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THE EXISTENCE OF SOLUTIONS FOR A SHEAR THINNING
COMPRESSIBLE NON-NEWTONIAN MODELS

YUKUN SONG*, YANG CHEN, JUN YAN AND SHUAI CHEN

ABSTRACT. This paper is concerned with the initial boundary value problem
for a shear thinning fluid-particle interaction non-Newtonian model with vac-
uum. The viscosity term of the fluid and the non-Newtonian gravitational force
are fully nonlinear. Under Dirichlet boundary for velocity and the no-flux con-
dition for density of particles, the existence and uniqueness of strong solutions
is investigated in one dimensional bounded intervals.

1. INTRODUCTION

Fluid-particle interaction model arises in many practical applications, and is of
primary importance in the sedimentation analysis of disperse suspensions of parti-
cles in fluids. This model is one of the commonly used models nowadays in biotech-
nology, medicine, mineral processing and chemical engineering [27]-[25]. Usually,
the fluid flow is governed by the Navier-Stokes equations for a compressible fluid
while the evolution of the particle densities is given by the Smoluchowski equation
[4], the system has the form:

Pt + le(pU) = 07
(1) (pu)¢ + div(pu @ u) + V(P(p) + 1) — pAu — AVdivu = —(n+ Bp)V,
e+ div(n(u — V®)) — Anp =0,

where p,u,n,P(p) = ap?,®(x) denote the fluid density, velocity, the density of
particles in the mixture, pressure, and the external potential respectively, a > 0,y >
1. p > 0 is the viscosity coefficient, and 3\ + 2u > 0 are non-negative constants
satisfied the physical requirements.

There are many kinds of literatures on the study of the existence and behav-
ior of solutions to Navier-Stokes equations (See [1]-[17]). Taking system (1) as an
example, Carrillo et al [4] discussed the the global existence and asymptotic behav-
ior of the weak solutions providing a rigorous mathematical theory based on the
principle of balance laws, following the framework of Lions [18] and Feireis] et al
[11, 12]. Motivated by the stability arguments in [5], the authors also investigated
the numerical analysis in [6]. Ballew and Trivisa [1] constructed suitable weak so-
lutions and low stratification singular limit for a fluid particle interaction model.
In addition, Mellet and Vasseur [20] proved the global existence of weak solutions
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of equations by using the entropy method on the asymptotic regime corresponding
to a strong drag force and strong brownian motion. Zhang et al [31] establish the
existence and uniqueness of classical solution to the system (1) .

Despite the important progress, there are few results of non-Newtonian fluid-
particle interaction model. As we know, the Navier Stokes equations are generally
accepted as a right governing equations for the compressible or incompressible mo-
tion of viscous fluids, which is usually described as

pt + div(pu) =0,
(pu) + div(pu @ u) — div(T") + VP = pf,

where I" denotes the viscous stress tensor, which depends on E;;(Vu), and
8ui + 8uj
81:j 81171 ’

is the rate of strain. If the relation between the stress and rate of strain is linear,
namely, I' = pF;;(Vu), where 1 is the viscosity coefficient, then the fluid is called
Newtonian. If the relation is not linear, the fluid is called non-Newtonian. The

simplest model of the stress-strain relation for such fluids given by the power laws,
which states that

Eij(Vu) =

87“' 6’&]‘ q
8xj + axz) ’

for 0 < ¢ < 1 (see[3]). In [16], Ladyzhenskaya proposed a special form for I" on the
incompressible model:

i = (o + pa [E(Vou) [P~ Eij (Vau).

For g = 0, if p < 2 it is a pseudo-plastic fluid. In the view of physics, the model
captures the shear thinning fluid for the case of 1 < p < 2 (see[19]).

Non-Newtonian fluid flows are frequently encountered in many physical and in-
dustrial processes [8, 9], such as porous flows of oils and gases [7], biological fluid
flows of blood [30], saliva and mucus, penetration grouting of cement mortar and
mixing of massive particles and fluids in drug production [13]. The possible ap-
pearance of the vacuum is one of the major difficulties when trying to prove the
existence and strong regularity results. On the other hand, the constitutive be-
havior of non-Newtonian fluid flow is usually more complex and highly non-linear,
which may bring more difficulties to study such flows.

In recent years, there has been many research in the field of non-Newtonian flows,
both theoretically and experimentally (see [14]-[26]). For example, in [14], Guo and
Zhu studied the partial regularity of the generalized solutions to an incompressible
monopolar non-Newtonian fluids. In [32], the trajectory attractor and global at-
tractor for an autonomous non-Newtonian fluid in dimension two was studied. The
existence and uniqueness of solutions for non-Newtonian fluids were established in
[29] by applying Ladyzhenskaya’s viscous stress tensor model.

In this paper, followed by Ladyzhenskaya’s model of non-Newtonian fluid, we
consider the following system

(pu): + (pu )z +p‘1’ |u P 2u,)y + (P4 1)e = -1y, (2,1) € Qr

(19 ]972W,), = dmg(p — 9] / pdz),
e+ ((u — @4))e = Naa,

I'=
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with the initial and boundary conditions

(3) (P,Uﬂ?”tzo = (PO,U07770)7 WS Q»
U|BQ:\II‘BQ:03 te [O7T]7

and the no-flux condition for the density of particles
(4) (e +1nPz)|oq =0, te[0,T],

where p,u,n,P(p) = ap?,®(x) denote the fluid density, velocity, the density of
particles in the mixture, pressure, and the external potential respectively, a >
0,y > 1,4 3 < p,g < 2. X>0is the viscosity coefficient, € is a one-dimensional
bounded interval, for simplicity we only consider 2 = (0,1), Qr = Q x [0,T].

The system describes a compressible shear thinning fluid-particle interaction sys-
tem for the evolution of particles dispersed in a viscous non-Newtonian fluid and
the particle is driven by non-Newtonian gravitational potential. To our knowledge,
there still no existence results for (2)-(4) when 1 < p, ¢ < 2. The aim of this paper is
to study the existence and uniqueness of strong solutions to this system. Through-
out the paper we assume that a = A = 1 for simplicity. In the following sections,

we will use simplified notations for standard Sobolev spaces and Bochner spaces,
such as LP = LP(Q), H} = HE(Q),C([0,T]; HY) = C([0, T]; H(£2)).
We state the definition of strong solution as follows:

Definition 1.1. The (p,u, ¥, n) is called a strong solution to the initial boundary
value problem(2)-(4),if the following conditions are satisfied:

(i)
p e L=(0,T,; H(Q)),u € L=(0,T,; W} P () N H*(Q)),
U e L>(0,T,; H*(Q)),n € L>=(0,T\; H*(Q)), pr € L>=(0,T\; L*(Q)),
ug € L2(0,To; HY(Q)), Uy € L(0, To; HY(Q)), e € L(0, Ty; L*(2)),
Vour € L=(0,Ty; L*(), (Jua [P ?us). € C(0, Ta; L*(2)).
(ii) For all ¢ € L>°(0,T,; HY(Q)), ¢¢ € L>=(0,Ty; L*(Q)), for a.e. t € (0,T), we have
t

6 [ oowtde= [ [ o+ ous,) e saeds = [ ot 0jar

(iii) For all ¢ € L>®(0,T,; Wy* () N H2(Q)), ¢, € L*(0,Ts; HY(Q)), for ae. t €
(0,T), we have

t
/ pugp(m, t)dx - / {pugpt + PUQQDz - P‘I’JAO - /\‘uwlp_zuzwz
Q 0 JQ

(6) + (P4 1)pe — 1Bao} (@, s)dads = / potiop(z, 0)dz,
Q

(iv) For all ¥ € L>=(0,T,; H*()), v; € L*(0,Ty; HY(Q)), for a.e. t € (0,T), we
have

—/t/ |\I/I|q_2qlmz/}m(m,s)dxds:/t/ 47rg(p—ﬁ/9pdx)z/)(x,0)dxds,

(v) For all ¥ € L*(0, Ty; H*(2)), 9, € L>=(0,T; L*(Q)), for a.e. t € (0,T), we have

(8) /1719 (x,t dx—/ / (u — @y) — ]z (z, 5)dds = /977019(96,0)dx

The main result of this paper is stated in the following theorem.
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1.1. Main theorem.

Theorem 1.2. Let ® € C*(Q), 3 < p,q < 2 and assume that the initial data

(po, uo,Mo) satisfy the following conditions
0< Po € Hl(Q)’uO € H(%(Q) N H2(Q)a770 S HZ(Q)7
and the compatibility condition
1
(9) = (luoe " ?u0s)o + (P(po) +m0),, +m0%a = pg (9 + ®2),

for some g € L*(Q). Then there exist a T € (0,+00) and a unique strong solution
(p,u,¥,n) to (2)-(4) such that

p € L=(0,Ty; H(R)),u € L=(0, Ty; Wy *(2) N H?(Q)),
U € L2(0,T,; H*(Q)),n € L>(0,T; H*(Q)), ps € L>(0, T\; L*(Q)),
up € L*(0,Ty; Hy (), Uy € L=(0,T; HY(Q)), e € L™=(0,Ty; L*(Q)),
Vour € L0, To; L2(Q)), (|uz [P~ 2us) . € C(0, Tu; L2 ().
Remark 1. By using exactly the similar argument, we can prove the result also
hold for the case 1 < p,q < %. We omit the details here.
2. A PRIORI ESTIMATES FOR SMOOTH SOLUTIONS

In this section, we will prove the local existence of strong solutions. From the
continuity equation (2)1, we can deduce the conservation of mass

/ p(t)dx = / podx :=mg, (t>0,mg>0)
Q Q

Because equation (2), possesses always with singularity, we overcome this diffi-
culty by introduce a regularized process, then by taking the limiting process back
to the original problem. Namely, we consider the following system

(10) Pt + (pu)z =0,

A1) (pwe+ (put)s + p, — [(

W2 + 1\ 34
[( \IJ;H) \Ifx]x = 4mg(p —mo),

with the initial and boundary conditions.

eu? +1
u2 +e

2-p
) ’ ux:| +(P+77)x:777(1)xa

(12)

(14) (p7u7n)|ti0 = (POaUOaUO)a T e Qa
(15) uloe = ¥|oa = (e +1®a)lon =0, t€[0,T],
and ug € HE(Q) N H2() is the smooth solution of the boundary value problem
2—p
v () ]+ G+, s i)
uplag = 0.

Provided that (p,u,n) is a smooth solution of (10)-(15) and py > ¢, where 0 <
§ < 1 is a positive number. We denote by My = 1+ o + pg ' + |polm + |92z
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We first get the estimate of |ugzz|r2. From (16), we have

1
woss — (511%90 + 1)§ (ud, + €)*[(P(po) + m0)a + n0®s — pé (9 + Ps)]
rxr — .

u%w +e€ (Eu%w + 1)(u%w + E) - (2 _p)(l - 82)ugw
Then
ud +e\1-% 1
tnasl 12 < =] (55; )| P 0) + ) o — 03 (g + @)1
1 p 1
< - 1(|u0$|L°° + D)5 ([(P(po) +1m0)e + 0P — pd (9 + ©u)|12)
1

< awefe + 1" H(1Palo) o2 + bioel e + ol (€]

+ pol 2 gLz + lpol 2o | @ 2):
Applying Young’s inequality, we have
Juozelzz < CPa(po)l 12 + ol 2 + ol o= |21z + |pol3 |9l
+ [pol e D] 12) 7T < C,
thus
(17) [wo|noe + [woz|Loe + |Uose|r2 < C,

where C' is a positive constant, depending only on M.
Next, we introduce an auxiliary function

2(t) = sup (14 |o(s)] iz + [u(s) gy + [VFu(s) o + ()] e + [n(s) ).

We will derive some useful estimate to each term of Z(t) in terms of some integrals
of Z(t), then apply arguments of Gronwall’s inequality to prove Z(t) is locally
bounded.

2.1. Preliminaries. In order to prove the main Theorem, we first give some useful
lemmas for later use.

Lemma 2.1. Let ug € H}(Q) N H?(Q), po € HY(Q), no € H?(Q), ® € C?(Q),
g € L?(Q), u§ is a solution of the boundary value problem
ug L
(18) - [( 0” ) qu} (P(po) +10)z + 10P2 = pg (9 + D),
up(0) = uO( ) 0.

Then there are a subsequence {uy’'}, j =1,2,3, ..., of {u§} and ug € H}(Q)NH?(Q)
such that as e; — 0,

ug’ — ug in Hy(Q) N H?*(Q),
&j (u(E)Jz)2 + 1)2%17 Eji| p—2 . 2
—_—r Ug | — (JUoa Uoz )zt L7(QD).
(L) 7w, = Guoel o) in 22(9)
Proof. According to (18), we have

ity = (8 +1>5<<usr>2+s>2<<P<po>+no>m+no<1>m+pé<g+<1>m>>
b TV, 2+ ) (e + D((ug,)? + 2 — 2 — )1 - 2)(ug,)?
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Taking it by the L? norm, we have
e(u§,)? +1 ) 1-5
(uf,)? + €

1
< (Jugy 2 + 1) E[(P(po) + 10)w + 10Ps + p¢ (9 + Bo)| 12,

1
NP (po) +10)e + 10%a + g (g + ©2)[ 12

|u8mz‘L2 < ’(

then
(19) UGz z2 < C(L 4 [(P(po) + no)z + m0Ps + P§ (g+P,)|2) 7T < C.
Therefore, by the above inequality, as €; — 0,

us — ug in C2(Q),

ugh . — Uozz in L2())  weakly.

Thus, we can obtain {u’} is a Cauchy subsequence of C 3(Q), for all aq > 0, we
find N, as 4,5 > N, and

|ugl, — gl Loe () < 0.
Now, we prove that {u§,,} has a Cauchy sequence in Lo norm.
Let
.. ei(ug)® +1\% usi)? + g)?
¢i = (b((uO;:)Q) = ( (eio 2) ; )2 TACRY) sl((Q 0 ) ) 2 €;\2 "
(uoe)? +ei /' (8i(ugy)? + 1) ((ugr)* + &) — (2 —p)(1 — &) (ug})
For all a > 0, there exists N, as i,j > N, we can deduce that

. 1
|Ugse — Uone|22(0) < 100 — BjlLo0 ()| (P(p0) + n0)a + 0%z — pG (9 + D) L2(0)-
With the assumption, we can obtain
1
|(P(po) +n0)e +10Pz — pg (9 + P2)|r20) < C,
where C' is a positive constant, depending only on |po| g1 (), [9lz2(0) and |no]g2()-

Using the following inequality,

1
(20) 16 = 6limiey < | [/ 050 + (1 = )i B0 — (02 )

L=(Q)’
where 0 < 0 < 1.
By the simple calculation, we can get
’ 2 P
< —(1 T2
§ )< =51+
where C' depending only on p, then
| — Djl Lo ()
2 ! v . ) v
<2 (1 [ 0+ -0t (i - @],
S — |ugly, — tgh| Lo () [ugs + ugh| Lo (@)
4 = €j LTP €i €j LTP <
+ (2 _p)(p . 1) |u0x - UOI‘LN(Q)M’LO.’E =+ qu‘LOO(Q) > Q.

Substituting this into (18), we have
U0k — “8’;I|Lw(sz) <q,
then there is a subsequence {ug’,} and {u§,,}, such that
{ughe} = x in L*(Q).
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By the uniqueness of the weak convergence, we have
X = {ubeat-

1
Since (P(po) + n)s + 10®s — pé (9 + D) are independent of e, the same that we
obtain, as ¢; — 0,

€5\2 2—p
EJ.(UO?D) + 1) 2 Ej:| p—2 . 2
—_—r U, — (|ugg Uog ) TN L7 ().
(Zehs) T ], = (uoel o) in @)
This completes the proof of Lemma 2.1. a

Lemma 2.2.

t
(21) wpwm%30mmq/2@%%3@mx
0<t<T 0

where C' is a positive constant, depending only on M.

Proof. We estimates for u and 7 for later use. It follows from (11) that

Keui—l—l

%Tp
ui-i-e) umL:put—&-puuw—l—plllaj—&—(P—i—n)x—i—n(I)gﬂ.

We note that

Uz | < (ui + 5)17%|put + putiy + p¥y + (P + 1)z + 1Py

p—1

(lue > + 1)l pue + putiy + p¥q + (P + 1) + P,

<
=oC1
Taking it by the L? norm and using Young’s inequality, we have
[uaal2 ' < O+ |puel 2 + [pung|rz + pWel iz + [(P +n)al 2 + [1®2]12)

1 B 1—2 _
< C(1+ |plolv/puelze + plooelulpoe e |70 |uel o2 + 017" [pa| L2
+ nzlr2 + nle P2 + 1022 Yae|L2)

1 2 2(p=1) _
< ClL+ |pl7 oo lv/puel Lz + (Il fulr [ue|fs) 35 + |pl7 < ool o2
1 _
(22) + |77w|L2 + |77|L°° ‘(I)w|L2 + |p|L2|\I'ww|L2] + §|Um|'221-
On the other hand, by (12), we have

1 -
(Waa| < q_il(‘q/wﬁ 4+ 1)[dmg(p — mo)|.

Taking it by L?-norm, using Young’s inequality, which gives
(23) Woul 2 < CZTT(8).
This implies that

[ =Dtp) Ly

g < CZmoe

(t)
(24) < CZ 0D ().



54 YUKUN SONG, YANG CHEN, JUN YAN AND SHUAI CHEN

By (13), taking it by the L? norm, we have
[Maalrz < e+ (n(u — Pz))elr2
< nelee + Ielr2lulre + alr2|Palr + L2 |tas|L2 + 10lLoe |Pas L2
6~v+2
(25) < CZ®r=1G=1 (t).
Multiplying (10) by p, integrating over €2, we deduce that

1d )
- d opdz = 0.
2dt/g'p' ”/Q(p“)” !

Integrating it by parts, using Sobolev inequality, we obtain
d
(26) alp(t)liz < /Q luz|lp|*de < [ugs|r2]pl7e-

Differentiating (10) with respect to z, and multiplying it by p,, integrating over €,
and using Sobolev inequality, we have

d 9 / 3 9
= pz|"dr = — Uz (pz)” + pPrtas](t)dz
a /1] 2 ]
< C[|uz|L°° |pm|%2 —+ |p|L°° |p:1:‘L2 |Uwac|L2]
(27) < C’|p|§{1 gL
From (26) and (27) and the Gronwall’s inequality, then lemma 2.2 holds. O

Lemma 2.3.

t t
28) Il Il + [ (el + il + Inafia)(s)ds < €1+ [ 24()s),
0 0

where C' is a positive constant, depending only on M.

Proof. Multiplying (13) by 7, integrating the resulting equation over {1, using the
boundary conditions (4) and Young’s inequality, we have

t
1
/0 Inm(S)\%zdS+§|n(t)liz§//Q (Inune| + [n®ane.|)deds
T

1 st t ¢
Z/o |nx(s)\%2ds+0/0 |um|%p|nﬁ{1ds+0/o |n|?{1ds+C

1 t S 2 S t 4 S
(29) < 4/0 N2 (s)|72d +C(1+/O Z4(t)ds).

Multiplying (13) by 7, integrating (by parts) over Qr, using the boundary condi-
tions (4) and Young’s inequality, we have

K 1
| s+ 5@t < [[ a0, yneldaas
T

1t t ¢
< 1/ |77m(s)|2L2ds+C/ |n|?{1|uz|2Lpds+C/ |nﬁqlds—|—0
0 0 0

i/o |nxt(s)|2Lgds+C’(1+/ ZA(1)ds).

0
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Differentiating (13) with respect to ¢, multiplying the resulting equation by 7,
integrating (by parts) over Qr, we get

/|771t |L2d5+ ‘77t ‘L2 // (u — ®y))enzedads

st // (newnee| + [0 Panee| + [newen + [nuaene|)daeds
Qp

t
<Ct [ mballusky + el + bnal3s s + ol 2 )do)
0

+ /t ‘ |2 / | |
2 at I 2 2 uilﬂ I 2
0 ?7 0

t
(31) <cC(1 +/ Z4(s)ds).

0
Combining (29)-(31), we obtain the desired estimate of Lemma 2.3. O

Lemma 2.4.

(32) /me () a(s)ds + [us ()2, < C(1 + /zm%%j@mx

0

where C' is a positive constant, depending only on M.

Proof. Using (10), we rewritten the (11) as

eu +1\ 2
(33) put + (pu)um + p\Ilac - [( W2+ e ) Ux]z + (P + 7])1; = —77(]:)1.

Multiplying (33) by w, integrating (by parts) over )7, we have

1
// p|ut| dzds + // 5u2 + umuztdxds
Qr Qr U +€

(34) = // (putg + pV, + Py + 1y + 0@, )ugdads.
Qr

We deal with each term as follows:

2L\ % 1 2 41\ 2
Suy + : UpUgrdx = = Uy : (u?),dx
ql\u2+e 2 Jg\u2+e r
_lay (/“i (Z) 7 as)as
2dt Jo \ s+e ’

2 2
Uy, 1 2—p Uy L
/ (65—1— ) : dsz/ (s—i—l)% ds
0 s+¢ 0
=2 )t -
p ’

—// P,uidxds = // Pugdads
QT QT
d
= —// Pumdxdsf// Piu,dxds.
dt Qr Qr




56 YUKUN SONG, YANG CHEN, JUN YAN AND SHUAI CHEN

By virtue of (10), we have

(35) P, = —yPu, — P,u,

5)
// Npurdrds = // Nugrdrds = // nuzdrds — // Mpuzdads.
Qr Qr dt J Ja, Qr
- // NP urdrds = —— // nP,udrds + // 7 Prudxds.
Qr dt JJo, Qr

Substituting the above into (34), using Sobolev inequality and Young’s inequality,
we have

t
/ |Bue(s) 2ads + ua (B)]2
(0]
< / / (putiatie] + |pWatie] + yPu2| + |Paotita] + [metie] + @ zul)dads
Qr
+ / (1Puc| + ] + [n®eul)dz + C
Q
to1 P 1_P 1
<Ot [ ol il o sl [ Burle + ol Wi [ 2)ds
(0]

t P 1P _ P 1_r
+/ (VP2 |ua| £ [te] o |uze| L2 + av|p|7 5 [pel L2 [ul oe [ue oo + (16l 2 || 20 [ | poc?
0

F el 2| @olp2fulroe)ds + [P o fuslir + 0] Cofus|ie 0] oo [@aliefulpe

t 2
<c +/ (Iplzoe [ua | " [uae| 72" + |pl [Wael T2 + |P|L°°\Ux\Lp|um\L2
0

Lol i e 2 oo sl 2 + el 2 ua) By e 52 & [l 2 20 )ds)
(36)
HIPPT 7T /I\/ﬁm 2ads + Lfua (1)[2,

To estimate (36), combining (35) we have the following estimates

[1pwian= [ 1popar s [ 2 ([ perar)as

t
< [ 1P+ L [ [ g P67 (p— pudods
P—l 0 Jo
<C+C/ Ipl ] |P| Yol |ug | eds

(37) <C(1+ /t ZFTHH (5)ds),
0

In exactly the same way, we also have

) [ mistar < e [ 274,
which, together with (36) and (37), implies (32) holds. O

Lemma 2.5.
t

t 26~
(39)  |Vpu()Zs + / gt 22 (5)ds < C(1+ / 2T (5)ds),

0
where C' is a positive constant, depending only on M.
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Proof. Differentiating equation (11) with respect to ¢, multiplying the result equa-
tion by u¢, and integrating it over €2, we have

1d ) euZ +1, 222

—— d i 2 U | Uged
5 7 Qp|ut| x+/§2[(u%+5) u,Lu‘tz
(40)

= / [(pu)e (U7 + wugus + Wous) — pugui + (P + n)iug — niPauy — p¥guyde.
Q

Note that

cuZ +1, 2=z
J 1G]

:/ [(Eui+1)—§uw] (Eui+1)(ui+€)_<2_p)(1_52)uiuitdx
o ulte (u2 +¢)?
@ 2D [ @) e,

Q

w=(uZ+ 1)pr2,
from (24), it follows that

2

w ™ pee = [(u2 1) 5 [ e
2-p

< C|ugz| 3 +1)

< CZ(Spfzy(qfl) (t)

Combining (35), (40) can be rewritten into
4 2 >
lplue|“de + | |wugt|“de
<2 [ plulfunlfusldo+ [ plullusPleatdz + [ paljullu ulds
Q Q Q
[ pallullalfuatde + | plusl[Wauldo + | phuslfusPda
Q Q Q
+/7P|uw||uxt|dx+/ |Px|\u||uxt|dx—|—/ |7 || Ut |d
Q Q Q

4 / 71l e + / Pl el
Q Q
11
(42) => 1,
j=1

Using Sobolev inequality, Young’s inequality, (11),(24) and (25), we obtain

1
11 < 2ol il | Bte] 2wt 2w =

< CZT=DD (t) + %'Wuxtli%



58 YUKUN SONG, YANG CHEN, JUN YAN AND SHUAI CHEN

1
Iy < [plEa ul o lta o |y 2
1
< |p|;[1‘uwle‘uww‘i2|\/ﬁut|L2
< OZTF0GD (1),
2 1-%
I3 < |pa|p2|ulf e [ue|Le [ual o [ue| Lo
1-2 _
S |p|H1 ‘uzliz"uzx‘Lz 2 |(A}’U,$t|L2‘W 1|L°°
24y 1 9
< 2T (1) + et
Iy < |pal|p2|ulpoes [We| p2[ue] Lo
< |p|H1‘u:p|LT"\sz|L2‘wuzt|L2|w_1|L°°
16y 1
< CZTITD (1) + —lwiarlfs,

1
I5 < |p|Loo [ua| Lo [We| 2] y/pus| L2

o

1
< |p|12L11‘ulw‘L2|\ijz|L2|\/ﬁut|L2
< CZTF0GED (1),
< |uw‘L°°|\//3Ut|%2

< CZTF0GE (1),

1

[=2]

I S C|P|L2‘UI|LOO|wuwt|L2|w71|Loc

)

20y 1 2
< CZT®r=0G-1 (t) + ?|Wua:t|L2’
Iy < |Px|L2|u|Loo|Wumt|L2‘w_1|L°°
s 1
< C'Z(Spfi)w(Q*l) (t) + ?|wuxt|%23

I S |nt|L2\wuxt|Lz|w71|Lm

©

1
< sz—lf%(t) + ?|wumt|%2;
Lo < |ne| 02| Pa| oo |t | oo
< Clnel 2 [wuige| 2w ™" Lo

12 1
< CZT=0TT () + & witar] 2,

1
Iy < |pl7 e Wat|2|[v/put| L2

In order to estimate 171, we need to deal with the estimate of |U,|r2. Differ-
entiating (12) with respect to ¢, multiplying it by ¥, and integrating over Q, we
have

W2 41\
(43) /Q{(\If%—i—e) \IlmL\I/Itdx: 747rg/Q(pu)m\Iltd:U,

and

€02 + 1\ %3* S
—z . > (g — 2 .
(44) /Q[( Tre) | W] Bede > 1)/9(%“) W, [2da
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Let
p1 = (02 + 1)
then
(B e = (W2 + 1) 7|1
<O( a3 +1)
< CZ7 (1),

Then (43) can be rewritten into

/ |B9W |2 dx < C/ (pu) W dx
Q Q
< Clplp2|ulee|B9Wa 2| (BY) Lo
Using Young’s inequality, combining the above estimates we deduce that
1
Iy < [pl 7o |V/puel 2| BT Wae| 2| (B1) |1

< Czx (1),

Substituting I;(j = 1,2,...,11) into (42), and integrating over (7,t) C (0,7") on

the time variable, we have

t t 26
45)  pu(t)is +/ Jwitae|72 (s)ds < |v/pud(7)[12 +/ 200 (5)ds.
0 0

To obtain the estimate of |\/pus(t)|%., we need to estimate 7113% |\/puy(1)|2,.
Multiplying (33) by u; and integrating over 2, we get

eui—i—l
uZ+e

N
/ plue|dz < 2 / (Plul?ual? + pTal? + o7 — [( V22 w4 (P ) +na[*)d.
Q Q

According to the smoothness of (p,u,n), we have

2
cuy +1,2-» 2
ungE) 2 Usle + (P +n)e +nPe|")d

lim / (p|u|2|uz|2 + ,0|\I/gc|2 + p_lf —[(
T—0 Q

2 2 2 -1 eud, +1 2-p 2
= (p0|U0| |u0:v| +p0|\Ijz| + po ‘ - [(’11/27-1—6) 2 qu]z+(PO+770)z+T]0¢z| )d.’L’
Q Ox

< |po| Lo o[ Los [uoz 72 + |pol e [ Wl + [g]72 + |@a|72 < C.

Then, taking a limit on 7 in (45), as 7 — 0, we can easily obtain

¢ ¢ 26,
(46) |ﬁut(t)|iz +/ [ugt|22(s)ds < C(1 +/ Z Gr=9G=1 (s)ds),
0 0

This complete the proof of Lemma 2.5. g

With the help of Lemma 2.2 to Lemma 2.5, and the definition of Z(t), we conclude
that

t 26~y
(47) Z(#) < Coxp(C / 2T (5)ds),
0
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where C, C are positive constants, depending only on M. This means that there
exist a time T7 > 0 and a constant C, such that

ess sup (|plar + [ulyyrrqge + 0lm2 + 02 + Vo> + |pel22)
0<t<Ty

T
(48) +/ (IVpuelFz + luat|72 + 2|72 + mel72 + |matl72)ds < C,
0

where C' is a positive constant, depending only on M.

3. PROOF OF THE MAIN THEOREM

In this section, the existence of strong solutions can be established by a standard
argument. We construct the approximate solutions by using the iterative scheme,
derive uniform bounds and thus obtain solutions of the original problem by passing
to the limit. Our proof will be based on the usual iteration argument and some
ideas developed in [10]. Precisely, we first define u° = 0 and assuming that u*~1
was defined for k > 1, let p*, u¥, n* be the unique smooth solution to the following
system

(49) pi+ pu T 4 prul Tt =0,

(50) prug + pPut g+ )P+ Lyt + PY Ay = 0y,
(51) LgW* = dmg(p* —mo),

(52) 4 (W = @) = 0k,

with the initial and boundary conditions

(53) (Pkaukaﬁk)\t:o = (po,uo;70),

(54) uFlag = (ny +1*Pz)a0 = 0,

where

Lot = [(Tggas) " %,

With the process, the nonlinear coupled system has been deduced into a sequence of
decoupled problems and each problem admits a smooth solution. And the following
estimates hold

ess sup (o] + [u¥lyponga + 'l + Fle + 1V oMup|os + 16| 22)
St>141

T
(55) [V e kT + b + ke )as < €,
where C' is a generic constant depending only on My, but independent of k.
In addition, we first find p* from the initial problem
P+ ok ugT =0,
Pk|t:0 = Po,

with smooth function u*~!, obviously, there is a unique solution p* on the above
problem and also we could obtain that

k—1

Ty
pF(z,t) > dexp [—/ |u§_1(.,s)|Lmds] > 0,for all ¢ e (0,77).
0
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Next, we will prove the approximate solution (p¥, u*,n*) converges to a limit (p°, u®
7°) in a strong sense. To this end, let us define

e T L B R L 1
By a direct calculation, we can verify that the functions p*+1,
system of equations

(56) Pyt + (P M), + (PFF). = 0,
pk+laf+1 + pk+1ukﬂ§+1 + (L uk+1 _ Lpuk) — *ﬁkﬂ(uf + ukui 4 \I/§+1)
(57) _ (Pk+1 o Pk) 771;+1 + pk(ﬁkui . \Iﬂ;+1) o ﬁkJrl(I)m,
(58) L ,W* — L, 0k = dmgpht
(59) A+ b ). + (7 (W — @4)). = 0

Multiplying (50) by p**1, integrating over Q and using Young’s inequality, we obtain

b

kH1 gkt satisfy the

|Pk+l|2 < Ol e lugloe + 10" ug] 2] 2

< Clugy|r2]0" 22 + Celp* i |7 12 + €lug 7
(60) < Ce|p* 72 + €luf] 72,
where C; is a positive constant, depending on My and ¢ for all £ < T3 and k£ > 1.

Multiplying (57) by @**!, integrating over Q and using Young’s inequality, we
obtain
li/ pk+1|ﬂk+1\2dx+/(Lpuk+1 —Lpuk)ﬂkJrldx
2dt Jq
SC/Q (2" (| + luFulf] + () + [PEFY — PE A+ g+ [ | uf|

+ [P [ BEF + |7 Dy ] [a T |da
< C(p" T palulyl po @bt o + 155 Lo |ub oo [ulb | L2 @8 Lo 4+ (55T L2 [OEFT Lo ]abt 2
1

k41 k| 1-k+l kbl -kl k|3 K K k41

+ [PEHL— PRI o a2 + 75 pa @l e + 108 |22 [V o e 2 |ul | 2 [ug T 2

(61)

K Thil] |-ktl _k &

+ 105 g O p2al T e 4 [0 2 |ul T o).

Let 2
_est 41 2
U(S) - ( 82 +e ) )
then
o (s) = (5324-1)—5(552 +1)(s2+¢)— (2—p)(1 —e?)s?
s2+¢ (s2+€)2
p—1
> (32+5)2%p.

To estimate the second term of (61), we have

/(L — Lyu* k+1dx—// bt (1 — 0)ub)dg|ak 1 Pde

dé .
2/[/ |fuk™t 4 (1 — )uk|Lo§’+1]( 2

(62) 2071/ a1 2da
Q
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On the other hand, multiplying (58) by W**1 integrating over , we obtain

(63) /Q(LQ\I/’““ — LU0 dr = 47rg/ﬂpk+1\if’<+1dx.
Since

/Q(qupk“ Lau") 3 de = (g — 1) / / 0T 4 (1 — 0)Tk]12d0) (T4 2da,
and

1 1
1
OUrHL 4 (1 —0)Tk Hd@:/ de
/OI z ( )zl o 10T+ (1= )Tk

1
1
> de
2 |, G
_ 1
(T

then

/ [|\P§+1|q—2\p§+1 B ‘\I/J;‘q—Q\IJJ;]\Il:HdI > — 1 /(\I,k+1 x,
Q (W2 () Lo + [WE()[)?

which implies
(69 [ @R < cl
From (55), (62) and (64), (61) can be re-written as

d
k+1|uk+1|2dx+c |uk+1|2dx
dt
(65) SBs( HIF 7 + C(1V pku |L 7 2) + €lag e,

where Be(t) = C(1+ |uf,(t)|2,, for all t < Ty and k > 1. Using (55) we derive
¢
/ Be(s)ds < C + Ct.
0

Multiplying (59) by 7", integrating over ©, using (55) and Young’s inequality, we
have

2dt/ ‘nk—o—l‘de_'_/ |’I7k+1|2d$
t/W“m @Hwﬂm+/mnunwﬂm

P g g 7 s L 7 s e S
(66)
< Cel™ 3 + €t 3. + €lub)7e.

Combining (60),(65) and (66), we have
L1710 + WA O + 17 0a) + 175 O + 75 s

(67) SE&()I ) [Le + CIV R [T + Celi™2a + €lug2s,
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where E¢(t) is depending only on B¢(t) and Cg, for all t < T; and k > 1. Using
(55), we obtain

t
/ Ee(s)ds < C + Cet.
0

Integrating (67) over (0,¢) C (0,T1) with respect to t, using Gronwall’s inequality,
we have

PP )7 + [V eF T ()3 + [0 ()]s /|Uk+1 |L2d5+/ 7h 32 ds

(68) < Cexp Cgt/ (VPP ()22 + |25 (s)[22)ds

From the above recursive relation, choose ¢ > 0 and 0 < T, < Tj such that
Cexp(CeT.) < 3, using Gronwall’s inequality, we deduce that

K
S sup (O + VAT R + 17 (1) 2ad
i 0<t<T.
T
(69) + / [ (1)2, + / 75 () 2ade] < C,
0 0

where C' is a positive constant, depending only on Mj.
Therefore, as k — +00, the sequence (p*,u*, n*) converges to a limit (p°,u,n°)
in the following strong sense

(70) p¥ = p° in L*=(0,T,; L*(Q)),
(71) ub = w in L%°(0,T,; L*(Q)) N L*(0,Ty; HL (),
(72) n* —n° in L>(0,T,; L*(Q)) N L*(0,T.; H(Q)).

By virtue of the lower semi-continuity of various norms, we deduce from the uniform
estimate (55) that (p°, u®,n°) satisfies the following uniform estimate

ess sup (|p%lms +[ulwgopz + 107l + 0flee + |Vo%uilee + 1i]2)
U141

T.
(73) +/0 (VP ui Lz + |ug T2 + 5ITe + Inf |22 + [n5,172)ds < C.

Since all of the constants are independent of €, there exists a subsequence (p®7,u,
1) of (p°,u®,n®), without loss of generality, we denote to (p°,uc,n°). Let ¢ — 0,
we can get the following convergence

(74) p*—p° in L=(0,T.; L*()),
(75) uf —u® in L(0,T.; L3(Q)) N L0, Ty; HL(Q)),
(76) n° —n° in L®(0,T.; L*(Q)) N L3(0,T,; H'()),

and there also holds

ess sup (10l + [0 lypmepge + 10|z 1|2z + 1V p"ul e + 12 22)
U141

T,
)
(77) 4 / (WA 2+ 182+ 02 + [ 2 + [ 22)ds < C.
0
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For each small § > 0, let p = Js * po + 0, where Js is a mollifier on ©, and
ud € HY(Q) N H?(Q) is a smooth solution of the boundary value problem

1
78) Lyug + (P(pd) +10) , + 0@z = (00)7 (9° + ®a),
uf|o = 0,

where ¢° € C§° and satisfies |¢°|z2 < |g]L2, 511m+ |9 — glr2 = 0.
—0

We deduce that (p°,u’,n?) is a solution of the following initial boundary value
problem

Pt + (Pu)w = 0)
(pu)e + (pu2):c +p¥, — >‘(|Ux|p72ux)x + (P +n)z = —nP,,
_ 1
(‘\I/x|q Q\Ija:)a: = 47Tg(p BT pdx),
12 Jq

(P»Uﬂ?)hzo = (Pgaugmg%
ulog = (N +nPz)]o0 = 0,

where p} > 6,3 <p,q < 2.

By the proof of Lemma 2.1, there exists a subsequence {ugj} of {ud}, as §; —
0t u — o in HE(Q) N HAQ), —(Jug,P~2ug)e — —(|uos|P~>uos)s in L*(9),
Hence, ug satisfies the compatibility condition (9) of Theorem 1.2. By virtue of
the lower semi-continuity of various norms, we deduce that (p,u,n) satisfies the

following uniform estimate

ess sup (|plg + ‘u|Wol’pﬁH2 + 0|2 4 [melp2 + [V/puel L2 + |plp2)
0<t<T

>41

T.
(79) +/ (Ivpuelis + lustlts + neliz + nelie + el 72)ds < C,
0

where C' is a positive constant, depending only on My. The uniqueness of solution
can also be obtained by the same method as the above proof of convergence, we
omit the details here. This completes the proof.
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