Exx

Oxn = 0 0 Q44 0 0 Exn )

Ons 0 0 0 Q55 0 Ens

Osx 0 0 0 0 Q66 Esz
Herein, the reduced thermoelastic coefficients are defined as:

E Ev k2E E
Qu==0n=7—5@u2=0n =73 0u=0:5= 20 +V)7Q66 BEET)L

where E is Young’s modulus, v is Poisson’s ratio, k? is the transverse shear correc-
tion factor.
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According to assumption (ii), the cross section is rigid, then we can derive 0,5 =
0. Considering the assumption of the hoop stress o5 to be negligible, we can get

(Uss; Oxx;0xn;Ons, Usz) = (OaEEwwa 07 0; 0)

2.5. The centrifugal force and the perturbed gas pressure. The centrifugal
force can be represented as

1
F.= / pAw?(Ry + x)dr = pAw?R(x),

where p is the density of the blades, A is the cross section area of the blades,
R(z) = Ro(l — x) + $(I* — 2?).

In the paper, we use the first-order piston theory (see Ref.[24]) to evaluate the
perturbed gas pressure. The pressure on the principal plane of the blade can be
obtained as

ou? , ouP ovP , OvP
P = Copoo(Gp U G ) Por = Cor(Gr 4 UB50). (10
where
Uy = Uss cosB, Ul, = Ussin®, (15)

C represents the speed of sound, po, and Uy, respectively, denote the density and

the velocity of the free stream air, U;p and U!, are, respectively, the tangential com-

ponents of the fluid velocity on the positive y? and zP plane, and u? and v? denote

the displacement components along the principal axes y? and zP, respectively.
The transformation relationship between (u?,vP) and (u,v) is given by

u? =wucosf+vsinf, vP = —usinf + vcosd. (16)

Therefore, the external forces per unit axial length in the y direction and the z
direction can be obtained as

Dy = aP,psing — bPyr cosf, p, = —aP.» cost) — bPp» sinf. (17)
Combining (14), (15), (16), py, - can be expressed as a linear function of u, v, ug, vy,
Uy, Vg, TESpectively.

Dy = b1ty + bavy + bsu + bav + bsuy + bsvy (18)
D> = €1Uy + €3V, + e3u + eV + esuy + eguy (19)
where

b1 = —CopooUso (asin®d + bcos®0)

by = —CloopooUse sin f cos f(—asin 6 + bcos §)

bs = —ClooPooUocly sin @ cos @(asin§ — bcos 0)

by = —CoopooUsol(asin®@ + beos®0)

bs = —Cso poo (asin®@ + bcos?6)

b = C'oopoo sinf cos B(a — b)

e1 = —CoopocUso sinf cos §(—asin 6 + b cos 6)

€2 = —CoopocUso sin b cos 6(a cos 6 + bsin 6)

€3 = CooPooUsoby sin 0 cos O(asin 6 + b cos 6)

e4 = —CoopooUooly sinf cos f(—asin 6 + bcos §)
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e5 = Coopoo sinf cosf(a — b)
e6 = —Cloo poo(acos?6 + bsin?6)

2.6. The velocity vector and the acceleration. In order to calculate the kinetic
energy, the velocity vector and the acceleration should be given first. Based on the
assumption (v), the position vector R of a point A** of the deformed blades is
expressed in the form

R(X,Y,Z,t) =x"i+ (y" +u)j+ (2" + v)k + Roi.
Keep in mind that the rotation takes place solely in the XY plan, it results
iy =wj; jr=—-wi; k;=0.

Then the velocity vector and the acceleration of an arbitrary point A** are obtained:

R, = —w(y* +u)i+ (w(Ro + ) + u)j + vik, (20)
Ry = —[2wu; + wi(y* + u) + w?(Ro + )i
+[ure — wi(Ro + x) — w?(y* + u)]j + vuk, (21)

where subscript ¢ denotes derivatives with respect to the time.

2.7. Rotating blades model. In order to derive the blades model and the asso-
ciated boundary conditions, the extended Hamilton’s principle is used. This can be
formulated as

to
/ (0K — 6U + 6W)dt =0, du=0,0v =0 at t = 1, to. (22)

ty

where K and U, respectively, denote the kinetic energy and the strain energy, W is
the virtual work of external forces, ¢ is the variation operator.
Thanks to the cross section of the blades is rectangular, we get

%y(s)ds = ]{z(s)ds =0. (23)
Utilizing (23), the kinetic energy is obtained

1
K:§/pR?dT

1
:§p/ u? + v+ 2w(Ro + x)ug

d d
+w?(u? +2(y + nd—z)u +y+ nd—z + (Ro +z)?)dr

1 _ l
:ipA/ uf + vf + 2w(Ro + z)uy
0

h § yds h § yds
A T

+w? (u® +2 + (Ro +z)%)da
1 _ l
:5,)14/0 ui + 07 4 2w(Ro + z)uy + w?® (u® + (Ro + z)?)d,

where d7 denotes the differential volume element. Then

to to l
/ OKdt = —p[l/ / {[utt + wi(Ro + ) — uw?]du + Utt(?v}da:dt, (24)
t1 t Jo
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Due to the rotating motion of the blades, the total strain energy consists of two
parts. The strain energy caused by the centrifugal force can be obtained as

1/ L
= 5/0 %/i / pw?(Ro + §)egpdsdndsda (25)
—n Sy

where p is the bulk density of the blades, fxl pw?(Ro + ¢)ds is the centrifugal force
per unit cross section. Then,

l
oU, = /j{/ /pr(ROJrg)ésmdcdndsdx

h
/7{/ /pw (Ro + ¢)0&,.dsdndsdx
(26)

:pAw /R(x)(um5um+vmdvm)dx
0

B Pw;h /Ol /IZ(RO N g)(% y(s)dsdug, + j{z(s)d&?vm)(kdx,

where A is the area of the cross section of the blades, R(z) = Ro(l— )+ 1 (1* —2?).
Thanks to (23), the variation of the strain energy caused by the centrlfugal force
can be rewritten as

1
ST, = pAw? [R(x) (uydu + v,60)] ‘; - /0 (R(2)u)sdu + (R(z)vs)sbvdz  (27)

The strain energy induced by the deformation of the rotating blades can be

expressed as
1 h
1 2
= 7/ ?{/ OrrExpdndsdzr. (28)
2 0 _ %

Substituting the expressions of the stress and strain resultants into (28) yields

1 h
oUy :E/ ?(/2}1 Erz0€sdndsdx
0 -2
Eh (!
= / ]{(ui +02)0(u2 + v?)dsdx
0

l

- %/0 %(“3 +02)5 (Uzay(5) + Vowz(s))dsda
l

B %/O f(“my(s) + 032 2(8))8(ul + v3)dsdx

+ Eh/ f(umy(S) + V302(5)) 0 Uz Y (8) + Vg0 2(8))dsda

E 3
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1 h
oUy = E/ 7{/2 Erz0€zzdndsdr
o/ )

l
== PA{ / [7%((11,2 + vg)um)m + (aﬁumr - a3vzm)zr
0

a
- i(ui + vi)m + (a1uge + agvm)u:c):c]dx}éu

l
—I—pA{/O[ a25((u —|—U) ) +(G4Ua:x_a3ua:x)wx

_ %(ui + vi)m + (a1ugs + agvm)vz)z]dx}év
1

0

+ pfi{[(a@um — A3Vgpsz) — a2 (u 4o )](51%}
!

+ ,0[1{[((141)” — a3Ugzy) — %( +v )](5vw}
0

+ pA{ [%(Ui + Ui)um - (aﬁumz - a3vIZL’)ZL’
l

a
+ %(Ui + Ua%)d? + a1Uge + GZUImUx](su}
0

- a
+ pA{ [?5(“37 + Ui)vrc - (a4vzm - aBUzr)m
l

2 (ugzc + ngc)x + a1z, + a2vmcvx}6v}

L
2
0
where
Eh
a; = Ap yds = 0;
Eh
= zds = 0;
?{hzdydz — yads:
12 ds ds vz
h? dz 9
d .
asa) = o § 15 () +oids

a5 =

Eh [B2 dy.,
ag(z) = Afp%ﬁ(g) + z%ds.

The work of the non-conservative external forces can be obtained as

l
W:/ Pyt + povda.
0

E
p

699

(31)
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Then
t2 tz l
/ oW dt :/ / Dybu + provdadt
t t Jo
1 1 ' l (32)
+ / {(blu + e1v)ou + (bou + 62’[))6’1}}‘ dt.
t 0
where
Dy = 2bsu + (eg + ba)v (33)
D, = (es3 + by)u + 2e4v (34)

Inserting variation of potential energy (27) and (30), variation of kinetic energy
(24) and variation of external work equation (32) into the extended Hamilton’s
principle (22), collecting the terms associated with the same variations, invoking
the stationarity of the functional within the time interval [to, ¢1], and the fact that
the variations (du,dv) are independent and arbitrary, their coefficients in the two
integrands must vanish independently [see [21]]. The partial differential equations
with respect to variation of problem’s independent variables and the associated
boundary conditions are obtained as

Ugt + (a6um — agvm) — %((ui +02)Ug )
rxr 2
—w?(R(2)ug)e — w?u — Py +wi(Ry +2) =0, (35)
a
et (s — ases)  — 92 (2 4 2)0)s - 2 (B))e By =0, (36)
where
_ Dy D
= —-— = —. 37
P pA7 P2 pA ( )

The following two types of boundary conditions are generated due to the different
design of engine blades.

U, Uy = 0,v,v, =0, x =0, (38)
U, Uy = 0,v,v, =0, =1 (39)
and

u, Uy = 0,v,v, =0, =0, (40)

AgUgy — A3Vzz = 0, z =1, (41)

A4Vzz — A3Uze = 0, x =1, (42)

%( 2 102 up — (a6Uze — 34 )e — b1t — v = 0, x =1, (43)

%(ui + 02 0y — (4000 — A3Uze) e — bou — eqv = 0, =1 (44)

The conditions (38)-(39) represent C-C boundary condition. The conditions
(40)-(44) represent C-F boundary condition. Now we study the well-posedness and
regularity of the solution for C-C and C-F blades.

3. Preliminary. We write @Q = Q x (0,T), where Q = (0,1) and T > 0,
Hy = {¢ € H*(Q) | () = 0,4, (x) = 0,2 € 00},
Hf = {4 € H*(Q) | (0) = 0,4,(0) = 0,2 = 0}.
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We list Gagliardo-Nirenberg inequality for bounded domains (see [23]) to be used
in the subsequent sections

Lemma 3.1. Let Q C R" be a bounded domain with smooth boundary. Let 1 <
p,q,r < 00 be real numbers and j < m be non-negative integers. If a real number o

satisfies
1 j 1 1
et}
P n ron q

ID7 £l oy < ColID™ FlIZo (@ 1 I Eafery + Callf]

where s > 0, and the constants C1 and Cy depend upon 2 and the indices p, q,r,m, j,
s only.

3 ‘u.
IN
o
IN
—_

Then

L*(Q)

Now, we give the Aubin-Lions Lemma (see [22]).

Lemma 3.2. Suppose By, B, By are Banach Space, if

(1) {u;}2, is bounded in LP°(0,T; By);

(11) {u;+}72, is bounded in LP*(0,T; B1);

(iii) By —<— B — By,
then {u;}5°, admits a strongly converging subsequence in LP°(0,T; B), provided
po < 00,p1 > 1.

4. Mathematical results of C-C blades. Without loss of generality, we assume
as = 1. For the sake of brevity, the initial boundary-value problems of C-C blades
are rewritten as:

i+ (a6t — (@50ar)es — 5((03 +02)ua)
—w*(Rug)y —p1 =0 in Q,
Vit — (@3Uzz)wa + (4022 ) e — %((ui + vH)v)s (45)
— w*(Rug)y —pa =0 in Q,
U, Uy = 0,0,0, =0 on 990 x [0,T],
u=ug(x),us = uy(x),v =vg(x),v; = v1(x) on Q x {t = 0}.
where
pr =D +w’u—wi(Ro+a), p2=Do. (46)

Definition 4.1. We say function (u,v), u,v € L>(0,T; H3(f2)), with
ug, vy € L(0,T; L*(Q)), ug, v € L°°(0,T; H2(Q)),
is a weak solution of the initial boundary value problem (45) provided
(i)
(11 + (@500, @) — (@000, Pr) + 5 (02 + 02z, 22)
+w?(Rug, ¢s) — (p1,) = 0.

1
(Vet, ©) — (a3Ugzs Paz) + (AaVzzs Puz) + 5((1@ + 02) Vs, Ox)
+w2(va7 9033) - (p27 90) =0.
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for each ¢ € HZ(Q), and a.e. time 0 <t < T, and
(if)
u(0) = ug, ut(0) = u1;v(0) = vo, v¢(0) = vy. (49)

Remark 1. From the definition, we know u,v € C([0,7]; L?(Q?)) and us,v; €
C((0,T]: H-2(2).

Remark 2. By the product Minkowshi inequality, we can obtain:
asag — a3 >0, r € Q. (50)
Theorem 4.2. (Existence for weak solution of (45)) Assume
w e CH0,T),a3,as,as € L(Q),ug,v0 € Hy (), u1,v1 € L*(Q). (51)
there exists a weak solution of (45).

We now briefly outline the proof of Theorem 4.2 in the following:

Step 1. employing Galerkin’s method to construct solutions of certain finite-
dimensional approximations to (45) (correspond to Lemma 6.1 in chapter 6);

Step 2. using the energy method to find the uniform estimates of the finite-
dimensional approximations solutions (correspond to Lemma 6.2 in chapter 6);

Step 3. using compactness method to obtain the weak solutions of (45).
Now we give the smoothness of weak solutions of (45).

Theorem 4.3. (Improved regularity) Assume

as, a4, a6 € L2(Q),w € CH0,T),wy € L°°(0,T),
{uo € HX(Q)NHYQ),vo € HE(Q) NHY(Q),u1 € H3(Q),v1 € HZ(Q), (52)
the weak solution of (45) satisfies
ug, vy € L°°(0,T; HE(Q)), uge, vee € L0, T; LA(Q)). (53)

Theorem 4.4. (Interior regularity) Under the condition (52), for any ¢(x) €
C§e(Q),p(x) > 0,2 € Q, then the weak solution of (45) satisfies

PUgza, PUzex € L™ (07 T; L2 (Q>)

Remark 3. Multiplying the first and second equation of (45) by a4(x)u, az(x)ve
respectively, integrating with over ', and summing the two equations, we can
obtain that the weak solution of (45) satisfies

where € is a bounded open interval and 0 coq.

If the pre-twist angle a(z) is neglected, we can get 6(z), az(x), as(x), ag(x) are
all constant. Then we give the following theorem.

Theorem 4.5. (Improved regularity when a(x) = 0) Under the condition (52),
assume oz) = 0, then the weak solution of (45) satisfies

u,v € L0, T; H*(Q) U H3(Q)).
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Now, we study the uniqueness and stability of (45), denote operator 7 satisfying
7 : {as, a4, a6,w, 0, ug, vo, u1,v1} — {u,v},
and
W(Q) = {¥l¢ € L(0,T; Hg (), 4 € L=(0,T5 L*(Q2))}
with the norm
[Yllw@) = [1¥llLoo,m:m2(0)) + [[¥tllL=0,7;02(0))-

Then W(Q) is Banach space.
Theorem 4.6. Undering the condition (52),
m {(L(Q)) x WHH0,T) N CH0,T) x L) x (HE (2))* x (L*(2))*} = (W(Q))?
18 continuous.

5. Mathematical results of C-F blades. The initial boundary-value problems
of C-F blades are rewritten as :

1
Ut + (a6uzz)z$ - (G/SU:cz)z;c - 5((’&2 + vg)uz)z
- WZ(Rum)m -p1=0 in Q,

1
Vet — (agum)m + (a4vrx)zz - 5((“3 + Ur%)vf)f

—w*(Ruy)e —p2 =0 in Q,
) = 07 b . = 07 = 0’
U, Uy v, Vg x (54)
A6Ugy — A3Vgy = 0, T = l7
A4Vzp — A3Uze = 0, x =1

1
§(ui + vi)uw — (apUpr — A3Vzz )z —b1u—ev =0, =z =1,

1
§(ui + 02 0y — (A4Vpp — A3ULe) e — bou —eqv =0, =1,

u=up(x),us = uy(x),v =vo(x), vy = v1(x) on Q x {t = 0}.

Definition 5.1. We say function (u,v), u,v € L>(0,T; H7(Q)), with
Ug, Vg € LOO(O7 T, LQ(Q», Uity Vit € L (O, T‘7 H_2(Q)),
is a weak solution of the initial boundary value problem (54) provided
(i)
1
(Uit @) + (a6Ua0, Paa) = (A8V00s Pa0) + 5 (U5 +02) 00, 2) + @ (Rug, 02) (55)
—(p1, ) — (bru(l) + e1v()) (1) = 0.
1
(Utt, 50) - (QSUrIa @TT) + (a4vm, ‘PM) + 5((“2 + 'Ufz)vmv 90-%) + W2(er7 ‘Pm) (56)
—(p2, ) — (bau(l) + e2v(1)) (1) = 0.
for each ¢ € H}(Q2), and a.e. time 0 <t < T, and
(i)
u(0) = ug, us(0) = u1;v(0) = vo,v(0) = v1.

Similar as above, we derive the following conclusion of the initial boundary value
problem (54).
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Theorem 5.2. (Existence for the weak solutions of (54)) Assume
w e CH0,T),a3,a4,a6 € L°(Q),ug,vo € H?(Q),uhvl € L*(Q), (57)
there exists a weak solution of (54).

Theorem 5.3. (Regularity weak solution of (54)) Assume

as,as, a6 € L®(Q),w € CH0,T),wy € L=(0,T),
{ ug,vo € H7 () N H*(Q),u1,v1 € HF (). (58)
Then there exists T* < T such that, the weak solution of (54) satisfies
ug, vp € L0, T HF (), uge, ver € L=(0,T; L*(2)). (59)

Remark 4. If pre-twist angle a(x) is neglected, according to the first and second
equations of (54), we can obtain that the weak solution of (54) satisfies

u,v € L®(0,T*; H*(Q) U H}(Q)). (60)
where wuy, vy € L°°(0,T%; L?()) and Gagliardo-Nirenberg inequality are used.
6. Proof of mathematical results. We construct weak solution of the initial
boundary-value problem (45) by first solving a finite dimensional approximation.

We thus employ Galerkin’s method by selecting smooth functions i = ¢k (z)(k =
1,---) such that

{r}72,is an orthogonal basis of HZ (), (61)
and
{or}72,is an orthonormal basis of L%(€2). (62)
Fix a positive integer m, and write
m m
U = 3 db (g, vm =Y _ b, (D)er, (63)
k=1 k=1

where we intend to select the coefficients d,, (t),d5, (t)(0 <t < T,k =1,--- ,m)
to satisfy

dlgm(o) = (U‘Ov 9076)7 dlfm(o) = (U07 <Pk)a k=1,---,m, (64)
dlgmt(o) - (ula Sﬁk), dlfm,t(o) = (vla Sﬁk), k= 1. ym, (65)
and
1
(um,tta @k) + (@Gum,z:m @k,aﬁx) - (a3vm,x$a ka,xx) + *(('U:,,Qn z T U72n w)um,xv @k,x)
2 ) 3
+w2(Rum,x7 @k,x) - (p1m7 @k) = 07
(66)
1
(U'm,tta @k) - (@3um,zx7 @k,aﬁx) + (a4vm,x$a on,:cx) + 5(('“'727“1 + 'qu,x)vm,xa @k,x)
+w2 (Rvm,xa @k,x) - (mea @k) = 0.
(67)

where
1

Pim = ﬁ(QbSUm —+ (63 + b4)'l)m) + w2um - wt(RO + .’E),

1
Pom = ﬁ ((63 + b))t + 264Um)'

In order to proof Theorem 4.2, we need the following Lemma.
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Lemma 6.1. Under the condition (51), for each integer m = 1,2, --- | there exists
a unique function wny,, vy, of the form (63) satisfying (64)-(67) for 0 <t < t,,.
Proof. Assuming w,,, v, to be given by (63), by using (62), equation (66) and (67)
become the nonlinear system of ODE

it + D By (605 w2y Phza) = D B (0305 w2y Ph )

Jj=1 Jj=1

1 L moo
+ ) Z - (((Z dz)m(Pi,w)Q + (Z dllm(Pi,w)2)‘pj¢rﬂ ‘Pk,w>
j=1 i=1 i=1

mo 1
+0? Y (Rpj s Ph) — oA (2bsds,, + (e + ea)di,,)
=1

:w2d§m - wt((RO + Z‘), @k)v

m

m
Qe + D (040,00, Phae) = Y A, (305,005 Ph )
j=1 j=1

+ % > i, (((Z Doie)” + (O dimpia)?) i %w) (69)
J=1 i=1 i=1

m
, 1
+ w? E djlm(R‘Pj,:cv @k,aﬁ) - pA ((63 + 64)d§m + 264d]fm) =0.
i=1

subject to the initial conditions (64), (65). According to standard theory for

ODE, there exists unique C? funcion do,,(t) = (d,,, 3, - ,di,), dim(t) =

(d},,,d3,,, -+ ,dT), satisfying (64), (65), and solving (68), (69) for 0 < t < t,,,
where t,, := t(m) is a function of m. O

We propose now to send m to infinity and to show a subsequence of the solutions
U, U, Of the approximate problem (64)-(67) converges to a weak solution of (45).
For this we will need the following uniform estimates.

Lemma 6.2. Undering the condition (51), there exists positive constant C(Q,T),
such that

il 1220y + [lom. el | 720y + H“m”%zg(sz) + ||’Um||§—102(ﬂ)

2 2 2 2 (70)
<C(llurllz2(q) + llv1llz2¢0) + ||“0HH§(Q) + ||UOHH3(Q)) +C
form=12---.
Proof. Multiplying equality (66) by dlgm,t’ summing k = 1,2,---, we deduce
(um,tty um,t) + (a6um,mx; Um,tmm) - (a3vm,mzv um,tzz)
1 (71)
4 50+ 0 st ) + 9 (Rt t2) — (P ) = 0
for a.e. 0 <t <t,,.
Multiplying equality (67) by d’fm,t, summing k = 1,2,--- , we deduce
(Um,tta Um,t) - (a3um,xaca Um,ta:a:) + (a4vm,x9¢a Um,tﬂcac)
(72)

1
+ 5((’“’7271’;1; + ’Uzn’m)vm,zv vm,tx) + W2(Rvm,x7 Um,ta:) - (]92m, Um,t) - 0
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for a.e. 0 <t <t,
To simplify the equation (71) and (72), we can get

1d 1d
2 dtHum 75||L2 (Q) + 3 9 dt”\/ 6Um szLZ(Q (a3vm,ww7um,th)

1 (73)
+ 5((%27@@ + Ufn,x)um,xvum,tw) 9 dtH\/» (Q) (P1ms Um,t) = 0.
1d 1d
||Um tHL?(Q S 1. H V@4V H%2(Q - (a3um,xa:; vm7tzx)
1
+ 5((u?n,z + U?n,w)vm7$7 Um7t91) 2 dz ||\/>Um w”L?(Q) (p2ma Um7t) =0.
Summing the equations (73) and (74), we discover
1d
S (Q) + |lvm, t||L2 @ t[IVaesum m”LZ(Q + |[Vasvm m”L?(Q)
+ 7(H\/Eum m’H2L2(Q) + H\/Evm,x”%%ﬂ))} - 7||a3um,mvm,m||L1(Q)
dt (75)
1d
+ g&”umm +Um m||L2(Q
:th(H\/»“m,xHL?(Q) + ||\/Evm>$”%2(ﬂ)) + (P1ms Um,t) + (P2m, Um,t)-
Since w € C1(0,T), the equality (75) implies
S 7 @ T ||Um7t||%2(ﬂ) + ||va6“m,a:w||%2(n) + ||\/a4vm,m\|%2(g)
2
w 2 2
a5 R m,T - 14 m,xx Vm,xx
+ 5 @0+ IV} = Gllostm st salline oo
1d
+ g&“ U, o+ ’Ugn,gc”%?(ﬂ)
<Ol + Nomal By + sy + lom g ) + C-
where we used Young inequality.
Integrating (76) with respect to ¢, we discover
||Um,t||i2(9) 7 @t H\/a'Gum,MJH%?(Q) + H\/a4vm,m||i2(n)
2
w
= 2||aztim,zaVm,ea||L1(0) + 7(”@“771,90”%2(9) + ||\/Evm,w”%2(9))
iHum,w + ’ng,w”%Q(Q) (77)

<C(Q, T){||urml 720y + l[o1ml 720y + l[woml[Fr20) + [[vom 20}

i
+ C/O ||tm,tl|72(02) + [[0m, el |72y At + ||Um||?qg(9) + ||Um\|12qg(9) +C.

Thanks to (50), there exists a constant C, such that

||\/@um,m||iz(9) + ||\/ Cl4Um,;cxH2L2(Q) - 2||a3um,aﬁxvm,xa:||L(Q) (78)
ZO(HUmH?{g(Q) + ||Um||§1§(sz))'
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Substituting (78) into the inequality (77), By using Poincaré inequality, we find

[t e[ 2 () + |vm, el T2y + HumH%{g(Q) + \|Um||zg(n)

SC(HUIMH%Q(Q) + ||’U1mH%2(Q) + HUOWH?—I(%(Q) + HUOmH?{g(Q)) (79)

t
+ C/o Hum,t||2L2(Q) + ||Um,t||%2(9)dt + ||Um||%rg(sz) + ||Um\|§{g(sz) +C.
Then, by using Gronwall inequality, we obtain
[Nttt 22 () Hvm,el L2 + lluml| B2 0y + 1oml 20
SO(HUm,t(O)H%Q(Q) + ||Um,t(0)\|%2(9)
+lum (0)|372 () + [[vm (0)l172(0y) + C
<O(|lurllfeq) + llo1ll72e) + ||U0||§Jg(9) + HUOH%IS(Q)) +C
form=1,2,---. 0
Remark 5. From the Energy estimates, we can obtain: t,, — T, as m — .

Thanks to Lemma 6.1 and Lemma 6.2, we can obtain the existence for the weak
solutions of the initial boundary value problem (45).

6.1. Proof of Theorem 4.2.

Proof. (i) According to the energy estimates (70), we see that

{um o1 {vm ooy is bounded in L>(0,T; HZ(Q)); (80)
{umttor—1, {Um.t oo is bounded in L>(0,T; L*(Q)); (81)

{Umtt Fooe1s {Vm.tt Fooet is bounded in L>(0,T; H %(Q)). (82)

As a consequence there exists subsequence {uw,,v,}5_; and u,v € L>(0,T;

HZ(Q)), with ug, v, € Lo°(0,T; L2(Q2)), ug, v € L°°(0,T; H=2(2)), such that
Uy = UV — U weakly *in L*°(0,T; HZ(Q))
Uyt — Ug, Vpp — Vg weakly *in L°°(0,T; L*(Q)) (83)
Uptt — Upt, Vpee — Ve weakly xin L°°(0,T; H_2(Q)).
(ii) By Gagliardo-Nirenberg inequality, we can see
||u/¢¢z||L°°(Q) S CHuu,zzHLw(O,T;Lz(Q)) S C. (84)

Otherwise,

||U,2M + Uﬁ,wHLm(o,T;L?(Q)) < ||Uu,z|\2Loo(o,T;L4(Q)) + ||vp,e |%°°(O,T;L4(Q))

2 2
< Cllupl[ (o,m;m2(0)) + ClVullioeo,r,m3(0))  (89)
<c.

Combining (84) and (85), we discover
(s + 0 )l L 0,7:220)) < Cllugs o + 03 ol 0,220 < C (86)
Moreover, there exists a function y € L°°(0,T; L?(2)) satisfy
(uix + vfw)u#,z — x weakly *in L%(0,T; LQ(Q)). (87)
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By Lemma 3.2, we can find

u,, — u,v, — v strongly in L*(0,T; Hj(Q)). (88)
And so
Up,p — Ugp, Uy — Uy strongly in L*(Q), (89)
Thus
(uf“C + Ui,m)“u,w — (ui + Ui)uw (90)

Combining (87) and (90), we can obtain
(ufm + vix)u“,m — (ui + Uﬁ)uT weakly in  L*(Q), (91)

where we used the Lemma 1.3 of Chapter 1 in [22]. Furthermore, we have xy =
(u + v2)uq.
Meanwhile,

((uiw + Uz,z)“um Orz) = (U2 +02)ug, @r..) weakly *in L°°(0,T). (92)
In the same way,
(4 0 + Vs 2 )Vas i) = (W3 +03)ve, o) weakly * in L(0,T).  (93)

Next fix an integer k, we select pu > k, from (66) we can get

1
(Uu,ttv @k) + (a6uu,wca @k,xac) - (a3vu,wca @k,xac) + 7((“,2%95 + Uﬁ7x)ulL,$7 <Pk,ac)

2 (94)
- wz(Rulhm, ‘Pk,m) - (pllH or) = 0.
Thanks to (83), we can get
(U tt, o) = (use, )  weakly * in L>(0,7T),
(a6Up v, Phoz) = (U2, Prze) Weakly *in L°°(0,T), (95)
(a3 20, Phaz) = (A3Vze, Prze) weakly *in L°°(0,T),
(P> i) = (p1,0k) weakly * in L*°(0,T).
From (92) and (95), we can discover
2
+v3) s, Prz) (96)

+w?(Rug, Pr,z) — (p1,06) =0
for all fixed k.
Note
{¢r}2, is an orthogonal basis of HZ(Q),

then,
1 2 2
Utt, P) + (A6Uzz, Prz) — (A3Vzz, Pra) + 7 (U + VL )Us, P
(10 + (@0t 022) = a0 o)+ 5 (OE i)
+0? (Rug, ) = (p1,9) = 0

for arbitrary ¢ € HZ(Q).
In the same way,

1
(Vtt, ©) + (A4Vzz, Pzz) — (A3ULzs Puz) + 5((1@ + 02) Vs, Ox)

+w2(Rv3¢7 50:6) - (p27 SD) =0
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for arbitrary ¢ € HZ(Q).
Synthesizes the above analysis, there exists u, v satisfying (47), (48), and

u,v € L*(0,T; HX(Q)),
ug, vy € L(0,T; L*(Q)),
u, v € L0, T; H2(Q)).

(iii) Now let’s prove the initial conditions.
Since, uy,, vy, Uyt Uy are bounded in L?(Q), by Lemma 1.2 of Chapter 1 in [22],
we can discover

u,,(z,0) — u(z,0) weakly in L*(Q2). (99)
Otherwise,
U (2,0) = up(z) in HEZ(Q). (100)
Combining identities (99) and (100), we can get
u(z,0) = up(x).
Next, according to (83), we can obtain

(u,u,h Sak) - (ut7 SOk) Weakly * in LOO(OaT)a

(Ut 1) = (ust, i) weakly * in L°°(0,T).
Then, we can discover
(wpt(,0), 1) = (ue, or)lt=0 = (ue(2,0), @r). (101)
Otherwise,
(um, (2, 0), o) = (u1(z), or), (102)
Comparing identities (101) and (102), we can get
(ut(z,0), o) = (u1(x), @), for arbitrary k.

So
ut(x,0) = uy ().

In the same way, we can obtain

”U(x, O) = UO(‘T)’Ut(:E’O) = Ul(x)'

6.2. Proof of Theorem 4.3.

Proof. Differentiating the first equation of (45) with respect to ¢, multiplying by
uys and integrating with respect to x, we discover

1
(Utttvutt) + ((a6utxz):vzvutt) - ((a?)vta::r)x:mutt) - 5(((@% + ’Ui)utm)xa Utt)

— ((W2uge) ey usr) — ((UpV2Vt )y Uge) — 2w ((Ruty )y )

— w?(Rutz) g, ust) — (P14, use) = 0.

(103)
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Differentiating the second equation of (45) with respect to ¢, multiplying by v
and integrating with respect to z, we discover

1
('Uttt, Utt) + ((a4vtacm)ww7 Utt) - ((a3uth)xwa Utt) - 5(((”2 + Ui)vtx)wa ’Utt)
— (V2012) 2y v12) — ((UgVatiz )z, Vit) — 20wi((RUz )z, Vi) (104)
- W2((tha:)a:; Utt) - (p2,tyvtt) =0.

Summing the equation (103) and (104), we discover after integrating by parts:

1d 1d
2dt<HuttHL2 @t \|Utt||L2(Q )+ 5 dt(||\rutm\|1;2(9) + [1Vaaviea |72 (o))

d
_&HGSUtwcvthLl(Q) 9 dt”v utxHL2(Q)+ D) dt”v UtxHL?(Q)

1 1
25((1@; + U?g)utxxa Ugt) + (Uiutm, Ugt) + (UgVpViga, Ure) + =

2((1@ + 02Vt Vt)

+ (02040, V1t) + (UaValUtze, Vit) + 3(UaUaalie, Us) + (Vo Vsalite, Ust)
+ (Uap Vo Vi, Utt) + (UzVzzVtas Utt) + (UaUzz Vi, Vit) + 3(VaVsaVta, Vet)
+ (UpaVa Uiz, Vir) + (UgVza iz, Vi) + 2wwy ((Ratig, use) + (Rugg, wi)
+ (Ryvg, vyt) + (R%z,vtt)) + (P16, uee) + (P2, Vit)-
(105)
Obviously, by Young inequality and Holder inequality, we have
1d 1d ) )
th(lluttllmm + ol f20)) + 3 g Vasteallzz0) + [IVasvms12(0)
D lagteesvioelluor + 512 OV Rt + 1V Evee )
(||Ut||Hg(Q) + ||thHg(Q) + el 72 () + Jveellf20) + ||u||H02(Q) + ||U|\?qg(sz) (+ 1))~
106

Next integrate (106) with respect to ¢,
HuttH%z(Q) + HvttH%?(Q) + ||va6uth”2L2(Q) + H\/a4vtm||2L2(Q)
- 2||a3utxxvtm||L(Q) + WQ(H\/EUtxH%?(Q) + H\/RUtxH%P(Q))

t
SC/O ||Ut\|§13(n) + ||Ut\|irg(g) + lusel[F2 0y + [|veel 720 + ||“||%Ig(9) + ||U‘|§J§(Q)dt

+ e (2, 0)] 720y + e (2, 0)[172(0) + [trae (2, 0)|[72(q)

+ ||”tt($70)||%2(9) + ||”tm(xa0)|\%2(9) + Hvtm(xao)ﬂiz(g) +C.
(107)

Since u1,v; € HZ(Q), we have

utaa (2, 0)l|2(@)s |Viaa (2, 0)] L2 () [[tte (2, 0) | L2 (@) |vre (2, 0)] | L2(),  (108)

are bounded. On the other hand, multiplying the first equation and second equation
of (45) by g, vy, respectively, and integrating with respect to x, we discover

lJuee (2, 0)[| L2 () < C(l[uollmrs() + ||vollma(e)) + C < C,

l[vee (2, 0)[|L2(0) < ClJuol[Ha(0) + llvollma)) + C < C.
where the condition (52), Young inequality and Poincaré inequality are used.



THE WELL-POSEDNESS AND REGULARITY OF A BLADES EQUATION 711

As before, we have

lueellZz 0y + lveellZeo) + el F ) + vell 72 )

t
< C [ lualiay + lloullEaca + Nl Bigoy + gt + C.

(109)
Applying the Gronwall inequality to (109) gives
ug,v; is bounded in  L*(0,T; H2(Q)), (110)
Ust, V¢ is bounded in  L*°(0,T; LQ(Q)).
Moreover, the weak solutions of (45) satisfies

u € L(0,T; HA(9),

vy € L®(0,T; H3 (),

uge € L°°(0,T; L*(Q)),

vy € L0, T L(€2).
O

6.3. Proof of Theorem 4.4.

Proof. Multiplying the first equation and the second equation of (45) by —¢?Utss,
— % V4za, respectively, summing the two equations, and integrating with respect to
x, we discover

(utta —<P2Utm) + (Utt7 —<P2Utm> + ((aﬁuww)wx7 _()DZUta::r)

+ ((a4vrx)1za 7902vt1z) - ((a?ﬂ}zm)mra 7@2ut:cz) - ((GSUrI)xma 7Q02’Utzm)
1 1
- 5(((“3 + U?c)uw)wv _‘Pgutm) - 5(((%25 + vg)vw)wa _<P2Ut:m) (111)

- WQ((RU:D):M _502utw1) - WQ((RUw)wa _<p2vth)
- (pla 7§02utzz) - (an 7302vtxm) =0.

Thanks to integration by parts and the properties of ¢, we obtain the following
equality

L+ L+1s+1,+1; =0. (112)
where I;,i=1,---,5, are given as follows respectively
I = (uu, —902Utzx) + (v, —<P2Utm)
—[2 = ((G/Gum:v)xz7 _SDQUtzx) + ((a4vmz)xz7 _SDQUtzz)
I3 = _((G/SUQJ:E):E;E’ _902uth> - ((GSwa)wxv _<P2Utm>
1 1
Iy = _5((("@ + U?c)ux)wa _@QUth) - 5(((”?5 + Ui)vw)ﬂcv _902'015193)
Is = —(p1, — 9 Utzz) — (P2, — 9 Viga)-
To conclude, we need to estimate each of I;,4 = 1,---,5. By using integration

by parts and conclusion (53), we find

1d
I =5 —(llousel| 220y + llevialliz i) + 2(p@atse, ) + 2(0P0vet, Vi)

1d
25 g leueellza) +llevisllzz o) - €
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For Iy, we get

1d
12 :§a(| | AV aG@“wwz“%} (Q) + H Vi a4<pvxxw||%2(g)) + (a67:puw17 L)OQ’U/t:vww)

+ (a4,wvzwa <p2vtwwx) + 2(a6ux;vwa @@wutww) + 2(a4vwww7 @@xvtww)
+ Q(aﬁ,xuacxa Sﬁﬂpxutwc) + 2(a4,xvxwa @@x”tmx)
1d
25&“ lv aﬁ@uwzzH%?(Q) +1lv a4(»0vza:x||%2(ﬁ)>
— 86,2Uzzx, P Utzx) — \A4,2Vzzz, P Vtzz
(as, “Utsz) — (ay, “Vta)
+ 2(a6uwma¢7 @@zutxm) + 2(0'4U$a:$; @@wvtxw) - C
1d
25&“ lv aﬁwurzmuiz(ﬂ) + v a490vzmc||%2(ﬂ))
- C”‘pumcmHzL?(Q) - CH@UxmerL?(Q) -C

(114)

where Lemma 3.1 and (53) are used. Similarly from (114), we deduce

I3 = - (QS'Umzza szut:czz) - (a3uwzz7 SDQUta:mw) - (a3,mvmx7 QDQUtza::L’)
- (a3,xuxaca Wzvtacxx) - 2(a3vxac3:7 SD‘Pacutwc) - 2(a3uac:cac7 @vatw:c)
- 2(a3,xvmma @@xutmx) - 2(a3,zumma Qp@mvtzx)
d
- - 7‘|a3¢2uwwwvwwx”Ll(Q) - (a3,$vzrw7 QOQUth;E) - (a?),a:uzwa ¢2vtwmx)
dt
- 2(a3vza:a:a QOSDwutm:c) - 2(a3uwzz7 Qﬁivath)
- 2(a3,zvzwa <p<Pwutww) - 2(a37mua:;va @@wvta;w)
(115)
d
= - 7Ha3§02ummzvzxz”Ll(Q) + (GS,IIUxxa §02utmx) + (GJB,:Emua:mv 902Utzz)
dt

+ (a3,xvx9cxa @Sﬁxutw:c) + (a3,xu:cacx7 @@xvtacx) + 2(“3,3:”30%; W@wutwc)
+ 2(a3,xusz7 @mevtmx) - 2(a3UImxv @@mutmm) - 2(a3umxa:a stvatxx)

— 2(a3,2Vz2, PPrltzs) — 2(a3,2Usz, PP2Vtzx)
> — %\lanumxvxmﬂLl(Q) — Cllptizeslliz(q) — CllovasalTz @) — C
By using Lemma 3.1 and (53), we find
14 = ~Cllussel Bagay — CllvrsslFaay — Clltsel Bagay — cllvael Bagay = ~C (116)
Is = —C(”UtH?{g(Q) + Hvtﬁqg(g) + ||U||%qg(g) + ||U|‘§{g(g)) -C>-C (117)
Putting (113)-(117) into (112), this yields

1d
ia(H‘PUmH%z(Q) + ||<Pvtx\|%2(9) + ||\/a6sﬁuzm||%2(n) + ||\/a4907)mx||2L2(Q)

- 2Ha3§02ummzvzxm”Ll(Q)) (118)

Integrating with respect to ¢ € (0,t), taking into account the condition (50), we
discover

lpuell7z (o) + lleviallF20) + [@tazell7z(0) + 0Vezell7z(q)
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t
<c / [t Zagy + [|P0ame 2ot

(119)
+ O ([furlf ) + o1l 0y + luol[Faay + ool fay) +C
Thanks to the Gronwall inequality, we deduce
||50uzfmc||%2(ﬂ) + ||50Uzzz||%2(ﬂ) <C (120)
O

6.4. Proof of Theorem 4.5.

Proof. Utilizing to the first and second equations of (45), we can deduce

((a6a4 - ag)urxmzy uzzzr) :( — A4Up — A3Vt + w2 (R(a4uz + a3v:c))w’ ur:cxz)

1
+ 5 (((Ui + ’Ui)<a4uw + a/?)vw))xa uwwxw)
+ ((a4p1 + a3p2)7 uazmzz)

(121)

Thanks to (50) and Hélder inequality, we see that
[uzzaz|lL2 (@) < C(HUtt + vt 4 up + v L2 ) + [Ju + U||H3(Q)) <C.  (122)
Furthermore,

4 3
where Gagliardo-Nirenberg inequality for bounded domains is used. Similarly, we
deduce

Hvxmz||L2(Q) < Ca ||UIIZI||L2(Q) < C. (124)

Combining with the conclusions in Theorem (4.2) and Theorem (4.3), we can find
that
u,v € L0, T; H*(Q) U H3(Q)).

6.5. Proof of Theorem 4.6.

Proof. Denote )
{a, 17} = 77({&3, a4’ aﬁ’ a)v 9, '&;0, ’[)Oa alv {)1})a
n:u_ﬂ‘a CZU_’E

Then 7, ¢ satisfy
1d 9 ) ,
§E(Hm||L2(Q) +1GlI72(0) + [1Va6nzzl72(0)

+ ||\/a<xx||%2(9) — 2Ha3n$$<xa?||L(Q)>

1 1
+ @ (R(2)02) w0 1) + (R(2)Ca)as o)) + w?(0,77¢) + (Bryme) + (B Co)

ag — &6)'&;8367 ntxw) - ((a4 - &4)69090’ Ctacx) + ((a3 - &3){]96967 ntxx)
as — d?))ﬂ/mz7 Ctzz) - (w2 - QQ)(Raxﬂ/]tz) - (w2 - LDQ)(R/&a:u Cta:) (125)
) (@, m¢) + (Wi — @) (Ro + 2, 1)
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In equation (125), the nonlinear term satisfies
((uf +v2)ug — (5 + 03)a)e
=((ug +v3)ne)a + ((ug + 03 — @3 — T3)ts )a
=((uf + v2)n2)z + (e + Ga) e + (Ve + U)o )la)a (126)
=2ty + Vp V22 ) + (U + 03z + (U + T )z + (0 + ) o)
+ (o + tza)Ne + (Voo + 022)Co) o + (Uz + To ) + (Vo + U2)Ca) e
By Holder inequality and Sobolev inequality, we can obtain
(2 + 02ty — (2 + 52)iie ) )
<Cllugs + vazllz2@) M2 L @) 0el 22(0) + Cllnea L2l 22(0) + [[722
+ (Ntzz + Uaz |22 @) 02| Lo (2) + V22 + TzzllL2()|[Cell Lo () |17¢] |22 ()
+ (212 () + 1€l lLoe @)tz || L2 16l 22(0) + Caall2@)lImell2 ) (127)
<Clinllaz o lnellL2@) + Clinllaz @) lnel 29
+ Clinllgz @)l nellz2@) + ClIC a2 el L2(0)
<C(l1mell22(0y + 10l 72 ) + Sz 0)-

In the same way, we have
(((uf + v2)ve — (@2 + 03)02)a, G) < C(|Ge 721y + ||77||§{g(9) + HCHzg(Q))- (128)
On the other hand, we easily have
(P1sme) + (P2, Ct)
<C(|16 = 6l L2 () + 176l 1220y + 1672 () + ||77H%13(Q) + ||<H%I(}(Q))'
Substituting (127)-(129) into (125), we deduce

(129)

nell72 0 + 11GellT2 0y + ||TI||§13(Q) + HCH%I(%(Q)

t
<C [y + 10 32 oy + gy + €1t
- - - - 130
s — ]y + o1 — 51l 22 + 0 — 0l 3y + 100 = Tl gy %)

5
+ C(Z llai — @il (o) + 110 = 0]l (o) + [|w — @||W111(0,T))~
=3

where we used the inequalities
]| (@) < C: |ltallze(@) < Cllol[L=(@) < C, [|0z]lL=(q) < C,
|Tzz|| oo 0,1,22(0)) < C) |02l Lo (0,1,02(0)) < C,
10tz (@) < Cyl|GtallL=(q) < C,
which are deduced from Theorem 4.2 and Theorem 4.3. O

6.6. Proof of Theorem 5.2.

Proof. Assume
{@r}72 118 an orthogonal basis ofHJ%(Q)7 (131)

and
{Pr}72,is an orthonormal basis of L%(€2). (132)
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Fix a positive integer m, and write
m m
Z Tk ~ Z Tk ~
Um = dOm(t)SOkv Um = dlm (t)wkv (133)
k=1 k=1

where we intend to select the coefficients df, (t),d%, (t)(0 <t < T,k =1,--- ,m)
to satisfy

Jlgm(o) = (UO, Sbk)’ Clecm(o) = (Uo, @k)v k= 1,-- , 1M, (134)
dgm,t(o) = (ulv @k% d]fm,t(o) = (Ulv @k% k=1,---,m, (135)
and
- - - 1 -
(um7tta 9016) + (a6um,wzz ka,xw) - (a3vm7wwa @k,zaz) + 5((“7271)93 + U%»L)g;)um,azv @k,a:)
+ WQ(Rum,I7SZ)k7w) - (plma @k}) - (blum(l) + el”m(”)@(” = 07
(136)
(Um,tta @k) - (a3um,wwv L)bk,a::r) + (a4vm,wwa (ﬁk}zm) + 5((“7271,93 + vrgn,g;)vm,wa @k,z)
+ W (Rom e, Brz) — (P2ms @) — (b2tm (1) + eavin (1)) 3(1) = 0.
(137)

As in earlier treatments of C-C boundary condition, we can conclude the following
two conclude without difficulty.

(i) For each integer m = 1,2, - - |, there exists a unique Galerkin approximations
function ty,, v, of the from (133) satisfying (134)-(137) for 0 <t < T.

(H) u($7 0) = uO(:L')v U($, 0) = vo(ﬂf), ut(xv 0) = ul(w)a vt(xa O) = vl(x)'

Then, we proof the following estimate

2 2 2 2
H“m,t”Lz(Q) + ||”m,t||L2(Q) + ”um”H?(Q) + ||UmHH§(Q)

2 2 2 2 (138)
<C (HU1||L2(Q) + o1l 72 + HUOHH;(Q) + ||U0||H§(Q)) +C

Similarly from (75), we can deduce

1d
§a{||um,t||i2(n) + |[vm,¢ |2L2(Q) + H\/a6um,wwHQL2(Q) + H\/a4vm,wm||%2(ﬂ)

w? d
+ ?(H\/EUWJH%P(Q) + ||\/E'Um,z||%2(ﬂ))} - a||a3um,zwvm,1z||L1(Q)

1 d 2 2 2 1 d 2 2
+ g&”um,w + ’Um,z”LQ(Q) - ig{blum(l) + eQUm(l) + 261um(l)vm(l)}

= th(H\/Eum,xH%?(Q) + H\/EUM,EH%%Q)) + (P1ms Um,t) + (D2m, Um,t)
(139)

where by = e7 is used.
Then we integrate (139) with respect to ¢, to discover

T2 + HumH%{J%(Q) + ||Um\|§{;(ﬂ)
— byu?, (1) — ev?, (1) — 2e1tm (Do (1)
<Ot a0V ey + [ Oy + 1hem Oz + lom Ol (10

— blu%m(l) — egvgm(l) — 2e1upm (Dvom (1)

t
+C [ lumd By + llomd
0

|t %2(9) + [|vm,e

T2t + \|Um||12q;(n) + ||U’m|@1}%(9) +C.



716 LIN SHEN, SHU WANG AND YONGXIN WANG

By simple calculation, we deduce
—b1u2, (1) — eav2, (1) — 2e1ty (v (1) > 0. (141)

where bjeg > e? is used.
On the other hand, according to ug, (x), vom () € H )%(Q), by Sobolev inequality,
we obtain

uOm(x)v'UOm(x) € C(ﬁ)
Thus,

Substituting (141) and (142) into (140), applying Gronwall inequality, we can de-
duce (138).

Now we pass to limits in our Galerkin approximations, applying estimate (138),we
can discover (92), (93), (95). In order to complete the proof of the theorem, we just
have to proof

u, (D) = u(l), v, (1) = v(l), strongly in L*°(0,T). (143)

where u,, v, are the convergent subsequence of wy,, vy, respectively.
To verify this, recalling (138), we observe that

U, — u,v, — v strongly in C(0,T; H}(Q)) (144)

where the Corollary 4 of Chapter 8 in [30] is used.
Furthermore, thanks to the conditions u,,(0) = u(0) = 0, we obtain

(1) = w(D)l | 0.y = 1w (l) = u(l)) = (wu(0) = w(0))][ Lo 0.1)
:H /Ol (up () — u(x))mdxHLm(O,T) < ‘ﬁ“(uu(fﬂ) - u(-r))m”L“’(O,T;L?(Q)) (145)
S\[lH“u(x) - u(x)“LQO(QT;H}(Q))
Thanks to (144), we can deduce
u, (1) = u(l) strongly in L°°(0,T),

Similarly, we have
v, (1) = v(l) strongly in L>°(0,T).

O
6.7. Proof of Theorem 5.3.
Proof. Similarly as (105), we can get
1d 1
——E+-P + P, =Ps. 146
5 dr + 511 + I 3 (146)

where
E :||Utt||%2(sz) + ||Utt\|?;2(9) + Hv%utmnifz(n) + ||\/a4“tm||2L2(Q)
= 2[|agutesvize| | L) + WV R(@) w72 () + @IV R(@)vee|[72(0)
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P, z(((ui + vi)u,;)t,um) + (((ui + vﬁ)vw)t,vm>

Py = — (bru(l) + exv(l)) uee (1) — (bau(l) 4 ezv(l)) v (1)

Py =200 (((Rtg)e, war) + ((Row)ar vie)) + 1V Rute B gy + 1V Evre (e )
+ (P1ts uet) + (P2,t; V1)

By calculation, we can deduce

1d
Py = 5 { IV F sl By + V38 + 0202 gy + 2lstes] e

200201l 2 ) + Al vt viall o o) |

!
73/ UpUy, + VU8 Upty 2, + VUl A (147)

0
1d
2dt

Py < lugel|Z2(0y + |lveel 720y + H“H?{;(Q) + ||U||§{J%(sz)
+||Utw||%2(g) + HvthQL?(Q) (149)
Substituting (147), (148) and (149) into (146), we get

1d
S B+ V@ FulFa + IVaE + vl fag) + 2lutee| 22y

+ 2””1’”1&1”%2(9) + 4||uzvzutxvtm”L1(Q)
— (bruf (1) + e207 (1) + Qelut(l)vt(l))}

<l [72(0) + lvatl 200y + ullzrz o) + [10llzr2 @) + [utellT20) + vrallZzo)

P, = {brui (1) + eav7 (1) + 2e1ue (Dve (1) } (148)

l
3 3 2 2
+ 3/ UgUpy + VgVhy + UpUta Vs, + Vg U Uz, AT
0

(150)
Then integrate (150) with respect to ¢, to discover

t
B < [ Nl + vl ooy + ey + ol
+lutalZ20) + lvial720)dt
t ol
—|—3/ / UpUs, + VoVE, + Ugy 2, + VUl dadt
o Jo

o e, ) + 1 By + e Oy + 011y

where
—b1u2(l) — eqvZ(l) — 2equs(Dve(l) >0
and
Huwuth%?(Q) + ||vat9:”2L?(Q) + 2|z Vs Utz Va1 (0) 2 0.
are used.

Similarly as (108), we discover

[ute (2, 0)| 2@y, [[ore (2, 0)[ 2 () < ¢ (151)
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According to (151), we get

t
E@Ammamwm%@+wmm®+mmm@m

t gl
3 3 2 2
+ 3/ / UgpUsy + VzpUsy + UzpUtg Uiy + VgVt U dzdt + c.
0 Jo

By Holder inequality and Sobolev inequality, we have

t
B <c [ {ihualliao + lutasl ooy + ey + lluesa o
0 (@) @) @) (@) (152)

Hvtt”%Z(Q) + ||’Utm||%2(9) + ||’Utm||?i2(n) + ||’Utm||%2(9)}dt te

Then, we obtain Theorem 5.3 by Gronwall inequality. O
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