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WEAK APPROXIMATIVE COMPACTNESS OF

HYPERPLANE AND ASPLUND PROPERTY IN

MUSIELAK-ORLICZ-BOCHNER FUNCTION SPACES

SHAOQIANG SHANG∗ AND YUNAN CUI

Abstract. In this paper, some criteria for weakly approximative compact-

ness and approximative compactness of weak∗ hyperplane for Musielak-Orlicz-
Bochner function spaces are given. Moreover, we also prove that, in Musielak-

Orlicz-Bochner function spaces generated by strongly smooth Banach space,

L0
M (X) (resp LM (X)) is an Asplund space if and only if M and N satisfy con-

dition ∆. As a corollary, we obtain that L0
M (R) (resp LM (R)) is an Asplund

space if and only if M and N satisfy condition ∆.

1. Introduction and preliminaries

The study of Orlicz function space originated in the last century. Orlicz function
space is an important class of Banach spaces. Orlicz function space has important
applications in the field of partial differential equations. However, with the devel-
opment of differential equation theory, Orlicz function space can no longer satisfy
the development of theory of differential equation (see [1], [6]-[11] and [15]-[21]).
Mathematicians began to pay attention to the extended form of Orlicz function
space. Musielak-Orlicz-Bochner function space is an important extension of Orlicz
function space. The development of theory of Musielak-Orlicz-Bochner function
space provides theoretical basis for the development of differential equations. In
this paper, some criteria for weakly approximative compactness and approximative
compactness of weak∗ hyperplane for Musielak-Orlicz-Bochner function spaces are
given. Moreover, we also prove that, in Musielak-Orlicz-Bochner function spaces
generated by strongly smooth Banach space, L0

M (X) (resp LM (X)) is an Asplund
space if and only if M ∈ ∆ and N ∈ ∆. As a corollary, we obtain that L0

M (R) (resp
LM (R)) is an Asplund space if and only if M ∈ ∆ and N ∈ ∆.

Let (X, ‖ · ‖) be a real Banach space, S(X) and B(X) denote the unit sphere
and unit ball of X, respectively. By X∗ we denote the dual space of X. Let N,R
and R+ denote the sets natural numbers, reals and nonnegative reals, respectively.
Let us take a point x ∈ S(X) and let Hx = {x∗ ∈ X∗ : x∗(x) = 1}. Let C ⊂ X be
a nonempty subset of X. Then the set-valued mapping PC : X → C

PC(x) =

{
z ∈ C : ‖x− z‖ = dist (x,C) = inf

y∈C
‖x− y‖

}
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is called the metric projection operator from X onto C. First let us recall some
definitions and results that will be used in the further part of the paper.

Definition 1.1. A nonempty subset C of X is said to be approximatively compact
(weakly approximatively compact) if for any sequence {yn}∞n=1 ⊂ C and any x ∈
X satisfying ‖x− yn‖ → infy∈C ‖x − y‖ as n → ∞, there exists a subsequence
converging (weakly) to an element of C.

Definition 1.2. A point x ∈ S(X) is called a smooth point if it has a unique
supporting functional fx ∈ S(X∗). If every x ∈ S(X) is a smooth point, then X is
called a smooth space.

Consider a convex subset A of a Banach space X. A point x ∈ A is said to be an
extreme point of A if 2x = y + z and y, z ∈ A imply y = z. The set of all extreme
points of A is denoted by ExtA. If ExtB(X) = S(X), then X is said to be strictly
convex. Moreover, it is well known that if X∗ is strictly convex, then X is smooth.

Definition 1.3. A point x ∈ S(X) is said to be a strongly smooth point of X
if there exist {x∗n}∞n=1 ⊂ S(X∗) and x∗0 ∈ S(X∗) such that x∗n → x∗0 whenever
x∗n(x)→ 1. A Banach space X is said to be strongly smooth if every point of S(X)
is strongly smooth point of X.

Definition 1.4. A Banach space X is said to have the Radon-Nikodym property
if let (T,Σ, µ) be nonatomic measurable space. v is a measure and v is bounded
variation and absolutely continuous with respect to µ, then there exists an integrable
function f such that for any A ∈ Σ, we have

v(A) =

∫
A

fdµ.

It is well known that if X is strongly smooth, then X has the Radon-Nikodym
property. Moreover, it is easy to see that if X is a strongly smooth space, then X
is smooth. Let f be a real continuous convex function on X. Recall that f is said
to be Gâteaux differentiable at the point x in X if the limit

(∗) df(x)(y) = lim
t→0

1

t
[f(x+ ty)− f(x)]

exists for all y ∈ X. If the difference quotient in (∗) converges to df(x)(y) uniformly
for y in the unit ball B(X), then f is said to be Frechet differentiable at x. X is
called an Asplund space if for every continuous convex function on X, there exists
a dense Gδ subset G of X such that it is Frechet differentiable at each point of G.
It is well known that if X is an Asplund space, then X∗ is separable if and only if
X is separable. Moreover, It is well known that X is an Asplund space if and only
if X∗ has the Radon-Nikodym property.

Let (T,Σ, µ) be a complete nonatomic measurable space. Suppose that a function
M : T × [0,∞)→ [0,∞] statisfies the following conditions.

(1) for µ-a.e, t ∈ T , M(t, 0) = 0, lim
u→∞

M(t, u) = ∞ and M(t, u′) < ∞ for some

u′ > 0.
(2) for µ-a.e, t ∈ T , M(t, u) is convex in [0,∞) with respect to u.
(3) for each u ∈ [0,∞), M(t, u) is a Σ-measurable function of t on T .
Every such a function M is called a Musielak-Orlicz-function. Let p(t, ·) denote

the right derivative of M(t, ·) at u ∈ R+ (where p(t, u) = ∞ if M(t, u) = ∞) and
let q(t, ·) be the generalized inverse function of p(t, ·) defined on R+ by

q(t, v) = supu≥0 {u ≥ 0 : p(t, u) ≤ v} .
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Then the function N(t, v) defined by N(t, v) =
∫ |v|
0

q(t, s)ds for any v ∈ R and
Σ-a.e. t ∈ T is called the complementary function to M in the sense of Young. It is
well known that the Young inequality uv ≤M(t, u) +N(t, v) holds for all u, v,∈ R
and µ-a.e. t ∈ T . Moreover, for any u ∈ R the equality uv = M(t, u) + N(t, v)
holds if and only if v ∈ [p−(t, u), p(t, u)]. Let

e(t) = sup {u > 0 : M(t, u) = 0} and E(t) = sup {u > 0 : M(t, u) <∞} .
For a fixed t ∈ T and v ≥ 0, if there exists ε ∈ (0, 1) such that

M(t, v) =
1

2
M(t, v + ε) +

1

2
M(t, v − ε) <∞,

then v is called a point of affinity of M(t, ·). The set of all points of affinity of
M(t, ·) for a fixed t ∈ T is denoted by Kt.

Definition 1.5. (see[2]) We say that a Musielak-Orlicz function M satisfies condi-
tion ∆(M ∈ ∆) if there exist K ≥ 1 and a measureable nonnegative function δ(t)
on T such that

∫
T
M(t, δ(t)) dt <∞ and M(t, 2u) ≤ KM(t, u) for almost all t ∈ T

and all u ≥ δ(t).

Definition 1.6. (see[2]) A Musielak-Orlicz function M(t, u) is said to be strictly
convex with respect to u for t ∈ T if for almost every t ∈ T and any u, v ∈ R, u 6= v,
we have

M

(
t,
u+ v

2

)
<

1

2
M(t, u) +

1

2
M(t, v).

Given any Banach space (X, ‖·‖), we denote by XT the set of all strongly Σ-
measurable functions from T to X, and for each u ∈ XT , we define the modular of
u by

ρM (u) =

∫
T

M(t, ‖u(t)‖)dt.

Let us define the Musielak-Orlicz-Bochner function space LM (X) by

LM (X) = {u ∈ XT : ρM (λu) <∞ for some λ > 0}
and its subspace

EM (X) = {u ∈ XT : ρM (λu) <∞ for all λ > 0}.
It is well known that the spaces LM (X) and their subspaces EM (X) are Banach
spaces when they are equipped with the Luxemburg norm

‖u‖ = inf
{
λ > 0 : ρM

(u
λ

)
≤ 1
}

or with the Orlicz norm

‖u‖0 = inf
k>0

1

k
[1 + ρM (ku)].

It is well known that the Luxemburg norm and the Orlicz norm are equivalent.
The spaces (LM (X), ‖ · ‖), (LM (X), ‖ · ‖0), (EM (X), ‖ · ‖M ) and (EM (X), ‖ · ‖0)
are denoted shortly by LM (X), L0

M (X), EM (X) and E0
M (X), respectively. LM (R)

and L0
M (R) are called Musielak-Orlicz function spaces, and EM (R) and E0

M (R) are
the subspaces of LM (R) and L0

M (R), respectively. Moreover, it is well known that

(EM (R))
∗

= L0
N (R) and

(
E0
M (R)

)∗
= LN (R) (see[4], [20]). Moreover, by [2], we

know that EM (R) = LM (R) if and only if M ∈ ∆.

Lemma 1.7. (see[2]) ‖u‖ ≤ 1⇒ ρM (u) ≤ ‖u‖ and ‖u‖ > 1⇒ ρM (u) > ‖u‖.
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Lemma 1.8. (see [2]) M /∈ ∆⇔ for any ε > 0, there exists u ∈ LM (X) such that
ρM (u) = ε and ‖u(t)‖ < E(t) for almost all t ∈ T .

2. Strongly smooth point and approximative compactness in
Musielak-Orlicz-Bochner function spaces

Theorem 2.1. Suppose that X is a strongly smooth space and v ∈ S(E0
N (X)).

Then the following statements are equivalent:
(1) The point v is a strongly smooth point of E0

N (X);
(2) The hyperplane Hv of LM (X∗) is approximatively compact;
(3) The hyperplane Hv of LM (X∗) is weakly approximatively compact;
(4) M ∈ ∆ and µ{t ∈ T : ‖u(t)‖ ∈ Kt} = 0 whenever 〈u, v〉 = ‖u‖.

In order to prove the theorem, we first give some lemmas.

Lemma 2.2. Suppose that X is a Banach space and x ∈ S(X). Then the following
statements are equivalent:

(1) The hyperplane Hx of X∗ is approximatively (weakly approximatively) com-
pact.

(2) If y∗n ∈ S(X∗) and y∗n(x) → 1 as n → ∞, then the sequence {y∗n}∞n=1 is
relatively (weakly) compact.

Proof. (2) ⇒ (1). By Theorem 2.1 of [18], we obtain that the hyperplane Hx is a
proximinal set. We will prove that if ‖x∗ − y∗n‖ → dist (x∗, Hx) as n → ∞, then
the sequence {y∗n}∞n=1 is relatively (weakly) compact, where {y∗n}∞n=1 ⊂ Hx and
x∗ /∈ Hx. Since ‖x∗ − y∗n‖ → dist (x∗, Hx) as n → ∞, we have ‖0− (y∗n − x∗)‖ →
dist (0, Hx − x∗). Since Hx − x∗ is weakly∗ closed set, we have dist(0, Hx − x∗) =
r > 0. Pick y∗0 ∈ PHx−x∗(0). Then

r = dist(0, PHx−x∗(0)) = ‖y∗0‖ , B(0, r) ∩ (Hx − x∗) = ∅

and

B(0, r) ∩ (Hx − x∗) = PHx−x∗(0).

For clarity, we will divide the proof into two cases.

Case I. k = sup{x(y∗) : y∗ ∈ Hx − x∗} ≤ 0. We claim that

k = sup{x(y∗) : y∗ ∈ Hx − x∗} ≤ inf{x(y∗) : y∗ ∈ B(0, r)} = −‖x‖ · ‖y∗0‖ .

In fact, suppose that there exists y∗1 ∈ B(0, r) such that x(y∗1) < k. Then there
exists λ ∈ (0, 1) such that x(λy∗1) = k. It is easy to see that λy∗1 ∈ B(0, r) and
λy∗1 ∈ Hx, a contradiction. Since y∗0 ∈ PHx−x∗(0) ⊂ Hx − x∗, we have

−‖x‖ · ‖y∗0‖ ≤ x(y∗0) ≤ sup{x(y∗) : y∗ ∈ Hx − x∗}
≤ inf{x(y∗) : y∗ ∈ B(0, r)}
= −‖x‖ · ‖y∗0‖

and

−‖x‖ · ‖y∗0‖ = x(y∗0) = sup{x(y∗) : y∗ ∈ Hx − x∗}.
This means that the inequality x(y∗0) ≥ x(y∗n − x∗) holds. Therefore

‖y∗0‖ = x(0− y∗0) ≤ x(x∗ − y∗n) ≤ ‖x∗ − y∗n‖ → dist(x∗, Hx)

= dist (0, Hx − x∗) = ‖0− y∗0‖ = ‖y∗0‖ .
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This implies that ‖x∗ − y∗n‖ → ‖y∗0‖ and x(x∗ − y∗n)→ ‖y∗0‖ as n→∞. Moreover,
we have

lim
n→∞

x

(
− x∗ − y∗n
‖x∗ − y∗n‖

+
x∗ − y∗n
‖y∗0‖

)
= lim
n→∞

(
1

‖y∗0‖
− 1

‖x∗ − y∗n‖

)
· x(x∗ − y∗n) = 0.

Therefore, by x(x∗ − y∗n)→ ‖y∗0‖ as n→∞, we have

lim
n→∞

x

(
− x∗ − y∗n
‖x∗ − y∗n‖

)
= 1.

Hence the sequence {−(x∗ − y∗n)/‖(x∗ − y∗n)‖}∞n=1 is relatively (weakly) compact.
Since ‖x∗ − y∗n‖ → ‖y∗0‖ as n → ∞, we obtain that {y∗n}∞n=1 is relatively (weakly)
compact. Hence Hx is approximatively (weakly approximatively) compact.

Case II. sup{x(y∗) : y∗ ∈ Hx − x∗} > 0. This implies that k = sup{−x(y∗) : y∗ ∈
Hx − x∗} < 0. Analogous to the proof of Case I, we have

k = sup{−x(y∗) : y∗ ∈ Hx − x∗} ≤ inf{−x(y∗) : y∗ ∈ B(0, r)} = −‖x‖ · ‖y∗0‖ .
Analogous to the proof of Case I, we obtain that {y∗n}∞n=1 is relatively (weakly)
compact. Hence weak∗ hyperplane Hx is approximatively (weakly approximatively)
compact.

(1) ⇒ (2). Let {y∗n}∞n=1 ⊂ S(X∗) and x ∈ S(X) satisfy y∗n(x) → 1 as n → ∞.
Since Hx is a weak∗ closed set, by Theorem 2.1 of [18], we obtain that Hx is a
proximinal set. Hence there exists z∗n ∈ Hx such that ‖y∗n − z∗n‖ = dist(y∗n, Hx).
Pick x∗0 ∈ Hx ∩ S(X∗). Since

lim
n→∞

‖y∗n − z∗n‖ = lim
n→∞

dist (y∗n, Hx) = lim
n→∞

dist (y∗n − x∗0, Hx − x∗0)

= lim
n→∞

[x(x∗0 − y∗n)] = lim
n→∞

[1− x(y∗n)] = 0,

we have the following formula

1 ≤ lim sup
n→∞

‖z∗n‖ ≤ lim
n→∞

‖y∗n‖+ lim
n→∞

‖y∗n − z∗n‖ = 1 = dist (0, Hx) .

Therefore, by formula ‖z∗n‖ ≥ 1, we have ‖0− z∗n‖ → dist (0, Hx) as n → ∞. This
implies that the sequence {z∗n}∞n=1 is relatively (weakly) compact. Consequently
{y∗n}∞n=1 is relatively (weakly) compact by y∗n = z∗n+(y∗n−z∗n), which completes the
proof. �

Lemma 2.3. Suppose that u ∈ S(LM (X∗)) is norm attainable on S(E0
N (X)) and

M ∈ ∆. Then (2)⇒(1) is true, where
(1) µ {t ∈ T : ‖u(t)‖ ∈ Kt} = 0;
(2) If u =

∑∞
i=1 tiui, where ui ∈ B(LM (X∗)), ti ∈ (0, 1) and

∑∞
i=1 ti = 1, then

the sequence {ui}∞i=1 is relatively weakly compact.

Proof. (2)⇒(1). Let u ∈ LM (X∗) and u =
∑∞
i=1 tiui, where ui ∈ B(LM (X∗)), ti ∈

(0, 1) and
∑∞
i=1 ti = 1. Suppose that µH ′ > 0, where

H ′ = {t ∈ T0 : 2M(t, ‖u(t)‖) = M(t, ‖u(t)‖+ εt) +M(t, ‖u(t)‖ − εt), εt ∈ (0, 1)} ,
T0 = {t ∈ T : ‖u(t)‖ > 0} and ‖u(t)‖ − εt > 0. Since H ′ ⊂ ∪∞n=2Hn, where

Hn =

{
t ∈ T0 : 2M(t, ‖u(t)‖) = M(t, (1− 1

n
) ‖u(t)‖) +M(t, (1− 1

n
) ‖u(t)‖)

}
,

there exists a natural number n0 ∈ N such that µHn0
> 0, where

Hn0
=

{
t ∈ T0 : 2M(t, ‖u(t)‖) = M(t, (1− 1

n0
) ‖u(t)‖) +M(t, (1− 1

n0
) ‖u(t)‖)

}
.
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Since u is norm attainable on S(E0
N (X)), there exists a point v ∈ S(E0

N (X)) such

that
∫
T
〈u, v〉dt = ‖u‖ = ‖v‖0 = 1. Let H = Hn0

. Then, decompose H into H1
1

and H2
1 such that H1

1 ∪ H1
2 = H, H1

1 ∩ H1
2 = ∅ and

∫
H1

1
〈u, v〉dt =

∫
H1

2
〈u, v〉dt.

Decompose H1
1 into H2

1 and H2
2 such that H2

1 ∪ H2
2 = H1

1 , H2
1 ∩ H2

2 = ∅ and∫
H2

1
〈u, v〉dt =

∫
H2

2
〈u, v〉dt. Decompose H1

2 into H2
3 and H2

4 such that H2
3 ∪H2

4 =

H1
2 , H2

3 ∩H2
4 = ∅ and

∫
H2

3
〈u, v〉dt =

∫
H2

4
〈u, v〉dt. Generally, decompose Hn−1

i into

Hn
2i−1 and Hn

2i such that

(2.1) Hn
2i−1∪Hn

2i = Hn−1
i , Hn

2i−1∩Hn
2i = ∅ and

∫
Hn

2i−1

〈u, v〉dt =

∫
Hn

2i

〈u, v〉dt,

where n = 1, 2, 3, ... and i = 1, 2, ..., 2n. Then we define two function sequences
{un}∞n=1 and {u1n}∞n=1, where

un(t) =



u(t) t ∈ T\H
(1− r0)u(t) t ∈ Hn

1

(1 + r0)u(t) t ∈ Hn
2

... ...
(1− r0)u(t) t ∈ Hn

2n−1
(1 + r0)u(t) t ∈ Hn

2n

u1n(t) =



u(t) t ∈ T\H
(1− r0)u(t) t ∈ Hn

1

(1− r0)u(t) t ∈ Hn
2

... ...
(1 + r0)u(t) t ∈ Hn

2n−1
(1− r0)u(t) t ∈ Hn

2n

and r0 = 1/n0. Moreover, by formula (2.1) and the definition of H, we have

ρM (un)+ρM (u1n)

=

∫
T\H

M(t, ‖u(t)‖)dt+
∫
Hn

1

M

(
t, (1− 1

n0
) ‖u(t)‖

)
dt+

∫
Hn

2

M

(
t, (1 +

1

n0
) ‖u(t)‖

)
dt

+···+
∫

Hn
2n−1

M

(
t, (1− 1

n0
) ‖u(t)‖

)
dt+

∫
Hn

2n

M

(
t, (1 +

1

n0
) ‖u(t)‖

)
dt

+

∫
T\H

M(t, ‖u(t)‖)dt+
∫
Hn

1

M

(
t, (1 +

1

n0
) ‖u(t)‖

)
dt+

∫
Hn

2

M

(
t, (1− 1

n0
) ‖u(t)‖

)
dt

+···+
∫

Hn
2n−1

M

(
t, (1 +

1

n0
) ‖u(t)‖

)
dt+

∫
Hn

2n

M

(
t, (1− 1

n0
) ‖u(t)‖

)
dt

= 2

∫
T\H

M(t, ‖u(t)‖)dt+2

∫
Hn

1

M (t, ‖u(t)‖) dt+2

∫
Hn

2

M (t, ‖u(t)‖) dt

+···+2

∫
Hn

2n−1

M (t, ‖u(t)‖) dt+2

∫
Hn

2n

M (t, ‖u(t)‖) dt = 2

and

〈un, v〉

=

∫
T\H

(un(t), v(t))dt+

∫
Hn

1

(
(1− 1

n0
)u(t), v(t)

)
dt+

∫
Hn

2

(
(1− 1

n0
)u(t), v(t)

)
dt

+···+
∫

Hn
2n−1

(
(1− 1

n0
)u(t), v(t)

)
dt+

∫
Hn

2n

(
(1 +

1

n0
)u(t), v(t)

)
dt
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= 〈u, v〉+−1

n0

∫
Hn

1

(u(t), v(t))dt+
1

n0

∫
Hn

2

(u(t), v(t))dt+···+−1

n0

∫
Hn

2n−1

(u(t), v(t))dt

+
−1

n0

∫
Hn

2n

(u(t), v(t))dt = 〈u, v〉 = 1.

This implies that ‖un‖ ≥ 1. Hence ρM (un) ≥ 1. Similarly, we have ρM (u1n) ≥ 1.
Since ρM (un) + ρM (u1n) = 2, we get that ρM (un) = ρM (u1n) = 1. This implies that
‖un‖ =

∥∥u1n∥∥ = 1. Hence we define a new function sequence {zn}∞n=1 such that

{zn(t)}∞n=1 =
(
u1(t), u11(t), u2(t), u12(t), . . . , un(t), u1n(t), . . .

)
.

Moreover, it is easy to see that
∞∑
n=1

(
1

2

1

2n
un +

1

2

1

2n
u1n

)
=

∞∑
n=1

1

2n+1

(
un + u1n

)
=

∞∑
n=1

2

2n+1
u = u,

∞∑
n=1

(
1

2
· 1

2n
+

1

2
· 1

2n

)
=

∞∑
n=1

1

2n
= 1.

Since
∫
T

(u(t), v(t))dt = ‖u‖ = ‖v‖0 = 1 and M ∈ ∆, by formula µH > 0, we
have (u(t), v(t)) > 0 for µ-a.e, t ∈ H. Therefore, by formula µH > 0, we get that∫
H

(u(t), v(t))dt > 0. Moreover, since the sequence {un}∞n=1 is a subsequence of
{zn}∞n=1, we have the following formula∫

T

(un(t)− um(t), v(t))dt =
1

2

∫
H

(u(t), v(t))dt > 0

whenever m 6= n. Hence the sequence {zn}∞n=1 is not relatively weakly compact, a
contradiction. This implies that µ {t ∈ T : ‖u(t)‖ ∈ Kt} = 0, which completes the
proof. �

Lemma 2.4. Suppose that v0 ∈ E0
N (X) and the w∗-hyperplane Hv0 of LM (X∗) is

weakly approximatively compact and X is a strongly smooth space. Then M ∈ ∆.

Proof. Since X is a strongly smooth space, we obtain that X∗ has the Radon-
Nikodym property. Then (E0

N (X))∗ = LM (X∗). Hence there exists u0 ∈ LM (X∗)
such that ‖u0‖ = 1 and 〈u0, v0〉 = 1. Suppose that M /∈ ∆. Then, by Lemma 1.8,
there exists a point u ∈ LM (X∗) such that ‖u‖ = 1 and ρM (u) < 1. This implies
that

λ0 = inf
{
λ ∈ R+ : ρM

(u
λ

)
< +∞

}
= 1.

Hence, for any L > 1, we have ρM (Lu) = ∞. Indeed, suppose that there exists
L1 > 1 such that ρM (L1u) < ∞. Moreover, we know that the function F (k) =∫
T
M(t, k ‖u(t)‖)dt is continuous on [1, L1]. Then there exists L2 > 1 such that

ρM (L2u) = 1. This implies that ‖u‖ ≤ 1/L2, contradicting ‖u‖ = 1.
Decompose T into E1 and G1 such that µE1 = µG1. Then for any L > 1,

we obtain that
∫
E1
M(t, L ‖u(t)‖)dt =∞ or

∫
G1
M(t, L ‖u(t)‖)dt = ∞. Hence we

may assume without loss of generality that
∫
E1
M(t, L ‖u(t)‖)dt =∞. Decom-

pose E1 into E2 and G2 such that µE2 = µG2. Then, for any L > 1, we have∫
E2
M(t, L ‖u(t)‖)dt =∞ or

∫
G2
M(t, L ‖u(t)‖)dt = ∞. Hence we may assume

without loss of generality that
∫
E2
M(t, L ‖u(t)‖)dt =∞. In generical, decompose

En into En+1 and Gn+1 such that µEn+1 = µGn+1. Then, for any L > 1, we have
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En+1

M(t, L ‖u(t)‖)dt =∞ or
∫
Gn+1

M(t, L ‖u(t)‖)dt =∞. Hence we may assume

without loss of generality that
∫
En+1

M(t, L ‖u(t)‖)dt =∞. Hence

E1 ⊃ E2 ⊃ E3 ⊃ · · ·, µEi =
1

2
µEi+1 and ‖uχEi‖ = 1, i = 1, 2, ....

This implies that ‖uχEi
‖ = 1. Let un = u0 + uχT\Ei

and D = co{un}∞n=1. Then,
for every v = u0 + α1uχT\En(1)

+ · · · + αkuχT\En(k)
∈ co{un}∞n=1, there exists a

natural number i(0) > max{n(1), ..., n(k)} such that

‖u0 − v‖ =
∥∥α1uχEn(1)

+ · · ·+ αkuχEn(k)

∥∥ ≥ ∥∥uχEi(0)

∥∥ = 1,

where α1 + α2 + · · ·+ αk = 1. This implies that dist(u0, D) = 1. Therefore, by the

separable theorem, there exist f ∈
(
L0
M (X)

)∗
and r > 0 such that

(2.2) f(u0)−r > sup {f(v) : v ∈ co{un}∞n=1} .
Moreover, by formula 〈u0, v0〉 = 1 and the definition of un, we have the following
inequalities

0 ≤ lim sup
n→∞

|〈un, v0〉 − 1| = lim sup
n→∞

|〈un − u0, v0〉|

= lim sup
n→∞

∫
En

|(u(t), v0(t))| dt

≤ lim inf
n→∞

[
‖u‖ ‖v0χEn

‖0
]

= 0.

Hence we have 〈un, v0〉 → 1 as n→∞. Since weak∗ hyperplane Hv0 of LM (X∗) is
weakly approximatively compact, by Lemma 2.2, we get that {un}∞n=1 is relatively
weakly compact. Moreover, for any v ∈ E0

N (X), we have

lim sup
n→∞

|〈un − u0, v〉| ≤ lim sup
n→∞

∫
En

|(u(t), v(t))| dt ≤ lim inf
n→∞

[
‖u‖ ‖vχEn‖

0
]

= 0.

This implies that un
w∗

−−→ u0 as n → ∞. Since the sequence {un}∞n=1 is relatively

weakly compact, we get that un
w→u0 as n→∞. However, by formula (2.2), we get

that un
w→u0 is impossible, a contradiction, which completes the proof. �

We next prove that Theorem 2.1.

Proof. By Lemma 2.2, it is easy to see that (1)⇒(2) and (2)⇒(3) are true. We
next will prove that (3)⇒(4). By Lemma 2.4, we obtain that M ∈ ∆. Moreover,
if u ∈ S(LM (X∗)) is norm attainable at point v0 and u =

∑∞
n=1 tnun, where

un ∈ B(LM (X∗)), tn ∈ (0, 1) and
∑∞
n=1 tn = 1, then

1 = 〈u, v0〉 =

〈 ∞∑
n=1

tnun, v0

〉
=

∞∑
n=1

tn 〈un, v0〉.

This implies that 〈un, v0〉 = 1 for all n ∈ N . Therefore, by Lemma 2.2, we obtain
that {un}∞n=1 is relatively weakly compact. Therefore, by Lemma 2.3, we get that
µ {t ∈ T : ‖u(t)‖ ∈ Kt} = 0.

(4)⇒(1). First we will prove that v is a smooth point of E0
N (X). In fact, since

X is strongly smooth, we obtain that X∗ has the Radon-Nikodym property. Then
(E0

N (X))∗ = LM (X∗). Suppose that 〈u1, v〉 = 〈u2, v〉 = 1 and ‖u1‖ = ‖u2‖ = 1.
Then 〈u, v〉 = 1, where 2u = u1 + u2. Hence µ {t ∈ T : ‖u(t)‖ ∈ Kt} = 0. Then
‖u(t)‖ ∈ LM (R) and ‖v(t)‖ ∈ E0

N (R). Since M ∈ ∆ and µ{t ∈ T : ‖u(t)‖ ∈ Kt} =
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0, by Theorem 5.10 of [2], we get that ‖u‖ is an extreme point of LM (R). Moreover,
by ‖u1‖ = ‖u2‖ = 1 and v ∈ S(E0

N (X)), we have

1 ≥
∫
T

‖u1(t)‖ ‖v(t)‖dt =

∫
T

(u1(t), v(t)) dt = 〈u1, v〉 = 1

and

1 ≥
∫
T

‖u2(t)‖ ‖v(t)‖dt =

∫
T

(u2(t), v(t)) dt = 〈u2, v〉 = 1.

This implies that∫
T

(
1

2
‖u1(t)‖+ ‖u2(t)‖

)
‖v(t)‖dt =

1

2
〈u1, v〉+

1

2
〈u2, v〉 = 1,

(u1(t), v(t)) = ‖u1(t)‖ ‖v(t)‖ and (u2(t), v(t)) = ‖u2(t)‖ ‖v(t)‖ for almost all t ∈ T .
Moreover, by 〈u, v〉 = 1 and 2u = u1 + u2, we get that ‖u‖ = 1. Hence

1 ≥
∫
T

(
1

2
‖u1(t) + u2(t)‖

)
‖v(t)‖dt =

∫
T

(u(t), v(t)) dt = 〈u, v〉 = 1.

This implies that 2 ‖u(t)‖ = ‖u1(t)‖ + ‖u2(t)‖ for almost all t ∈ T . Since ‖u‖ is
an extreme point of LM (R), we have ‖u1(t)‖ = ‖u2(t)‖ for almost all t ∈ T . Since
(u1(t), v(t)) = ‖u1(t)‖ ‖v(t)‖ and (u2(t), v(t)) = ‖u2(t)‖ ‖v(t)‖ for almost all t ∈ T ,
by the smoothness of X and ‖u1(t)‖ = ‖u2(t)‖ for almost all t ∈ T , we get that
u1(t) = u2(t) for almost all t ∈ T . This implies that u1 = u2. Hence we obtain that
v is a smooth point of E0

N (X).
Next we will prove that the point v is a strongly smooth point of E0

N (X). Let
〈u, v〉 = 1 and 〈un, v〉 → 1 as n → ∞, where {un}∞n=1 ∈ S(LM (X∗)) and u ∈
S(LM (X∗)). Since B(LM (R)) is weakly∗ sequentially compact, by (E0

N (R))∗ =
LM (R) and un ∈ LM (X∗), we may assume without loss of generality that there
exists a functional h ∈ S(LM (R)) such that

∫
T
‖un(t)‖w(t)dt →

∫
T
h(t)w(t)dt

whenever w ∈ E0
N (R). This implies that

∫
T
h(t) ‖v(t)‖ dt = 1. Since v is a smooth

point of E0
N (X), it is easy to see ‖v‖ is a smooth point of E0

N (R). Therefore, by
formula

1 ≥
∫
T

‖u(t)‖ ‖v(t)‖ dt =

∫
T

(u(t), v(t)) dt =

∫
T

h(t) ‖v(t)‖ dt = 1,

we obtain that ‖u(t)‖ = h(t) µ-a.e. on T . Hence we have the following formula

(2.3) lim
n→∞

∫
T

‖un(t)‖w(t)dt =

∫
T

‖u(t)‖w(t)dt

whenever w ∈ E0
N (R). Therefore, by formula (2.3), we obtain that {‖un‖}∞n=1

converges weakly∗ to ‖u‖. We claim that ρM (unχE)→ ρM (uχG) for all G ⊂ T . In
fact, let

Em = {t ∈ G : m ‖v(t)‖ ≥ p(t, ‖u(t)‖)}

and

Enm = {t ∈ Em : ‖un(t)‖ ≥ ‖u(t)‖}
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for any m,n ∈ N . Since v ∈ E0
N (X), we get that p(uχEm

n
) ∈ E0

N (R). Therefore, by
formula (2.3), we have the following formula∫

Em

[M (t, ‖un(t)‖)−M (t, ‖u(t)‖)]dt

=

∫
En

m

[M (t, ‖un(t)‖)−M (t, ‖u(t)‖)]dt−
∫

Em\En
m

[M (t, ‖un(t)‖)−M (t, ‖u(t)‖)]dt

≥
∫
En

m

(‖un(t)‖ − ‖u(t)‖)p(t, ‖u(t)‖)dt−
∫

Em\En
m

(‖u(t)‖ − ‖un(t)‖)p(t, ‖u(t)‖)dt

=

∫
En

m

(‖un(t)‖ − ‖u(t)‖)p(t, ‖u(t)‖)dt

=

∫
T

(‖un(t)‖ − ‖u(t)‖)p(t, ‖u(t)‖)χEn
m
dt→ 0, n→∞.

This implies that lim infn→∞ρM (unχEm) ≥ ρM (uχEm). Let m→∞. Then, for any
G ⊂ T , we have lim infn→∞ρM (unχG) ≥ ρM (uχG). Since ρM (un) = ρM (u) = 1,
we get that ρM (unχG)→ ρM (uχG) for any G ⊂ T .

We next will prove that ‖un(t)‖ → ‖u(t)‖ in measure on T . Let {r(i, t)}∞i=1 be a
set of all the extreme points of linear interval of M(t, u) and let

F = {t ∈ T : M(t, ‖u(t)‖) 6∈ {r(i, t)}∞i=1} .

Since µ {t ∈ T : ‖u(t)‖ ∈ Kt} = 0, we get that M(t, ‖u(t)‖) > 0 whenever t ∈ F .
We claim that ‖un(t)‖ → ‖u(t)‖ in measure on F . Otherwise, we may assume
without loss of generality that for each n ∈ N , there exists En ⊆ F , ε0 > 0 and
σ0 > 0 such that µEn ≥ ε0, where En = {t ∈ F : |‖un(t)‖ − ‖u(t)‖| ≥ σ0}. Let us
define the sets

An =

{
t ∈ T : M(t, ‖un(t)‖) > 8

ε0

}
and B =

{
t ∈ T : M(t, ‖u(t)‖) > 8

ε0

}
.

Then

1 =

∫
T

M(t, ‖un(t)‖)dt ≥
∫
An

M(t, ‖un(t)‖)dt ≥ 8

ε0
µAn ⇒ µAn ≤

ε0
8
.

Similarly, we have µB ≤ ε0/8. Hence, for µ-a.e. t ∈ T , we define the bounded
closed sets

Ct =

{
(u, v) ∈ R2 : M(t, u) ≤ 8

ε0
, M(t, v) ≤ 8

ε0
, |u− v| ≥ 1

8
σ0, u = ‖u(t)‖

}
in the two dimensional space R2. Since Ct is compact, there exists (ut, vt) ∈ Ct
such that

(2.4) 1 >
2M(t, 12 (ut + vt))

M(t, ut) +M(t, vt)
≥

2M(t, 12 (u+ v))

M(t, u) +M(t, v)

for any (u, v) ∈ Ct and for µ-a.e. t ∈ T . Hence we define the function

(2.5) 1−δ(t) =
2M(t, 12 (ut + vt))

M(t, ut) +M(t, vt)
.
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We claim that δ(t) is Σ-measurable. In fact, pick a dense subset {ri}∞i=1 of (0,∞)
and define the function

1− δri,rj (t) =


2M(t, 12 (ri + rj))

M(t, ri) +M(t, rj)
M(t, ri) ≤

8

ε0
and M(t, rj) ≤

8

ε0

0 M(t, ri) >
8

ε0
or M(t, rj) >

8

ε0
,

then by the definition of M(t, u), it is easy to see that 1− δri,rj (t) is Σ-measurable
and

1− δ(t) ≥ sup

{
1− δri,rj (t) : |ri − rj | ≥

1

8
σ0

}
.

On the other hand, since {ri}∞i=1 is dense in (0,∞) then {(ri, rj)}∞i=1,j=1 is dense
in (0,∞) × (0,∞). Therefore, by the definition of the function 1 − δ(t), for µ-a.e.
t ∈ T, ε > 0, there exists

(ri, rj) ∈
{

(u, v) ∈ R2 : M(t, u) ≤ 8

ε0
,M(t, v) ≤ 8

ε0
, |u− v| ≥ 1

8
σ0, u = ‖u(t)‖

}
such that

1− δ(t)− ε < 1− δri,rj (t) ≤ sup

{
1− δri,rj (t) : |ri − rj | ≥

1

8
σ0

}
µ-a.e. on T . Since ε is arbitrary, we have the following formula

1− δ(t) ≤ sup

{
1− δri,rj (t) : |ri − rj | ≥

1

8
σ0

}
µ-a.e. on T . Hence 1 − δ(t) = sup

{
1− δri,rj (t) : |ri − rj | ≥ σ0/8

}
µ-a.e. on T .

This implies that δ(t) is Σ-measurable. Since δ(t) > 0, there exists a real number
δ0 ∈ (0, 1) such that µG < ε0/8, where G = {t ∈ T : δ(t) ≤ δ0}. Moreover, by
M(t, ‖u(t)‖) > 0, t ∈ F , there exist F0 ⊂ F and r > 0 such that

M(t, ‖u(t)‖) > r, t ∈ F\F0 and µF0 <
ε0
16
.

Let Hn = En\(An ∪B ∪G ∪ F0). Then µHn ≥ ε0/8 and

M

(
t,
‖un(t)‖+ ‖u(t)‖

2

)
≤ 1

2
(1− δ0) [M (t, ‖un(t)‖) +M (t, ‖u(t)‖)]

whenever t ∈ Hn. This implies that

ρM (un) + ρM (u)− 2ρM

(
un + u

2

)
≥

∫
T

M (t, ‖un(t)‖) +M (t, ‖u(t)‖)− 2M

(
t,
‖un(t)‖+ ‖u(t)‖

2

)
dt

≥
∫
Hn

M (t, ‖un(t)‖) +M (t, ‖u(t)‖)− 2M

(
t,
‖un(t)‖+ ‖u(t)‖

2

)
dt

≥ δ0

∫
Hn

[M (t, ‖un(t)‖) +M (t, ‖u(t)‖)]dt

≥ δ0

∫
Hn

M (t, ‖u(t)‖)dt ≥ δ0r
ε0
8
.
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Moreover, by formula 〈un, v〉 → 1 and 〈u, v〉 = 1, we get that ‖u‖ = 1, ‖un‖ → 1
and ‖un + u‖/2→ 1 as n→∞. Therefore, by M ∈ ∆, we obtain that ρM (u) = 1,
ρM (un)→ 1 and ρM ((un + u)/2)→ 1 as n→∞. This implies that

lim
n→∞

[
ρM (un) + ρM (u)− 2ρM

(
un + u

2

)]
= 0,

this is a contradiction. Hence we obtain that ‖un(t)‖ → ‖u(t)‖ in measure on F .
Let {r1(i, t)}∞i=1 denote the set of all the right extreme points of linear interval

of M(t, u). Define the set

G = {t ∈ T : M(t, ‖u(t)‖) ∈ {r1(i, t)}∞i=1} .
We will prove that ‖un(t)‖ → ‖u(t)‖ in measure on G. Otherwise, we may assume
without loss of generality that for each n ∈ N , there exists En ⊆ G, ε0 > 0 and
σ0 > 0 such that µEn ≥ ε0, where En = {t ∈ G : |‖un(t)‖ − ‖u(t)‖| ≥ σ0}. Hence
we may assume that En = {t ∈ T : ‖un(t)‖ − ‖u(t)‖ ≥ σ0}. Let

Fn = {t ∈ T : ‖u(t)‖ ≤ ‖un(t)‖ < ‖u(t)‖+ σ0}
and

Hn = {t ∈ T : ‖u(t)‖ > ‖un(t)‖} .
For clarity, we will divide the proof into two cases.

Case I. Let lim supn→∞µ (G0 ∩ En) = η0 > 0, where t ∈ G0 if and only if
M(t, ‖u(t)‖) is a right extreme point and not a left extreme point. Then G0 ⊂ G.
Therefore, by formula M(t, u) =

∫ u
0
p(t, u)dt, we have the following inequalities

hn(t) = M (t, ‖un(t)‖)−M (t, ‖u(t)‖)− p (t, ‖u(t)‖) [‖un(t)‖ − ‖u(t)‖]
≥ M (t, ‖u(t)‖+ σ0)−M (t, ‖u(t)‖)− σ0p (t, ‖u(t)‖) > 0

whenever t ∈ En. Hence there exist Hn ⊂ G0 and h > 0 such that µHn < η0/16
and hn(t) > h whenever t ∈ En \ Hn. Moreover, there exists a natural number
m ∈ N such that µ(T\Tm) < η0/16, where

Tm = {t ∈ T : m ‖v(t)‖ ≥ p(t, ‖u(t)‖)} .
Let Gn = (G0 ∩ Tm) \Hn. Then, by lim supn→∞µ(G0 ∩ En) = η0 and µ(T\Tm) <
η0/16, we may assume that µ(Gn ∩En) > η0/8. Moreover, by the definition of Tm,
we have p(t, ‖u(t)‖)χGn ∈ E0

N (X). Therefore, by formula (2.3), we have

0←
∫
Gn

M (t, ‖un(t)‖)dt−
∫
Gn

M (t, ‖u(t)‖)dt

≥
∫

Gn∩En

p (t, ‖u(t)‖) [‖un(t)‖ − ‖u(t)‖]dt+
∫

Gn∩Fn

p (t, ‖u(t)‖) [‖un(t)‖ − ‖u(t)‖]dt

+

∫
Gn∩Hn

p (t, ‖u(t)‖) [‖un(t)‖ − ‖u(t)‖]dt+
∫

Gn∩En

hn(t)dt

=

∫
Gn

p (t, ‖u(t)‖) [‖un(t)‖ − ‖u(t)‖]dt+
∫

Gn∩En

hn(t)dt ≥ hη0
16

for n large enough, this is a contradiction.

Case II. Let lim supn→∞µ (G0 ∩ En) = η0 > 0, where t ∈ G0 if and only if
M(t, ‖u(t)‖) is a left extreme point and is a right extreme point of linear inter-
val of M(t, u). Then G0 ⊂ G and p (t, ‖u(t)‖)− p− (t, ‖u(t)‖) > 0 whenever t ∈ G0.
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Hence there exist a set H ⊂ G0 and a real number h > 0 such that µH < η0/16
and p (t, ‖u(t)‖) − p− (t, ‖u(t)‖) > h whenever t ∈ G0 \H. Moreover, there exists
m ∈ N such that µ(T\Tm) < η0/16. Let F = (G0 ∩ Tm) \H. Then, by formula
lim supn→∞µ (G0 ∩ En) = η0, we may assume that µ (F ∩ En) > η0/8. Therefore,
by formula (2.3), we get the following inequalities

0←
∫
F

M (t, ‖un(t)‖)dt−
∫
F

M (t, ‖u(t)‖)dt

≥
∫

F∩En

p (t, ‖u(t)‖) [‖un(t)‖ − ‖u(t)‖]dt+
∫

F∩Fn

p (t, ‖u(t)‖) [‖un(t)‖ − ‖u(t)‖]dt

+

∫
F∩Hn

p− (t, ‖u(t)‖) [‖un(t)‖ − ‖u(t)‖]dt

≥
∫

F∩En

[p (t, ‖u(t)‖)− p− (t, ‖u(t)‖)] [‖un(t)‖ − ‖u(t)‖]dt

+

∫
F

p− (t, ‖u(t)‖) [‖un(t)‖ − ‖u(t)‖]dt

≥
∫

F∩En

[p (t, ‖u(t)‖)− p− (t, ‖u(t)‖)]σ0dt+
∫
F

p (t, ‖u(t)‖) [‖un(t)‖ − ‖u(t)‖]dt

≥ h
η0
16

for n large enough, this is a contradiction. Hence we get that ‖un(t)‖ → ‖u(t)‖ in
measure on G. Let {r1(i, t)}∞i=1 denote the set of all the left extreme points of linear
interval of M(t, u). Define the set

G = {t ∈ T : M(t, ‖u(t)‖) ∈ {r1(i, t)}∞i=1} .

Similarly, we get that ‖un(t)‖ → ‖u(t)‖ in measure on G. In summary, we have
‖un(t)‖ → ‖u(t)‖ in measure on T . Therefore, by the Riesz Theorem, there exists
a subsequence {n} of {n} such that ‖un(t)‖ → ‖u(t)‖ µ−a.e. in T . Noticing that

|(un(t), v(t))| ≤ ‖un(t)‖ · ‖v(t)‖ , lim
n→∞

∫
T

(un(t), v(t))dt = 1

and ∫
T

‖un(t)‖ · ‖v(t)‖ dt ≤‖un‖ · ‖v‖0 ≤ 1,

we get the following formula

lim
n→∞

∫
T

‖un(t)‖ · ‖v(t)‖ dt = 1, lim
n→∞

∫
T

[‖un(t)‖ · ‖v(t)‖ − (un(t), v(t))] dt = 0.

Moreover, it is easy to see that

lim
n→∞

∫
T

|‖un(t)‖ · ‖v(t)‖ − (un(t), v(t))| dt = 0.

This implies that ‖un(t)‖ · ‖v(t)‖ − (un(t), v(t))
µ→ 0 in measure. Therefore, by the

Riesz theorem, there exists a subsequence {n} of {n} such that ‖un(t)‖ · ‖v(t)‖ −
(un(t), v(t)) → 0 µ−a.e. in T . Since ‖un(t)‖ → ‖u(t)‖ µ-a.e. on T , we get that
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(un(t), v(t)) → ‖u(t)‖ · ‖v(t)‖ µ−a.e. on T . Hence we may assume without loss of
generality that

lim
n→∞

(
un(t)

‖u(t)‖
,
v(t)

‖v(t)‖

)
= 1

on {t ∈ T : ‖u(t)‖ · ‖v(t)‖ 6= 0}. Since 〈u, v〉 = 1, we get that µT1 = 0, where

T1 = {t ∈ T : ‖v(t)‖ = 0} ∩ {t ∈ T : ‖u(t)‖ 6= 0}.
Hence we may assume without loss of generality that

lim
n→∞

(
un(t)

‖u(t)‖
,
v(t)

‖v(t)‖

)
= 1, t ∈ {t ∈ T : ‖u(t)‖ 6= 0}.

Since X is a strongly smooth space, we obtain that sequence {un(t)/‖u(t)‖}∞n=1

is convergent. Hence there exists x(t) ∈ S(X) such that un(t)/‖u(t)‖ → x(t) on
{t ∈ T : ‖u(t)‖ 6= 0}. Let

u0(t) =

{
‖u(t)‖x(t), t ∈ {t ∈ T : ‖u(t)‖ 6= 0}

0, t ∈ {t ∈ T : ‖u(t)‖ = 0}.

Then it is easy to see that ‖u0‖0 = 1 and un(t)→ u0(t) µ-a.e. on T . Therefore, by
the Fatou Lemma, we obtain the following inequalities

ρM (u0)

=

∫
H

lim
n→∞

[
1

2
M (t, ‖un(t)‖) +

1

2
M (t, ‖u0(t)‖)−M

(
t,
‖un(t)− u0(t)‖

ε

)]
dt

≤ lim inf
n→∞

∫
T

[
1

2
M(t, ‖un(t)‖) +

1

2
M(t, ‖u0(t)‖)−M

(
t,
‖un(t)− u0(t)‖

2

)]
dt

= ρM (u0)−lim sup
n→∞

ρM

(
1

2
(un − u)

)
.

This implies that ρM ((un − u)/2) → 0 as n → ∞. Moreover, from the previous
proof, we obtain that ρM (2unχE/ε)→ ρM (2u0χE/ε) for any E ⊂ T . We next will
prove that ‖un − u‖ → 0 as n → ∞. Let ε ∈ (0, 1/4). Since M ∈ ∆, there exists
δ > 0 such that ρM (2u0χE/ε) < 1/2 whenever µE < 4δ. Moreover, there exists
r > 0 such that µ {t ∈ T : 0 < ‖u(t)‖ < r} < δ. Since un(t) → u0(t) µ-a.e. on T ,
by the Egorov theorem, there exist a natural number n0 ∈ N and F ⊂ T such
that µF < δ and ‖un(t)− u0(t)‖ < ε2, t ∈ T\F whenever n > n0. This implies
that

∥∥(un − u0)χB\F
∥∥ < 2ε whenever n > n0. Let B = {t ∈ T : ‖u0(t)‖ ≥ ε},

D = {t ∈ T : 0 < ‖u(t)‖ < ε} and H = {t ∈ T : ‖u0(t)‖ = 0} ∪ F ∪D.

ρM

(
(un − u0)χB\F

2ε

)
≤
∫

B\F

M

(
t,
ε ‖u0(t)‖

2ε

)
dt =

∫
B\F

M

(
t,
‖u0(t)‖

2

)
dt ≤ 1.

Moreover, by ρM (2unχE/ε) → ρM (2u0χE/ε) for any E ⊂ T and µ(F ∪ D) < 2δ,
there exists a natural number n1 > n0 such that

ρM

(
(un − u0)χH

2ε

)
≤ 1

2
ρM

(unχH
ε

)
+

1

2
ρM

(u0χH
ε

)
≤ ρM

(u0χH
ε

)
+ ε

= ρM

(u0χF∪D
ε

)
+ ε <

1

2
+ ε < 1
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whenever n > n1. This implies that ‖(un − u0)χH‖ < 2ε whenever n > n1. Since
T = H ∪ (B\F ), we have

‖un − u0‖ ≤ ‖(un − u0)χH‖+
∥∥(un − u0)χB\F

∥∥ < 2ε+ 2ε = 4ε

whenever n > n1. Hence we have ‖un − u‖ → 0 as n → ∞. This implies that v is
a strongly smooth point of E0

N (X), which completes the proof. �

Corollary 2.5. Suppose that v ∈ S(E0
N (R)). Then the following statements are

equivalent:
(1) The point v is a strongly smooth point of E0

N (R);
(2) The hyperplane Hv of LM (R) is approximatively compact;
(3) The hyperplane Hv of LM (R) is weakly approximatively compact;
(4) M ∈ ∆ and µ{t ∈ T : |u(t)| ∈ Kt} = 0 whenever 〈u, v〉 = ‖u‖.

Corollary 2.6. Suppose that X is a strongly smooth space. Then the following
statements are equivalent:

(1) E0
N (X) is a strongly smooth space;

(2) Every weak∗ hyperplane of LM (X∗) is approximatively compact;
(3) Every weak∗ hyperplane of LM (X∗) is weakly approximatively compact.

3. Asplund property and Radon-Nikodym property in
Musielak-Orlicz-Bochner function spaces

Theorem 3.1. Suppose that X is a strongly smooth space. Then the following
statements are equivalent:

(1) L0
M (X) is an Asplund space;

(2) M ∈ ∆ and N ∈ ∆.

Proof. (1)⇒(2). Suppose that M /∈ ∆. Then we define the functional θ(u) =
inf {λ ∈ R+ : ρM (u/λ) < +∞}. Therefore, by the definition of θ(·), we get that
θ(ku) = kθ(u) whenever k > 0. Moreover, by the convexity of M , we have

ρM

(
u1 + u2

θ(u1) + θ(u2) + 2ε

)
= ρM

(
θ(u1) + ε

θ(u1) + θ(u2) + 2ε

u1
θ(u1) + ε

+
θ(u2) + ε

θ(u1) + θ(u2) + 2ε

u2
θ(u2) + ε

)
≤ θ(u1) + ε

θ(u1) + θ(u2) + 2ε
ρM

(
u1

θ(u1) + ε

)
+

θ(u2) + ε

θ(u1) + θ(u2) + 2ε
ρM

(
u2

θ(u2) + ε

)
< +∞.

This implies that θ(u1 + u1) ≤ θ(u1) + θ(u2) + 2ε. Since ε is arbitrary, we have
θ(u1 + u1) ≤ θ(u1) + θ(u2). It is easy to see that θ(u) is a convex function. We
claim that if ‖un‖ → 0 then θ(un) → 0 as n → ∞. In fact, for any ε > 0, we
have ‖un/ε‖ → 0 as n → ∞. Hence there exists a natural number n0 such that
ρM (un/ε) ≤ ‖un/ε‖ ≤ 1 whenever n > n0. This implies that θ(un) < ε whenever
n > n0. Hence θ(un)→ 0 as n→∞.

Next we will prove that θ(·) is continuous. Otherwise, there exist ε0 > 0, u ∈
LM (X) and {un}∞n=1 ⊂ LM (X) such that ‖un − u‖ → 0 and |θ(un)− θ(u)| ≥ 2ε0.
Then we may assume that θ(u) ≥ θ(un) + 2ε0 or θ(un) ≥ θ(u) + 2ε0. Hence, if
θ(u) ≥ θ(un) + 2ε0, then

θ(u) ≤ lim sup
n→∞

[θ(un) + θ(u− un)] = lim sup
n→∞

θ(un) ≤ θ(u)− ε0,
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a contradiction. Moreover, if θ(un) ≥ θ(u) + 2ε0, then

lim sup
n→∞

θ(un) ≤ lim sup
n→∞

[θ(u) + θ(un − u)] = θ(u) < lim sup
n→∞

[θ(un)− ε0] ,

a contradiction. Hence θ(·) is a continuous function. Pick u ∈ L0
M (X) \ E0

M (X).
Then θ(u) > 0. We next will prove that there exist E ⊂ T and F ⊂ T such that
E ∪ F = T , E ∩ F = ∅ and θ(uχE) = θ(uχF ) = θ(u). Define G(n) = {t ∈ T :
n − 1 ≤ ‖u(t)‖ < n} and for each n ∈ N , decompose G(n) into G1(n) and G2(n)
such that

2

∫
Gi(n)

M

(
t,
n− 1

θ − 2ε

)
dt =

∫
G(n)

M

(
t,
n− 1

θ − 2ε

)
dt,

where i = 1, 2. We claim that ui =
∑∞
n=1 uχGi(n) satisfy θ(ui) = θ(u), where

i = 1, 2. In fact, let θ = θ(u). Then for any ε ∈ (0, θ/2), there exists a natural
number m such that

m− 1

m
· 1

θ − 2ε
≥ 1

θ − ε
.

Since

t, s ∈ G(n)⇒ ‖u(t)‖ < n ≤ n− 1

n
‖u(s)‖ ,

for all n ≥ m and all t ∈ Gi(n), we have the following inequalities

‖ui(t)‖
θ − 2ε

=
‖u(t)‖
θ − 2ε

≥ n− 1

θ − 2ε
≥ n− 1

n
· ‖u(t)‖
θ − 2ε

>
‖u(t)‖
θ − ε

.

Therefore, by the definition of θ(·), we have the following inequalities

ρM

(
ui

θ − 2ε

)
≥
∑
n≥m

∫
Gi(n)

M

(
t,
‖u(t)‖
θ − 2ε

)
dt ≥

∑
n≥m

∫
Gi(n)

M

(
t,
n− 1

θ − 2ε

)
dt

=
1

2

∑
n≥m

∫
G(n)

M

(
t,
n− 1

θ − 2ε

)
dt ≥ 1

2

∑
n≥m

∫
G(n)

M

(
t,
‖u(t)‖
θ − ε

)
dt =∞.

This implies that θ(ui) = θ(u), where i = 1, 2. Hence there exist a set E ⊂ T
and F ⊂ T such that E ∪ F = T , E ∩ F = ∅ and θ(uχE) = θ(uχF ) = θ(u). Let
v = uχE − uχF . Then, if t > 0 then

θ(u+ tv) = θ((1 + t)uχE + (1− t)uχF ) = θ((1 + t)uχE) = (1 + t)θ(u).

This implies that

θ(u+ tv)− θ(u)

t
=

(1 + t)θ(u)− θ(u)

t
=
tθ(u)

t
= θ(u)

whenever t > 0. Moreover, if t < 0 then

θ(u+ tv) = θ((1 + t)uχE + (1− t)uχF ) = θ((1− t)uχF ) = (1− t)θ(u).

This implies that

θ(u+ tv)− θ(u)

t
=

(1− t)θ(u)− θ(u)

t
=
−tθ(u)

t
= −θ(u)

whenever t < 0. Hence, for any u ∈ L0
M (X) \ E0

M (X), we obtain that θ(·) is not
differentiable at u, a contradiction. Then M ∈ ∆.

Suppose that N /∈ ∆. Then there exists a point v ∈ LN (X∗) such that ‖v‖ = 1
and ρN (v) < 1. Pick a real number l > 1. Then ρN (lv) =∞. Define

G = {t ∈ T : N(t, ‖v(t)‖) =∞} and G(n) = {t ∈ T : n− 1 ≤ N(t, ‖v(t)‖) < n}
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for all n ∈ N . Decompose G(n) into G1(n) and G2(n) such that G1(n) ∪G2(n) =
G(n) and ρN (lvχG1(n)) = ρN (lvχG2(n)). Decompose G into G1 and G2 such that
G1 ∪G2 = G and ρN (lvχG1

) = ρN (lvχG2
). Let

E = G1 ∪
( ∞
∪
n=1

G1(n)
)

and F = G2 ∪
( ∞
∪
n=1

G2(n)
)
.

Then ρN (lvχE) = ρN (lvχF ). This implies that ‖vχE‖ ≥ 1/l and ‖vχF ‖ ≥ 1/l.
Hence there exists a sequence of set {En}∞n=1 such that ‖vχEn

‖ ≥ 1/l and Ei∩Ej =
∅ whenever i 6= j. Define the set

C =

{ ∞∑
i=1

εivχEi
: {εi}∞i=1 ∈ B(c0)

}
.

Then it is easy to see that C is a bounded closed convex set of LN (X∗). We claim
that C has no extreme points. In fact, Pick u =

∑∞
i=1 εivχEi

∈ C. Then there
exists a natural number j ∈ N such that |εj | < 1/4. Define

u1 =

(
εj +

1

2

)
+
∑
i 6=j

εi and u2 =

(
εj −

1

2

)
+
∑
i 6=j

εi.

Then u1, u2 ∈ C, u1 6= u2 and 2u = u1 + u2. This implies that u is not an extreme
point. Since u is arbitrary, we have ExtC = ∅. Hence LN (X∗) has not the Krein-
Milman property. Then LN (X∗) has not the Radon-Nikodym property. Hence
E0
M (X) is not an Asplund space. However, since L0

M (X) is an Asplund space, we
obtain that E0

M (X) is an Asplund space, a contradiction. Then N ∈ ∆.
(2)⇒(1). By Lemma 1.15 of [2], there exists a function M1 such that

(3.1) M(t, u) ≤M1(t, u) ≤ 2M(t, u), u ∈ R

and right derivative of p1(t, u) of M1(t, u) is continuous with respect to u for almost
all t ∈ T . Therefore, by formula 3.1, we obtain that u ∈ LM (X) for any u ∈
LM1(X). Since M ∈ ∆, we have the following inequalities∫

T

M1(t, λ ‖u(t)‖)dt ≤
∫
T

2M(t, λ ‖u(t)‖)dt < +∞

for any λ > 0. This implies that M1 ∈ ∆. Moreover, if v ∈ LN1
(X∗), then there

exists λ0 > 0 such that ρN1
(λ0v) < +∞. Since

N(t, v) = sup
u>0
{uv −M(t, u)} ≤ 1

2
sup
u>0
{2uv −M1(t, u)} =

1

2
N1(t, 2v), v ≥ 0,

we have the following inequalities∫
T

N

(
t,
λ0
2
‖v(t)‖

)
dt ≤ 1

2

∫
T

N1

(
t, 2 · λ0

2
‖v(t)‖

)
dt =

1

2
ρN1(λ0v) < +∞.

This implies that v ∈ LN (X∗). Therefore, by N ∈ ∆, we obtain that v ∈ EN (X∗).
Therefore, by formula

N1(t, v) = sup
u>0
{uv −M1(t, u)} ≤ sup

u>0
{uv −M(t, u)} = N(t, v), v ≥ 0,

we have the following inequalities∫
T

N1 (t, λ ‖v(t)‖) dt ≤
∫
T

N (t, λ ‖v(t)‖) dt < +∞
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for every λ > 0. This implies that N1 ∈ ∆. Therefore, by theorem 2.7, we obtain
that L0

M1
(X) is a strongly smooth space. This implies that L0

M1
(X) is an Asplund

space. Moreover, we have

‖u‖0 = inf
k>0

1

k
[1 +

∫
T

M(t, ‖ku(t)‖)dt] ≤ inf
k>0

1

k
[1 +

∫
T

M1(t, ‖ku(t)‖)dt] = ‖u‖01

and

‖u‖01 = inf
k>0

1

k
[1 +

∫
T

M1(t, ‖ku(t)‖)dt] ≤ inf
k>0

1

k
[1 +

∫
T

2M(t, ‖ku(t)‖)dt] ≤ 2‖u‖0

for any u ∈ L0
M (X). This means that L0

M (X) is an Asplund space, which completes
the proof. �

By Theorem 3.1, we obtain that Corollary 3.2 and Corollary 3.3.

Corollary 3.2. Suppose that X is a strongly smooth space. Then the following
statements are equivalent:

(1) LM (X) is an Asplund space;
(2) M ∈ ∆ and N ∈ ∆.

Corollary 3.3. L0
M (R)(LM (R)) is an Asplund space if and only if M ∈ ∆ and

N ∈ ∆.

Theorem 3.4. Suppose that
(1) M ∈ ∆ and X is a strongly smooth space;
(2) p(t, u) is continuous with respect to u for almost all t ∈ T .

Then E0
N (X) is a strongly smooth space.

Proof. By Theorem 2.1, it is easy to see that Theorem 3.4 is true, which completes
the proof. �

Theorem 3.5. Suppose that X is a strongly smooth space. Then LM (X∗) has the
Radon-Nikodym property if and only if M ∈ ∆.

Proof. Sufficiency. Let X be a strongly smooth space. Then, by Lemma 1.15 of [2],
there exists a function M1 such that

M(t, u) ≤M1(t, u) ≤ 2M(t, u), u ∈ R

and right derivative of p1(t, u) of M1(t, u) is continuous with respect to u for almost
all t ∈ T . Moreover, by the proof of Theorem 3.1, we get that M1 ∈ ∆. Therefore,
by Theorem 3.4, we obtain that E0

N (X) is a strongly smooth space. Hence E0
N (X)

is an Asplund space. This implies that LM (X∗) has the Radon-Nikodym property.
Necessity. Suppose that M /∈ ∆. Then, by the proof of Theorem 3.1, we ob-

tain that LM (X∗) has not the Krein-Milman property. Hence LM (X∗) has not
the Radon-Nikodym property, a contradiction. This implies that M ∈ ∆, which
completes the proof. �

Corollary 3.6. Suppose that X is a strongly smooth space. Then L0
M (X∗) has the

Radon-Nikodym property if and only if M ∈ ∆.

Corollary 3.7. L0
M (R)(LM (R)) has the Radon-Nikodym property if and only if

M ∈ ∆.
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