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THE EXISTENCE OF SOLUTIONS FOR A SHEAR THINNING

COMPRESSIBLE NON-NEWTONIAN MODELS

YUKUN SONG∗, YANG CHEN, JUN YAN AND SHUAI CHEN

Abstract. This paper is concerned with the initial boundary value problem
for a shear thinning fluid-particle interaction non-Newtonian model with vac-

uum. The viscosity term of the fluid and the non-Newtonian gravitational force

are fully nonlinear. Under Dirichlet boundary for velocity and the no-flux con-
dition for density of particles, the existence and uniqueness of strong solutions

is investigated in one dimensional bounded intervals.

1. Introduction

Fluid-particle interaction model arises in many practical applications, and is of
primary importance in the sedimentation analysis of disperse suspensions of parti-
cles in fluids. This model is one of the commonly used models nowadays in biotech-
nology, medicine, mineral processing and chemical engineering [27]-[25]. Usually,
the fluid flow is governed by the Navier-Stokes equations for a compressible fluid
while the evolution of the particle densities is given by the Smoluchowski equation
[4], the system has the form:

ρt + div(ρu) = 0,
(ρu)t + div(ρu⊗ u) +∇(P (ρ) + η)− µ∆u− λ∇divu = −(η + βρ)∇Φ,
ηt + div(η(u−∇Φ))−∆η = 0,

(1)

where ρ, u, η,P (ρ) = aργ ,Φ(x) denote the fluid density, velocity, the density of
particles in the mixture, pressure, and the external potential respectively, a > 0, γ >
1. µ > 0 is the viscosity coefficient, and 3λ + 2µ ≥ 0 are non-negative constants
satisfied the physical requirements.

There are many kinds of literatures on the study of the existence and behav-
ior of solutions to Navier-Stokes equations (See [1]-[17]). Taking system (1) as an
example, Carrillo et al [4] discussed the the global existence and asymptotic behav-
ior of the weak solutions providing a rigorous mathematical theory based on the
principle of balance laws, following the framework of Lions [18] and Feireisl et al
[11, 12]. Motivated by the stability arguments in [5], the authors also investigated
the numerical analysis in [6]. Ballew and Trivisa [1] constructed suitable weak so-
lutions and low stratification singular limit for a fluid particle interaction model.
In addition, Mellet and Vasseur [20] proved the global existence of weak solutions
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of equations by using the entropy method on the asymptotic regime corresponding
to a strong drag force and strong brownian motion. Zhang et al [31] establish the
existence and uniqueness of classical solution to the system (1) .

Despite the important progress, there are few results of non-Newtonian fluid-
particle interaction model. As we know, the Navier Stokes equations are generally
accepted as a right governing equations for the compressible or incompressible mo-
tion of viscous fluids, which is usually described as{

ρt + div(ρu) = 0,
(ρu)t + div(ρu⊗ u)− div(Γ) +∇P = ρf,

where Γ denotes the viscous stress tensor, which depends on Eij(∇u), and

Eij(∇u) =
∂ui
∂xj

+
∂uj
∂xi

,

is the rate of strain. If the relation between the stress and rate of strain is linear,
namely, Γ = µEij(∇u), where µ is the viscosity coefficient, then the fluid is called
Newtonian. If the relation is not linear, the fluid is called non-Newtonian. The
simplest model of the stress-strain relation for such fluids given by the power laws,
which states that

Γ = µ(
∂ui
∂xj

+
∂uj
∂xi

)q,

for 0 < q < 1 (see[3]). In [16], Ladyzhenskaya proposed a special form for Γ on the
incompressible model:

Γij = (µ0 + µ1|E(∇xu)|p−2)Eij(∇xu).

For µ0 = 0, if p < 2 it is a pseudo-plastic fluid. In the view of physics, the model
captures the shear thinning fluid for the case of 1 < p < 2 (see[19]).

Non-Newtonian fluid flows are frequently encountered in many physical and in-
dustrial processes [8, 9], such as porous flows of oils and gases [7], biological fluid
flows of blood [30], saliva and mucus, penetration grouting of cement mortar and
mixing of massive particles and fluids in drug production [13]. The possible ap-
pearance of the vacuum is one of the major difficulties when trying to prove the
existence and strong regularity results. On the other hand, the constitutive be-
havior of non-Newtonian fluid flow is usually more complex and highly non-linear,
which may bring more difficulties to study such flows.

In recent years, there has been many research in the field of non-Newtonian flows,
both theoretically and experimentally (see [14]-[26]). For example, in [14], Guo and
Zhu studied the partial regularity of the generalized solutions to an incompressible
monopolar non-Newtonian fluids. In [32], the trajectory attractor and global at-
tractor for an autonomous non-Newtonian fluid in dimension two was studied. The
existence and uniqueness of solutions for non-Newtonian fluids were established in
[29] by applying Ladyzhenskaya’s viscous stress tensor model.

In this paper, followed by Ladyzhenskaya’s model of non-Newtonian fluid, we
consider the following system

ρt + (ρu)x = 0,

(ρu)t + (ρu2)x + ρΨx − λ(|ux|p−2ux)x + (P + η)x = −ηΦx, (x, t) ∈ ΩT

(|Ψx|q−2Ψx)x = 4πg(ρ− 1

|Ω|

∫
Ω

ρdx),

ηt + (η(u− Φx))x = ηxx,

(2)
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with the initial and boundary conditions{
(ρ, u, η)|t=0 = (ρ0, u0, η0), x ∈ Ω,
u|∂Ω = Ψ|∂Ω = 0, t ∈ [0, T ],

(3)

and the no-flux condition for the density of particles

(ηx + ηΦx)|∂Ω = 0, t ∈ [0, T ],(4)

where ρ, u, η,P (ρ) = aργ ,Φ(x) denote the fluid density, velocity, the density of
particles in the mixture, pressure, and the external potential respectively, a >
0, γ > 1, 4

3 < p, q < 2. λ > 0 is the viscosity coefficient, Ω is a one-dimensional
bounded interval, for simplicity we only consider Ω = (0, 1), ΩT = Ω× [0, T ].

The system describes a compressible shear thinning fluid-particle interaction sys-
tem for the evolution of particles dispersed in a viscous non-Newtonian fluid and
the particle is driven by non-Newtonian gravitational potential. To our knowledge,
there still no existence results for (2)-(4) when 1 < p, q < 2. The aim of this paper is
to study the existence and uniqueness of strong solutions to this system. Through-
out the paper we assume that a = λ = 1 for simplicity. In the following sections,
we will use simplified notations for standard Sobolev spaces and Bochner spaces,
such as Lp = Lp(Ω), H1

0 = H1
0 (Ω), C([0, T ];H1) = C([0, T ];H1(Ω)).

We state the definition of strong solution as follows:

Definition 1.1. The (ρ, u,Ψ, η) is called a strong solution to the initial boundary
value problem(2)-(4),if the following conditions are satisfied:
(i)

ρ ∈ L∞(0, T∗;H
1(Ω)), u ∈ L∞(0, T∗;W

1,p
0 (Ω) ∩H2(Ω)),

Ψ ∈ L∞(0, T∗;H
2(Ω)), η ∈ L∞(0, T∗;H

2(Ω)), ρt ∈ L∞(0, T∗;L
2(Ω)),

ut ∈ L2(0, T∗;H
1
0 (Ω)),Ψt ∈ L∞(0, T∗;H

1(Ω)), ηt ∈ L∞(0, T∗;L
2(Ω)),

√
ρut ∈ L∞(0, T∗;L

2(Ω)), (|ux|p−2ux)x ∈ C(0, T∗;L
2(Ω)).

(ii) For all φ ∈ L∞(0, T∗;H
1(Ω)), φt ∈ L∞(0, T∗;L

2(Ω)), for a.e. t ∈ (0, T ), we have∫
Ω

ρφ(x, t)dx−
∫ t

0

∫
Ω

(ρφt + ρuφx)(x, s)dxds =

∫
Ω

ρ0φ(x, 0)dx,(5)

(iii) For all ϕ ∈ L∞(0, T∗;W
1,p
0 (Ω) ∩ H2(Ω)), ϕt ∈ L2(0, T∗;H

1
0 (Ω)), for a.e. t ∈

(0, T ), we have∫
Ω

ρuϕ(x, t)dx−
∫ t

0

∫
Ω

{ρuϕt + ρu2ϕx − ρΨxϕ− λ|ux|p−2uxϕx

+ (P + η)ϕx − ηΦxϕ}(x, s)dxds =

∫
Ω

ρ0u0ϕ(x, 0)dx,(6)

(iv) For all ψ ∈ L∞(0, T∗;H
2(Ω)), ψt ∈ L∞(0, T∗;H

1(Ω)), for a.e. t ∈ (0, T ), we
have

−
∫ t

0

∫
Ω

|Ψx|q−2Ψxψx(x, s)dxds =

∫ t

0

∫
Ω

4πg(ρ− 1

|Ω|

∫
Ω

ρdx)ψ(x, 0)dxds,(7)

(v) For all ϑ ∈ L∞(0, T∗;H
2(Ω)), ϑt ∈ L∞(0, T∗;L

2(Ω)), for a.e. t ∈ (0, T ), we have∫
Ω

ηϑ(x, t)dx−
∫ t

0

∫
Ω

[η(u− Φx)− ηx]ϑx(x, s)dxds =

∫
Ω

η0ϑ(x, 0)dx.(8)

The main result of this paper is stated in the following theorem.
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1.1. Main theorem.

Theorem 1.2. Let Φ ∈ C2(Ω), 4
3 < p, q < 2 and assume that the initial data

(ρ0, u0, η0) satisfy the following conditions

0 ≤ ρ0 ∈ H1(Ω), u0 ∈ H1
0 (Ω) ∩H2(Ω), η0 ∈ H2(Ω),

and the compatibility condition

(9) − (|u0x|p−2u0x)x +
(
P (ρ0) + η0

)
x

+ η0Φx = ρ
1
2
0 (g + Φx),

for some g ∈ L2(Ω). Then there exist a T∗ ∈ (0,+∞) and a unique strong solution
(ρ, u,Ψ, η) to (2)-(4) such that

ρ ∈ L∞(0, T∗;H
1(Ω)), u ∈ L∞(0, T∗;W

1,p
0 (Ω) ∩H2(Ω)),

Ψ ∈ L∞(0, T∗;H
2(Ω)), η ∈ L∞(0, T∗;H

2(Ω)), ρt ∈ L∞(0, T∗;L
2(Ω)),

ut ∈ L2(0, T∗;H
1
0 (Ω)),Ψt ∈ L∞(0, T∗;H

1(Ω)), ηt ∈ L∞(0, T∗;L
2(Ω)),

√
ρut ∈ L∞(0, T∗;L

2(Ω)), (|ux|p−2ux)x ∈ C(0, T∗;L
2(Ω)).

Remark 1. By using exactly the similar argument, we can prove the result also
hold for the case 1 < p, q ≤ 4

3 . We omit the details here.

2. A priori estimates for smooth solutions

In this section, we will prove the local existence of strong solutions. From the
continuity equation (2)1, we can deduce the conservation of mass∫

Ω

ρ(t)dx =

∫
Ω

ρ0dx := m0, (t > 0,m0 > 0)

Because equation (2)2 possesses always with singularity, we overcome this diffi-
culty by introduce a regularized process, then by taking the limiting process back
to the original problem. Namely, we consider the following system

ρt + (ρu)x = 0,(10)

(ρu)t + (ρu2)x + ρΨx −
[(εu2

x + 1

u2
x + ε

) 2−p
2

ux

]
x

+ (P + η)x = −ηΦx,(11) [(εΨ2
x + 1

Ψ2
x + ε

) 2−q
2

Ψx

]
x

= 4πg(ρ−m0),(12)

ηt + (η(u− Φx))x = ηxx,(13)

with the initial and boundary conditions.

(ρ, u, η)|t=0 = (ρ0, u0, η0), x ∈ Ω,(14)

u|∂Ω = Ψ|∂Ω = (ηx + ηΦx)|∂Ω = 0, t ∈ [0, T ],(15)

and u0 ∈ H1
0 (Ω) ∩H2(Ω) is the smooth solution of the boundary value problem−
[(

εu2
0x+1

u2
0x+ε

) 2−p
2

u0x

]
x

+
(
P (ρ0) + η0

)
x

+ η0Φx = ρ
1
2
0 (g + Φx),

u0|∂Ω = 0.
(16)

Provided that (ρ, u, η) is a smooth solution of (10)-(15) and ρ0 ≥ δ, where 0 <
δ � 1 is a positive number. We denote by M0 = 1 + µ0 + µ−1

0 + |ρ0|H1 + |g|L2 .
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We first get the estimate of |u0xx|L2 . From (16), we have

u0xx =
(εu2

0x + 1

u2
0x + ε

) p
2 (u2

0x + ε)2[(P (ρ0) + η0)x + η0Φx − ρ
1
2
0 (g + Φx)]

(εu2
0x + 1)(u2

0x + ε)− (2− p)(1− ε2)u2
0x

.

Then

|u0xx|L2 ≤ 1

p− 1

∣∣∣( u2
0x + ε

εu2
0x + 1

)1− p2
∣∣∣
L∞
|(P (ρ0) + η0)x + η0Φx − ρ

1
2
0 (g + Φx)|L2

≤ 1

p− 1
(|u0x|2L∞ + 1)1− p2 (|(P (ρ0) + η0)x + η0Φx − ρ

1
2
0 (g + Φx)|L2)

≤ 1

p− 1
(|u0xx|2L2 + 1)1− p2 (|Px(ρ0)|L2 + |η0x|L2 + |η0|L∞ |Φx|L2

+ |ρ0|
1
2

L∞ |g|L2 + |ρ0|
1
2

L∞ |Φx|L2).

Applying Young’s inequality, we have

|u0xx|L2 ≤ C(|Px(ρ0)|L2 + |η0x|L2 + |η0|L∞ |Φx|L2 + |ρ0|
1
2

L∞ |g|L2

+ |ρ0|
1
2

L∞ |Φx|L2)
1
p−1 ≤ C,

thus

|u0|L∞ + |u0x|L∞ + |u0xx|L2 ≤ C,(17)

where C is a positive constant, depending only on M0.
Next, we introduce an auxiliary function

Z(t) = sup
0≤s≤t

(1 + |ρ(s)|H1 + |u(s)|W 1,p
0

+ |√ρut(s)|L2 + |ηt(s)|L2 + |η(s)|H1).

We will derive some useful estimate to each term of Z(t) in terms of some integrals
of Z(t), then apply arguments of Gronwall’s inequality to prove Z(t) is locally
bounded.

2.1. Preliminaries. In order to prove the main Theorem, we first give some useful
lemmas for later use.

Lemma 2.1. Let u0 ∈ H1
0 (Ω) ∩ H2(Ω), ρ0 ∈ H1(Ω), η0 ∈ H2(Ω), Φ ∈ C2(Ω),

g ∈ L2(Ω), uε0 is a solution of the boundary value problem

(18)

−
[(ε(uε0x)2 + 1

(uε0x)2 + ε

) 2−p
2

uε0x

]
x

+ (P (ρ0) + η0)x + η0Φx = ρ
1
2
0 (g + Φx),

uε0(0) = uε0(1) = 0.

Then there are a subsequence {uεj0 }, j = 1, 2, 3, ..., of {uε0} and u0 ∈ H1
0 (Ω)∩H2(Ω)

such that as εj → 0,

u
εj
0 → u0 in H

1
0 (Ω) ∩H2(Ω),[(εj(uεj0x)2 + 1

(u
εj
0x)2 + εj

) 2−p
2

u
εj
0x

]
x
→ (|u0x|p−2u0x)x in L

2(Ω).

Proof. According to (18), we have

uε0xx =
(ε(uε0x)2 + 1

(uε0x)2 + ε

) p
2 ((uε0x)2 + ε)2((P (ρ0) + η0)x + η0Φx + ρ

1
2
0 (g + Φx))

(ε(uε0x)2 + 1)((uε0x)2 + ε)− (2− p)(1− ε2)(uε0x)2
.
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Taking it by the L2 norm, we have

|uε0xx|L2 ≤
∣∣∣(ε(uε0x)2 + 1

(uε0x)2 + ε

)1− p2
∣∣∣
L∞
|(P (ρ0) + η0)x + η0Φx + ρ

1
2
0 (g + Φx)|L2

≤ (|uε0x|2L∞ + 1)1− p2 |(P (ρ0) + η0)x + η0Φx + ρ
1
2
0 (g + Φx)|L2 ,

then

(19) |uε0xx|L2 ≤ C(1 + |(P (ρ0) + η0)x + η0Φx + ρ
1
2
0 (g + Φx)|L2)

1
p−1 ≤ C.

Therefore, by the above inequality, as εj → 0,

u
εj
0 → u0 in C

3
2 (Ω),

u
εj
0xx → u0xx in L

2(Ω) weakly.

Thus, we can obtain {uεj0x} is a Cauchy subsequence of C
3
2 (Ω), for all α1 > 0, we

find N , as i, j > N , and
|uεi0x − u

εj
0x|L∞(Ω) < α1.

Now, we prove that {uε0xx} has a Cauchy sequence in L2 norm.
Let

φi = φ((uεi0x)2) =
(εi(uε0x)2 + 1

(uεi0x)2 + εi

) p
2 ((uεi0x)2 + εi)

2

(εi(u
εi
0x)2 + 1)((uεi0x)2 + εi)− (2− p)(1− εi2)(uεi0x)2

.

For all α > 0, there exists N , as i, j > N , we can deduce that

|uεi0xx − u
εj
0xx|L2(Ω) ≤ |φi − φj |L∞(Ω)|(P (ρ0) + η0)x + η0Φx − ρ

1
2
0 (g + Φx)|L2(Ω).

With the assumption, we can obtain

|(P (ρ0) + η0)x + η0Φx − ρ
1
2
0 (g + Φx)|L2(Ω) ≤ C,

where C is a positive constant, depending only on |ρ0|H1(Ω), |g|L2(Ω) and |η0|H2(Ω).
Using the following inequality,

(20) |φi − φj |L∞(Ω) ≤
∣∣∣ ∫ 1

0

φ
′
(θ(uεi0x)2 + (1− θ)(uεj0x)2)dθ((uεi0x)2 − (u

εj
0x)2)

∣∣∣
L∞(Ω)

,

where 0 < θ < 1.
By the simple calculation, we can get

φ
′
(s) ≤ 2

p− 1
(1 + s−

p
2 ),

where C depending only on p, then

|φi − φj |L∞(Ω)

≤ 2

p− 1

∣∣∣(1 +

∫ 1

0

(θ(uεi0x)2 + (1− θ)(uεj0x)2)dθ
)

((uεi0x)2 − (u
εj
0x)2)

∣∣∣
L∞(Ω)

≤ 2

p− 1
|uεi0x − u

εj
0x|L∞(Ω)|uεi0x + u

εj
0x|L∞(Ω)

+
4

(2− p)(p− 1)
|uεi0x − u

εj
0x|

2−p
2

L∞(Ω)|u
εi
0x + u

εj
0x|

2−p
2

L∞(Ω) ≤ α.

Substituting this into (18), we have

|uεi0xx − u
εj
0xx|L∞(Ω) < α,

then there is a subsequence {uεj0xx} and {uε0xx}, such that

{uεj0xx} → χ in L2(Ω).
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By the uniqueness of the weak convergence, we have

χ = {uε0xx}.

Since (P (ρ0) + η)x + η0Φx − ρ
1
2
0 (g + Φx) are independent of ε, the same that we

obtain, as εj → 0,[(εj(uεj0x)2 + 1

(u
εj
0x)2 + εj

) 2−p
2

u
εj
0x

]
x
→ (|u0x|p−2u0x)x in L

2(Ω).

This completes the proof of Lemma 2.1. �

Lemma 2.2.

sup
0≤t≤T

|ρ(t)|2H1 ≤ C exp(C

∫ t

0

Z
6γ

(3p−4)(q−1) (s)ds),(21)

where C is a positive constant, depending only on M0.

Proof. We estimates for u and η for later use. It follows from (11) that[(εu2
x + 1

u2
x + ε

) 2−p
2

ux

]
x

= ρut + ρuux + ρΨx + (P + η)x + ηΦx.

We note that

|uxx| ≤
1

p− 1
(u2
x + ε)1− p2 |ρut + ρuux + ρΨx + (P + η)x + ηΦx|

≤ 1

p− 1
(|ux|2−p + 1)|ρut + ρuux + ρΨx + (P + η)x + ηΦx|.

Taking it by the L2 norm and using Young’s inequality, we have

|uxx|p−1
L2 ≤ C(1 + |ρut|L2 + |ρuux|L2 + |ρΨx|L2 + |(P + η)x|L2 + |ηΦx|L2)

≤ C(1 + |ρ|
1
2

L∞ |
√
ρut|L2 + |ρ|L∞ |u|L∞ |ux|

p
2

Lp |ux|
1− p2
L∞ + |ρ|γ−1

L∞ |ρx|L2

+ |ηx|L2 + |η|L∞ |Φx|L2 + |ρ|L2 |Ψxx|L2)

≤ C[1 + |ρ|
1
2

L∞ |
√
ρut|L2 + (|ρ|L∞ |u|L∞ |ux|

p
2

Lp)
2(p−1)
3p−4 + |ρ|γ−1

L∞ |ρx|L2

+ |ηx|L2 + |η|L∞ |Φx|L2 + |ρ|L2 |Ψxx|L2 ] +
1

2
|uxx|p−1

L2 .(22)

On the other hand, by (12), we have

|Ψxx| ≤
1

q − 1
(|Ψx|2−q + 1)|4πg(ρ−m0)|.

Taking it by L2-norm, using Young’s inequality, which gives

(23) |Ψxx|L2 ≤ CZ
1
q−1 (t).

This implies that

|uxx|L2 ≤ CZmax{
q
q−1 ,

(p−1)(4+p)
3p−4 γ}(t)

≤ CZ
6γ

(3p−4)(q−1) (t).(24)
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By (13), taking it by the L2 norm, we have

|ηxx|L2 ≤ |ηt + (η(u− Φx))x|L2

≤ |ηt|L2 + |ηx|L2 |u|L∞ + |ηx|L2 |Φx|L∞ + |η|L2 |uxx|L2 + |η|L∞ |Φxx|L2

≤ CZ
6γ+2

(3p−4)(q−1) (t).(25)

Multiplying (10) by ρ, integrating over Ω, we deduce that

1

2

d

dt

∫
Ω

|ρ|2ds+

∫
Ω

(ρu)xρdx = 0.

Integrating it by parts, using Sobolev inequality, we obtain

d

dt
|ρ(t)|2L2 ≤

∫
Ω

|ux||ρ|2dx ≤ |uxx|L2 |ρ|2L2 .(26)

Differentiating (10) with respect to x, and multiplying it by ρx, integrating over Ω,
and using Sobolev inequality, we have

d

dt

∫
Ω

|ρx|2dx =−
∫

Ω

[
3

2
ux(ρx)2 + ρρxuxx](t)dx

≤ C[|ux|L∞ |ρx|2L2 + |ρ|L∞ |ρx|L2 |uxx|L2 ]

≤ C|ρ|2H1 |uxx|L2 .(27)

From (26) and (27) and the Gronwall’s inequality, then lemma 2.2 holds. �

Lemma 2.3.

|η|2H1 + |ηt|2L2 +

∫ t

0

(|ηx|2L2 + |ηt|2L2 + |ηxt|2L2)(s)ds ≤ C(1 +

∫ t

0

Z4(s)ds),(28)

where C is a positive constant, depending only on M0.

Proof. Multiplying (13) by η, integrating the resulting equation over ΩT , using the
boundary conditions (4) and Young’s inequality, we have∫ t

0

|ηx(s)|2L2ds+
1

2
|η(t)|2L2 ≤

∫∫
ΩT

(|ηuηx|+ |ηΦxηx|)dxds

≤ 1

4

∫ t

0

|ηx(s)|2L2ds+ C

∫ t

0

|ux|2Lp |η|2H1ds+ C

∫ t

0

|η|2H1ds+ C

≤ 1

4

∫ t

0

|ηx(s)|2L2ds+ C(1 +

∫ t

0

Z4(t)ds).(29)

Multiplying (13) by ηt, integrating (by parts) over ΩT , using the boundary condi-
tions (4) and Young’s inequality, we have∫ t

0

|ηt(s)|2L2ds+
1

2
|ηx(t)|2L2 ≤

∫∫
ΩT

|η(u− Φx)ηxt|dxds

≤ 1

4

∫ t

0

|ηxt(s)|2L2ds+ C

∫ t

0

|η|2H1 |ux|2Lpds+ C

∫ t

0

|η|2H1ds+ C

≤ 1

4

∫ t

0

|ηxt(s)|2L2ds+ C(1 +

∫ t

0

Z4(t)ds).(30)
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Differentiating (13) with respect to t, multiplying the resulting equation by ηt,
integrating (by parts) over ΩT , we get∫ t

0

|ηxt(s)|2L2ds+
1

2
|ηt(t)|2L2 =

∫∫
ΩT

(η(u− Φx))tηxtdxds

≤ C +

∫∫
ΩT

(|ηtuηxt|+ |ηtΦxηxt|+ |ηxutηt|+ |ηuxtηt|)dxds

≤ C(1 +

∫ t

0

(|ηt|2L2 ||ux|2Lp + |ηt|2L2 + |ηx|2L2 |ηt|2L2 + |η|2H1 |ηt|2L2)dx)

+
1

2

∫ t

0

|ηxt|2L2 +
1

2

∫ t

0

|uxt|2L2

≤ C(1 +

∫ t

0

Z4(s)ds).(31)

Combining (29)-(31), we obtain the desired estimate of Lemma 2.3. �

Lemma 2.4.∫ t

0

|√ρut(s)|2L2(s)ds+ |ux(t)|pLp ≤ C(1 +

∫ t

0

Z
10+4γ

(3p−4)(q−1) (s)ds),(32)

where C is a positive constant, depending only on M0.

Proof. Using (10), we rewritten the (11) as

ρut + (ρu)ux + ρΨx −
[(εu2

x + 1

u2
x + ε

) 2−p
2

ux

]
x

+ (P + η)x = −ηΦx.(33)

Multiplying (33) by ut, integrating (by parts) over ΩT , we have∫∫
ΩT

ρ|ut|2dxds+

∫∫
ΩT

(εu2
x + 1

u2
x + ε

) 2−p
2

uxuxtdxds

= −
∫∫

ΩT

(ρuux + ρΨx + Px + ηx + ηΦx)utdxds.(34)

We deal with each term as follows:∫
Ω

(εu2
x + 1

u2
x + ε

) 2−p
2

uxuxtdx =
1

2

∫
Ω

(εu2
x + 1

u2
x + ε

) 2−p
2

(u2
x)tdx

=
1

2

d

dt

∫
Ω

(∫ u2
x

0

(εs+ 1

s+ ε

) 2−p
2

ds
)

dx,

∫ u2
x

0

(εs+ 1

s+ ε

) 2−p
2

ds ≥
∫ u2

x

0

(s+ 1)
2−p
2 ds

=
2

p
[(u2

x + 1)
p
2 − 1],

−
∫∫

ΩT

Pxutdxds =

∫∫
ΩT

Puxtdxds

=
d

dt

∫∫
ΩT

Puxdxds−
∫∫

ΩT

Ptuxdxds.
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By virtue of (10), we have

Pt = −γPux − Pxu,(35)

−
∫∫

ΩT

ηxutdxds =

∫∫
ΩT

ηuxtdxds =
d

dt

∫∫
ΩT

ηuxdxds−
∫∫

ΩT

ηtuxdxds.

−
∫∫

ΩT

ηΦxutdxds = − d

dt

∫∫
ΩT

ηΦxudxds+

∫∫
ΩT

ηtΦxudxds.

Substituting the above into (34), using Sobolev inequality and Young’s inequality,
we have∫ t

0

|√ρut(s)|2L2ds+ |ux(t)|pLp

≤
∫∫

ΩT

(|ρuuxut|+ |ρΨxut|+ |γPu2
x|+ |Pxuux|+ |ηtux|+ |ηtΦxu|)dxds

+

∫
Ω

(|Pux|+ |ηux|+ |ηΦxu|)dx+ C

≤ C +

∫ t

0

(|ρ|
1
2
L∞ |u|L∞ |ux|

p
2
Lp |ux|

1− p
2

L∞ |
√
ρut|L2 + |ρ|

1
2
L∞ |Ψx|L∞ |

√
ρut|L2)ds

+

∫ t

0

(γ|P |L2 |ux|
p
2
Lp |ux|

1− p
2

L∞ |uxx|L2 + aγ|ρ|γ−1
L∞ |ρx|L2 |u|L∞ |ux|L∞ + |ηt|L2 |ux|

p
2
Lp |ux|

1− p
2

L∞

+ |ηt|L2 |Φx|L2 |u|L∞)ds+ |P |
L

p
p−1
|ux|Lp + |η|

L
p
p−1
|ux|Lp + |η|

L
p
p−1
|Φx|Lp |u|L∞

≤ C(1 +

∫ t

0

(|ρ|L∞ |ux|2+p
Lp |uxx|

2−p
L2 + |ρ|H1 |Ψxx|2L2 + |P |L∞ |ux|

p
2
Lp |uxx|

2− p
2

L2

+ |ρ|γ−1
L∞ |ρx|L2 |ux|Lp |uxx|L2 + |ηt|L2 |ux|

p
2
Lp |uxx|

1− p
2

L2 + |ηt|L2 |ux|Lp)ds)

+ |P |
p
p−1

L
p
p−1

+ |η|
p
p−1

L
p
p−1

+
1

2

∫ t

0

|√ρut(s)|2L2ds+
1

2
|ux(t)|pLp .

(36)

To estimate (36), combining (35) we have the following estimates∫
Ω

|P (t)|
p
p−1 dx =

∫
Ω

|P (0)|
p
p−1 dx+

∫ t

0

∂

∂s

(∫
Ω

P (s)
p
p−1 dx

)
ds

≤
∫

Ω

|P (0)|
p
p−1 dx+

p

p− 1

∫ t

0

∫
Ω

aγργ−1P (s)
1
p−1 (−ρxu− ρux)dxds

≤ C + C

∫ t

0

|ρ|γ−1
L∞ |P |

1
p−1

L∞ |ρ|H1 |ux|Lpds

≤ C(1 +

∫ t

0

Z
γ
p−1 +γ+1(s)ds),(37)

In exactly the same way, we also have∫
Ω

|η(t)|
p
p−1 dx ≤ C(1 +

∫ t

0

Z
1
p−1 +1(s)ds),(38)

which, together with (36) and (37), implies (32) holds. �

Lemma 2.5.

|√ρut(t)|2L2 +

∫ t

0

|uxt|2L2(s)ds ≤ C(1 +

∫ t

0

Z
26γ

(3p−4)(q−1) (s)ds),(39)

where C is a positive constant, depending only on M0.
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Proof. Differentiating equation (11) with respect to t, multiplying the result equa-
tion by ut, and integrating it over Ω, we have

1

2

d

dt

∫
Ω

ρ|ut|2dx+

∫
Ω

[(εu2
x + 1

u2
x + ε

) 2−p
2 ux

]
t
uxtdx

=

∫
Ω

[(ρu)x(u2
t + uuxut + Ψxut)− ρuxu2

t + (P + η)tuxt − ηtΦxut − ρΨxtut]dx.

(40)

Note that ∫
Ω

[(εu2
x + 1

u2
x + ε

) 2−p
2 ux

]
t
uxtdx

=

∫
Ω

[(εu2
x + 1

u2
x + ε

)− p2 ux] (εu2
x + 1)(u2

x + ε)− (2− p)(1− ε2)u2
x

(u2
x + ε)2

u2
xtdx

≥ (p− 1)

∫
Ω

(u2
x + 1)

p−2
2 |uxt|2dx,(41)

Let

ω = (u2
x + 1)

p−2
4 ,

from (24), it follows that

|ω−1|L∞ = |(u2
x + 1)

2−p
4 |L∞

≤ C(|uxx|
2−p
2

L2 + 1)

≤ CZ
2γ

(3p−4)(q−1) (t).

Combining (35), (40) can be rewritten into

d

dt

∫
Ω

|ρ|ut|2dx+

∫
Ω

|ωuxt|2dx

≤ 2

∫
Ω

ρ|u||ut||uxt|dx+

∫
Ω

ρ|u||ux|2|ut|dx+

∫
Ω

|ρx||u|2|ux||ut|dx

+

∫
Ω

|ρx||u||Ψx||ut|dx+

∫
Ω

ρ|ux||Ψx||ut|dx+

∫
Ω

ρ|ux||ut|2dx

+

∫
Ω

γP |ux||uxt|dx+

∫
Ω

|Px||u||uxt|dx+

∫
Ω

|ηt||uxt|dx

+

∫
Ω

|ηt||Φx||ut|dx+

∫
Ω

ρ|Ψxt||ut|dx

=

11∑
j=1

Ij .(42)

Using Sobolev inequality, Young’s inequality, (11),(24) and (25), we obtain

I1 ≤ 2|ρ|
1
2

L∞ |u|L∞ |
√
ρut|L2 |ωuxt|L2 |ω−1|L∞

≤ CZ
14γ

(3p−4)(q−1) (t) +
1

7
|ωuxt|2L2 ,
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I2 ≤ |ρ|
1
2

L2 |u|L∞ |ux|2L∞ |
√
ρut|L2

≤ |ρ|
1
2

H1 |ux|Lp |uxx|2L2 |
√
ρut|L2

≤ CZ
11γ

(3p−4)(q−1) (t),

I3 ≤ |ρx|L2 |u|2L∞ |ux|Lp |ux|
1− p2
L∞ |ut|L∞

≤ |ρ|H1 |ux|3Lp |uxx|
1− p2
L2 |ωuxt|L2 |ω−1|L∞

≤ CZ
24γ

(3p−4)(q−1) (t) +
1

7
|ωuxt|2L2 ,

I4 ≤ |ρx|L2 |u|L∞ |Ψx|L2 |ut|L∞

≤ |ρ|H1 |ux|Lp |Ψxx|L2 |ωuxt|L2 |ω−1|L∞

≤ CZ
16γ

(3p−4)(q−1) (t) +
1

7
|ωuxt|2L2 ,

I5 ≤ |ρ|
1
2

L∞ |ux|L∞ |Ψx|L2 |√ρut|L2

≤ |ρ|
1
2

H1 |uxx|L2 |Ψxx|L2 |√ρut|L2

≤ CZ
26γ

(3p−4)(q−1) (t),

I6 ≤ |ux|L∞ |
√
ρut|2L2

≤ CZ
10γ

(3p−4)(q−1) (t),

I7 ≤ C|P |L2 |ux|L∞ |ωuxt|L2 |ω−1|L∞

≤ CZ
20γ

(3p−4)(q−1) (t) +
1

7
|ωuxt|2L2 ,

I8 ≤ |Px|L2 |u|L∞ |ωuxt|L2 |ω−1|L∞

≤ CZ
8γ

(3p−4)(q−1) (t) +
1

7
|ωuxt|2L2 ,

I9 ≤ |ηt|L2 |ωuxt|L2 |ω−1|L∞

≤ CZ
12γ

(3p−4)(q−1) (t) +
1

7
|ωuxt|2L2 ,

I10 ≤ |ηt|L2 |Φx|L∞ |ut|L∞

≤ C|ηt|L2 |ωuxt|L2 |ω−1|L∞

≤ CZ
12γ

(3p−4)(q−1) (t) +
1

7
|ωuxt|2L2 ,

I11 ≤ |ρ|
1
2

L∞ |Ψxt|L2 |√ρut|L2 .

In order to estimate I11, we need to deal with the estimate of |Ψxt|L2 . Differ-
entiating (12) with respect to t, multiplying it by Ψt and integrating over Ω, we
have ∫

Ω

[(εΨ2
x + 1

Ψ2
x + ε

) 2−q
2

Ψx

]
t
Ψxtdx = −4πg

∫
Ω

(ρu)xΨtdx,(43)

and ∫
Ω

[(εΨ2
x + 1

Ψ2
x + ε

) 2−q
2

Ψx

]
t
Ψxtdx ≥ (q − 1)

∫
Ω

(Ψ2
x + 1)

q−2
2 |Ψxt|2dx.(44)
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Let

βq = (Ψ2
x + 1)

q−2
4

then

|(βq)−1|L∞ = |(Ψ2
x + 1)

2−q
4 |L∞

≤ C(|Ψxx|
2−q
2

L2 + 1)

≤ CZ
2−q

2(q−1) (t).

Then (43) can be rewritten into∫
Ω

|βqΨxt|2dx ≤ C
∫

Ω

(ρu)Ψxtdx

≤ C|ρ|L2 |u|L∞ |βqΨxt|L2 |(βq)−1|L∞ .

Using Young’s inequality, combining the above estimates we deduce that

I11 ≤ |ρ|
1
2

L∞ |
√
ρut|L2 |βqΨxt|L2 |(βq)−1|L∞

≤ CZ
5q−3

2(q−1) (t).

Substituting Ij(j = 1, 2, . . . , 11) into (42), and integrating over (τ, t) ⊂ (0, T ) on
the time variable, we have

|√ρut(t)|2L2 +

∫ t

0

|ωuxt|2L2(s)ds ≤ |√ρut(τ)|2L2 +

∫ t

0

Z
26γ

(3p−4)(q−1) (s)ds.(45)

To obtain the estimate of |√ρut(t)|2L2 , we need to estimate lim
τ→0
|√ρut(τ)|2L2 .

Multiplying (33) by ut and integrating over Ω, we get∫
Ω

ρ|ut|2dx ≤ 2

∫
Ω

(ρ|u|2|ux|2 + ρ|Ψx|2 + ρ−1
∣∣− [(

εu2
x + 1

u2
x + ε

)
2−p
2 ux]x + (P + η)x + ηΦx

∣∣2)dx.

According to the smoothness of (ρ, u, η), we have

lim
τ→0

∫
Ω

(
ρ|u|2|ux|2 + ρ|Ψx|2 + ρ−1

∣∣− [(
εu2
x + 1

u2
x + ε

)
2−p
2 ux]x + (P + η)x + ηΦx

∣∣2)dx
=

∫
Ω

(
ρ0|u0|2|u0x|2 + ρ0|Ψx|2 + ρ−1

0

∣∣− [(
εu2

0x + 1

u2
0x + ε

)
2−p
2 u0x]x + (P0 + η0)x + η0Φx

∣∣2)dx
≤ |ρ0|L∞ |u0|2L∞ |u0x|2L2 + |ρ0|L∞ |Ψx|2 + |g|2L2 + |Φx|2L2 ≤ C.

Then, taking a limit on τ in (45), as τ → 0, we can easily obtain

|√ρut(t)|2L2 +

∫ t

0

|uxt|2L2(s)ds ≤ C(1 +

∫ t

0

Z
26γ

(3p−4)(q−1) (s)ds),(46)

This complete the proof of Lemma 2.5. �

With the help of Lemma 2.2 to Lemma 2.5, and the definition of Z(t), we conclude
that

Z(t) ≤ C exp(C̃

∫ t

0

Z
26γ

(3p−4)(q−1) (s)ds),(47)
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where C, C̃ are positive constants, depending only on M0. This means that there
exist a time T1 > 0 and a constant C, such that

ess sup
0≤t≤T1

(|ρ|H1 + |u|W 1,p
0 ∩H2 + |η|H2 + |ηt|L2 + |√ρut|L2 + |ρt|L2)

+

∫ T1

0

(|√ρut|2L2 + |uxt|2L2 + |ηx|2L2 + |ηt|2L2 + |ηxt|2L2)ds ≤ C,(48)

where C is a positive constant, depending only on M0.

3. Proof of the main theorem

In this section, the existence of strong solutions can be established by a standard
argument. We construct the approximate solutions by using the iterative scheme,
derive uniform bounds and thus obtain solutions of the original problem by passing
to the limit. Our proof will be based on the usual iteration argument and some
ideas developed in [10]. Precisely, we first define u0 = 0 and assuming that uk−1

was defined for k ≥ 1, let ρk, uk, ηk be the unique smooth solution to the following
system

ρkt + ρkxu
k−1 + ρkuk−1

x = 0,(49)

ρkukt + ρkuk−1ukx + ρkΨk
x + Lpu

k + P kx + ηkx = −ηkΦx,(50)

LqΨ
k = 4πg(ρk −m0),(51)

ηkt + (ηk(uk−1 − Φx))x = ηkxx,(52)

with the initial and boundary conditions

(ρk, uk, ηk)|t=0 = (ρ0, u0, η0),(53)

uk|∂Ω = (ηkx + ηkΦx)|∂Ω = 0,(54)

where

Lpθ
k = −

[(ε(θkx)2 + 1

(θkx)2 + ε

) 2−p
2

θkx

]
x
.

With the process, the nonlinear coupled system has been deduced into a sequence of
decoupled problems and each problem admits a smooth solution. And the following
estimates hold

ess sup
0≤t≤T1

(|ρk|H1 + |uk|W 1,p
0 ∩H2 + |ηk|H2 + |ηkt |L2 + |

√
ρkukt |L2 + |ρkt |L2)

+

∫ T1

0

(|
√
ρkukt |2L2 + |ukxt|2L2 + |ηkx|2L2 + |ηkt |2L2 + |ηkxt|2L2)ds ≤ C,(55)

where C is a generic constant depending only on M0, but independent of k.
In addition, we first find ρk from the initial problem

ρkt + uk−1ρkx + uk−1
x ρk = 0,

ρk|t=0 = ρ0,

with smooth function uk−1, obviously, there is a unique solution ρk on the above
problem and also we could obtain that

ρk(x, t) ≥ δ exp
[
−
∫ T1

0

|uk−1
x (., s)|L∞ds

]
> 0, for all t ∈ (0, T1).
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Next, we will prove the approximate solution (ρk, uk, ηk) converges to a limit (ρε, uε,
ηε) in a strong sense. To this end, let us define

ρ̄k+1 = ρk+1 − ρk, ūk+1 = uk+1 − uk, η̄k+1 = ηk+1 − ηk, Ψ̄k+1 = Ψk+1 −Ψk.

By a direct calculation, we can verify that the functions ρ̄k+1, ūk+1, η̄k+1 satisfy the
system of equations

ρ̄k+1
t + (ρ̄k+1uk)x + (ρkūk)x = 0,(56)

ρk+1ūk+1
t + ρk+1ukūk+1

x + (Lpu
k+1 − Lpuk) = −ρ̄k+1(ukt + ukukx + Ψk+1

x )

− (P k+1 − P k)x − η̄k+1
x + ρk(ūkukx − Ψ̄k+1

x )− η̄k+1Φx,(57)

LqΨ
k+1 − LqΨk = 4πgρ̄k+1,(58)

η̄k+1
t + (ηkūk)x + (η̄k+1(uk − Φx))x = η̄k+1

xx .(59)

Multiplying (56) by ρ̄k+1, integrating over Ω and using Young’s inequality, we obtain

d

dt
|ρ̄k+1|2L2 ≤ C|ρ̄k+1|2L2 |ukx|L∞ + |ρk|H1 |ūkx|L2 |ρ̄k+1|L2

≤ C|ukxx|L2 |ρ̄k+1|2L2 + Cξ|ρk|2H1 |ρ̄k+1|2L2 + ξ|ūkx|2L2

≤ Cξ|ρ̄k+1|2L2 + ξ|ūkx|2L2 ,(60)

where Cζ is a positive constant, depending on M0 and ζ for all t < T1 and k ≥ 1.
Multiplying (57) by ūk+1, integrating over Ω and using Young’s inequality, we

obtain
1

2

d

dt

∫
Ω
ρk+1|ūk+1|2dx+

∫
Ω

(Lpu
k+1 − Lpuk)ūk+1dx

≤ C
∫

Ω

[
|ρ̄k+1|(|ukt |+ |ukukx|+ |Ψk+1

x |) + |Pk+1
x − Pkx |+ |η̄k+1

x |+ |ρk|ūk||ukx|

+ |ρk||Ψ̄k+1
x |+ |η̄k+1Φx|

]
|ūk+1|dx

≤ C(|ρ̄k+1|L2 |ukxt|L2 |ūk+1
x |L2 + |ρ̄k+1|L2 |ukx|Lp |ukxx|L2 |ūk+1

x |L2 + |ρ̄k+1|L2 |Ψk+1
x |L2 |ūk+1

x |L2

+ |Pk+1 − Pk|L2 |ūk+1
x |L2 + |η̄k+1|L2 |ūk+1

x |L2 + |ρk|
1
2

L2 |
√
ρkūk|L2 |ukxx|L2 |ūk+1

x |L2

+ |ρk|H1 |Ψ̄k+1
x |L2 |ūk+1

x |L2 + |η̄k+1|L2 |ūk+1
x |L2 ).

(61)

Let

σ(s) =
(εs2 + 1

s2 + ε

) 2−p
2 s,

then

σ′(s) =
(εs2 + 1

s2 + ε

)− p2 (εs2 + 1)(s2 + ε)− (2− p)(1− ε2)s2

(s2 + ε)2

≥ p− 1

(s2 + ε)
2−p
2

.

To estimate the second term of (61), we have∫
Ω

(Lpu
k+1 − Lpuk)ūk+1dx =

∫
Ω

∫ 1

0

σ′(θuk+1
x + (1− θ)ukx)dθ|ūk+1

x |2dx

≥
∫

Ω

[ ∫ 1

0

dθ

|θuk+1
x + (1− θ)ukx|

2−p
L∞ + 1

]
(ūk+1
x )2

≥ C−1

∫
Ω

|ūk+1
x |2dx.(62)
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On the other hand, multiplying (58) by Ψ̄k+1, integrating over Ω, we obtain∫
Ω

(LqΨ
k+1 − LqΨk)Ψ̄k+1dx = 4πg

∫
Ω

ρ̄k+1Ψ̄k+1dx.(63)

Since∫
Ω

(LqΨ
k+1 − LqΨk)Ψ̄k+1

x dx = (q − 1)

∫
Ω

(

∫ 1

0

|θΨk+1
x + (1− θ)Ψk

x|q−2dθ)(Ψ̄k+1
x )2dx,

and ∫ 1

0

|θΨk+1
x + (1− θ)Ψk

x|q−2dθ =

∫ 1

0

1

|θΨk+1
x + (1− θ)Ψk

x|2−q
dθ

≥
∫ 1

0

1

(|Ψk+1
x |+ |Ψk

x|2−q)
dθ

=
1

(|Ψk+1
x |+ |Ψk

x|)2−q
,

then∫
Ω

[
|Ψk+1
x |q−2Ψk+1

x − |Ψk
x|q−2Ψk

x

]
Ψ̄k+1
x dx ≥ 1

(|Ψk+1
x (t)|L∞ + |Ψk

x(t)|L∞)2−q

∫
Ω

(Ψ̄k+1
x )2dx,

which implies ∫
Ω

(Ψ̄k+1
x )2dx ≤ C|ρ̄k+1|2L2 .(64)

From (55), (62) and (64), (61) can be re-written as

d

dt

∫
Ω

ρk+1|ūk+1|2dx+ C−1

∫
Ω

|ūk+1
x |2dx

≤ Bξ(t)|ρ̄k+1|2L2 + C(|
√
ρkūk|2L2 + |η̄k+1|2L2) + ξ|ūk+1

x |2L2 ,(65)

where Bξ(t) = C(1 + |ukxt(t)|2L2 , for all t ≤ T1 and k ≥ 1. Using (55) we derive∫ t

0

Bξ(s)ds ≤ C + Ct.

Multiplying (59) by η̄k+1, integrating over Ω, using (55) and Young’s inequality, we
have

1

2

d

dt

∫
Ω

|η̄k+1|2dx+

∫
Ω

|η̄k+1
x |2dx

≤
∫

Ω

|η̄k+1||uk − Φx||η̄k+1
x |dx+

∫
Ω

(|ηk||ūk|)x|η̄k+1|dx

≤ |η̄k+1|L2 |uk − Φx|L∞ |η̄k+1
x |L2 + |ηkx|L2 |ūk|L∞ |η̄k+1|L2 + |ηk|L∞ |ūkx|L2 |η̄k+1|L2

≤ Cξ|η̄k+1|2L2 + ξ|η̄k+1
x |2L2 + ξ|ūkx|2L2 .

(66)

Combining (60),(65) and (66), we have

d

dt

(
|ρ̄k+1(t)|2L2 + |

√
ρk+1ūk+1(t)|2L2 + |η̄k+1(t)|2L2

)
+ |ūk+1

x (t)|2L2 + |η̄k+1
x |2L2

≤ Eξ(t)|ρ̄k+1(t)|2L2 + C|
√
ρkūk|2L2 + Cξ|η̄k+1|2L2 + ξ|ūkx|2L2 ,(67)
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where Eζ(t) is depending only on Bζ(t) and Cξ, for all t ≤ T1 and k ≥ 1. Using
(55), we obtain ∫ t

0

Eξ(s)ds ≤ C + Cξt.

Integrating (67) over (0, t) ⊂ (0, T1) with respect to t, using Gronwall’s inequality,
we have

|ρ̄k+1(t)|2L2 + |
√
ρk+1ūk+1(t)|2L2 + |η̄k+1(t)|2L2 +

∫ t

0

|ūk+1
x (t)|2L2ds+

∫ t

0

|η̄k+1
x |2L2ds

≤ C exp(Cξt)

∫ t

0

(|
√
ρkūk(s)|2L2 + |ūkx(s)|2L2)ds.(68)

From the above recursive relation, choose ξ > 0 and 0 < T∗ < T1 such that
C exp(CξT∗) <

1
2 , using Gronwall’s inequality, we deduce that

K∑
k=1

[ sup
0≤t≤T∗

(|ρ̄k+1(t)|2L2 + |
√
ρk+1ūk+1(t)|2L2 + |η̄k+1(t)|2L2dt

+

∫ T∗

0

|ūk+1
x (t)|2L2 +

∫ T∗

0

|η̄k+1
x (t)|2L2dt] < C,(69)

where C is a positive constant, depending only on M0.
Therefore, as k → +∞, the sequence (ρk, uk, ηk) converges to a limit (ρε, uε, ηε)

in the following strong sense

ρk → ρε in L∞(0, T∗;L
2(Ω)),(70)

uk → uε in L∞(0, T∗;L
2(Ω)) ∩ L2(0, T∗;H

1
0 (Ω)),(71)

ηk → ηε in L∞(0, T∗;L
2(Ω)) ∩ L2(0, T∗;H

1(Ω)).(72)

By virtue of the lower semi-continuity of various norms, we deduce from the uniform
estimate (55) that (ρε, uε, ηε) satisfies the following uniform estimate

ess sup
0≤t≤T1

(|ρε|H1 + |uε|W 1,p
0 ∩H2 + |ηε|H2 + |ηεt |L2 + |

√
ρεuεt |L2 + |ρεt |L2)

+

∫ T∗

0

(|√ρεuεt |2L2 + |uεxt|2L2 + |ηεx|2L2 + |ηεt |2L2 + |ηεxt|2L2)ds ≤ C.(73)

Since all of the constants are independent of ε, there exists a subsequence (ρεj , uεj ,
ηεj ) of (ρε, uε, ηε), without loss of generality, we denote to (ρε, uε, ηε). Let ε → 0,
we can get the following convergence

ρε → ρδ in L∞(0, T∗;L
2(Ω)),(74)

uε → uδ in L∞(0, T∗;L
2(Ω)) ∩ L2(0, T∗;H

1
0 (Ω)),(75)

ηε → ηδ in L∞(0, T∗;L
2(Ω)) ∩ L2(0, T∗;H

1(Ω)),(76)

and there also holds

ess sup
0≤t≤T1

(|ρδ|H1 + |uδ|W 1,p
0 ∩H2 + |ηδ|H2 + |ηδt |L2 + |

√
ρδuδt |L2 + |ρδt |L2)

+

∫ T∗

0

(|√ρδuδt |2L2 + |uδxt|2L2 + |ηδx|2L2 + |ηδt |2L2 + |ηδxt|2L2)ds ≤ C.(77)
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For each small δ > 0, let ρδ0 = Jδ ∗ ρ0 + δ, where Jδ is a mollifier on Ω, and
uδ0 ∈ H1

0 (Ω) ∩H2(Ω) is a smooth solution of the boundary value problem{
Lpu

δ
0 +

(
P (ρδ0) + ηδ0

)
x

+ ηδ0Φx = (ρδ0)
1
2 (gδ + Φx),

uδ0|∂Ω = 0,
(78)

where gδ ∈ C∞0 and satisfies |gδ|L2 ≤ |g|L2 , lim
δ→0+

|gδ − g|L2 = 0.

We deduce that (ρδ, uδ, ηδ) is a solution of the following initial boundary value
problem 

ρt + (ρu)x = 0,

(ρu)t + (ρu2)x + ρΨx − λ(|ux|p−2ux)x + (P + η)x = −ηΦx,

(|Ψx|q−2Ψx)x = 4πg(ρ− 1

|Ω|

∫
Ω

ρdx),

ηt + (η(u− Φx))x = ηxx,

(ρ, u, η)|t=0 = (ρδ0, u
δ
0, η

δ
0),

u|∂Ω = (ηx + ηΦx)|∂Ω = 0,

where ρδ0 ≥ δ, 4
3 < p, q < 2.

By the proof of Lemma 2.1, there exists a subsequence {uδj0 } of {uδ0}, as δj →
0+,uδ0 → u0 in H1

0 (Ω) ∩ H2(Ω), −(|uδj0x|p−2u
δj
0x)x → −(|u0x|p−2u0x)x in L2(Ω),

Hence, u0 satisfies the compatibility condition (9) of Theorem 1.2. By virtue of
the lower semi-continuity of various norms, we deduce that (ρ, u, η) satisfies the
following uniform estimate

ess sup
0≤t≤T1

(|ρ|H1 + |u|W 1,p
0 ∩H2 + |η|H2 + |ηt|L2 + |√ρut|L2 + |ρt|L2)

+

∫ T∗

0

(|√ρut|2L2 + |uxt|2L2 + |ηx|2L2 + |ηt|2L2 + |ηxt|2L2)ds ≤ C,(79)

where C is a positive constant, depending only on M0. The uniqueness of solution
can also be obtained by the same method as the above proof of convergence, we
omit the details here. This completes the proof.
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