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Abstract: In this paper, the output feedback tracking issue of induction motors is resolved by 

applying the sliding mode approach. We designed and implemented two robust sliding mode (SM) 

techniques to achieve high-performance control of induction motor drive; the second-order sliding 

mode (SOSM) approach using the twisting algorithm was compared with the classical sliding mode 

control. The method of decoupling electromagnetic torque and rotor flux for the induction motor 

was derived from the rotor field orientation control in the synchronous reference frame. The 

objective of the proposed methods is to control the rotor speed and the square of the rotor flux 

separately, in order to obtain robust control against disturbances and parametric uncertainties, and at 

the same time minimize the chattering phenomenon—the most significant drawback in the actual 

implementation of this technique. The stability of the proposed first-order sliding mode control was 

confirmed using Lyapunov stability theory. The availability and effectiveness of the proposed 

techniques were demonstrated through experimental results. The comparison between the results of 

the two proposed methods shows that the second-order sliding mode control using the twisting 

algorithm not only guarantees the same robustness and dynamic performances of traditional 

first-order sliding mode control but also achieves the reduction of the chattering phenomenon. 
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1. Introduction  

Induction motors (IMs), which are used in industrial processes for variable speed and position 

control, have become more attractive in recent years because of their simplicity, lower cost, 

affordability, and easy maintenance needs. However, IM control has been a conceptually tough topic 

due to its complex dynamic characteristics, which are highly nonlinear and coupled as flux and 

electromagnetic torque [1,2]. Recent developments in power electronics with sophisticated control 

techniques have enabled the employment of electrical drives, particularly induction motors, in 

high-performance, variable-speed applications. In the literature, several methods for IM control have 

been studied, the most widely used being field-oriented control (FOC). In FOC, the rotor flux and 

torque that generate current components are decoupled to provide reaction properties akin to those 

of a direct current motor [3‒7]. However, conventional strategies of FOC may struggle with 

parametric variations and uncertainty and be unable to provide the desired performance [8]. 

As a result, great effort has been expended on developing the performance and robustness of an 

induction motor's control approaches. An intriguing technique for controlling nonlinear systems is 

the sliding mode control, which is distinguished by its extreme simplicity and resilience to 

disturbances and parameter changes. This method drives the system state's trajectory toward a 

switching surface in the state space via discontinuous control [9]. The sliding mode control (SMC) 

has been used in combination with other methods as a model reference adaptive system (MRAS) [10] 

and with fuzzy logic technique and indirect field-oriented control (IFOC) techniques [11].  

In spite of its advantages, there is a drawback associated with this method—the chattering 

phenomenon. Chattering can induce torque pulsation and current harmonics among other undesired 

consequences by exciting the system's high-frequency unmodeled dynamics. To overcome this 

drawback, many advanced methods have been developed, and several techniques for robust 

chattering reduction are dependent on modifying the switching functions [12‒14]. While 

high-frequency chattering may be easily reduced or eliminated by using the saturation function, this 

will inevitably result in a loss of some robustness against load disturbances and uncertainties. 

However, the majority of steady-state errors will still be present.  

To minimize the steady-state error and specify the integral sliding mode controller, an integral 

sliding surface is a recommended technique [14‒20]. Steady-state error (SSE) in pseudo-sliding 

modes can be avoided by using a pseudo-sliding mode control, as introduced in [20], in which 

smooth functions replace the switching function with the inclusion of integral terms. This turns the 

system into pseudo-sliding modes, resulting in SSEs. On the other hand, by adding an integral term 

to the surface, the system can be vulnerable to windup. This causes the system response to 

significantly overshoot and exhibit undesired oscillations. Using a switching sigmoid function, 

authors in [21] suggested an integrated sliding mode controller with a novel anti-windup technique 

that has low overshoot and no steady-state inaccuracy.  

Another class of SMC approaches to attenuate the chattering and achieve robust control is 

called high-order SMC [22‒27]. Several suggested approaches are used to construct a variety of 

novel second-order sliding mode controllers (SOSMC), including the twisting algorithm [28,29] and 

the super twisting algorithm [30–32]. It should be mentioned that SOSM algorithms require bounded 

uncertainties in sliding mode dynamics because state variables are constantly related to uncertainties. 

This means that state variables should also be bounded, even though determining the domain of 

attraction is usually not easy [25,33]. 
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This work aims to compare two sliding mode control techniques applied to IM—a classical 

SMC and a second-order SMC—using the twisting algorithm, whose aim is to reduce chattering. 

The findings of the experiment are examined and presented. 

The structure of the paper is as follows: Section 2 presents the induction motor model in the 

synchronous reference frame, and the field-oriented model is explained. In Section 3, the classical 

sliding mode control theory for a nonlinear system is briefly reviewed. The two proposed controls 

are described and developed in Section 4. In Section 5, experimental results of the implemented 

controls are presented to examine the effectiveness and compare their performance. Section 6 

provides a summary of the study's main conclusions. 

2. Induction motor model of field-oriented flux 

Accurate mathematical modeling is essential to effectively control the various operating modes 

of IMs. The following expressions represent the mathematical model of the IM in terms of stator 

current and rotor flux in the synchronous reference frame [2]: 

𝑑𝑖𝑠𝑑
𝑑𝑡

= −𝛿 𝑖𝑠𝑑 + 𝜔𝑠   𝑖𝑠𝑞 + 𝛼 𝛽 
𝑟𝑑

+ 𝑝𝛽. 𝛺. 
𝑟𝑞

+
1

𝜎𝐿𝑠
𝑢𝑠𝑑

𝑑𝑖𝑠𝑞
𝑑𝑡

= −𝜔𝑠   𝑖𝑠𝑑 − 𝛿 𝑖𝑠𝑞 −  𝛽𝑝𝛺 
𝑟𝑑

+ 𝛼 𝛽 
𝑟𝑞

+
1

𝜎𝐿𝑠
𝑢𝑠𝑞  

𝑑
𝑟𝑑

𝑑𝑡
= 𝛼𝑀𝑖𝑠𝑑 − 𝛼

𝑟𝑑
+  𝜔𝑠 − 𝑝𝛺 . 

𝑟𝑞

𝑑
𝑟𝑞

𝑑𝑡
= 𝛼𝑀𝑖𝑠𝑞 −  𝜔𝑠 − 𝑝𝛺 

𝑟𝑑
− 𝛼

𝑟𝑞   
 

                              

 (1)  

The mechanical modeling part of the system is given by: 

𝑑𝛺

𝑑𝑡
=  𝜇  

𝑟𝑑
𝑖𝑠𝑞 − 

𝑟𝑞
𝑖𝑠𝑑  −

𝑇𝐿

𝑗
−

𝐹

𝑗
𝛺 (2)  

Where the electromagnetic torque 𝑇𝑒  is given by: 

𝑇𝑒 = 𝜇  
𝑟𝑑

𝑖𝑠𝑞 − 
𝑟𝑞

𝑖𝑠𝑑  (3)  

With: 

𝜎 = 1 −
𝑀2

𝐿𝑠𝐿𝑟
, 𝑏 =

1

𝜎𝐿𝑠
, 𝑇𝑟= 

𝐿𝑟

𝑅𝑟
, 𝛼 =

1

𝑇𝑟
, 𝛽 =

𝑀

𝜎 𝐿𝑠𝐿𝑟
 ,  

𝜇 =
𝑝𝑀

𝑗 𝐿𝑟
, 𝛿 =

𝑀2𝑅𝑟

𝜎𝐿𝑠𝐿𝑟
2

+
𝑅𝑠

𝜎𝐿𝑠
 ,  𝐼 =  

1 0
0 1

 ,  𝐽 =  
0 −1
1 0

  

Where 
𝑟𝑑

, 
𝑟𝑞

 are the rotor flux components, and 𝑖𝑠𝑑 , 𝑖𝑠𝑞  are the stator currents. 𝑢𝑠 =

 𝑢𝑠𝑑 , 𝑢𝑠𝑞   
𝑇
 is the control vector. 𝑇𝐿 is the load torque, ω is the mechanical frequency of rotor 

speed, ωs is the electrical stator frequency speed, σ is a total leakage factor, and 𝑇𝐿 is the rotor time 

constant. 𝑅𝑠  and 𝑅𝑟  denote stator and rotor resistance, 𝐿𝑠  and 𝐿𝑟  are the stator and rotor 

self-inductance, M is mutual inductance, p is the number of pole pairs, j is the moment of inertia, 

and F is the friction coefficient. 
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A rotor field orientation in the synchronous reference frame (d, q) is achieved if we let 
𝑟𝑞

= 0 

and 
𝑟𝑑

= 
𝑟
, [3]. The IM model, after field-oriented transformation, becomes: 

𝑥 = 𝑓 𝑥 + 𝑔 𝑥 𝑢𝑠 (4)  

With: 

𝑓 𝑥 =

 
 
 
 
𝑓1 𝑥 

𝑓2 𝑥 

𝑓3 𝑥 

𝑓4 𝑥  
 
 
 

=

 
 
 
 
 
−𝛿𝑖𝑠𝑑 + 𝑠𝑖𝑠𝑞 + 𝛼𝛽

𝑟𝑑
   

−𝑠𝑖𝑠𝑑 − 𝛿𝑖𝑠𝑞 − 𝛽𝑝𝛺
𝑟𝑑

𝛼𝑀𝑖𝑠𝑑 − 𝛼
𝑟𝑑

                 

𝜇
𝑟𝑑

𝑖𝑠𝑞 −
𝐹

𝑗
𝛺 −

𝐶𝑟

𝑗
           

 
 
 
 

 ,  𝑔 𝑥 =  
𝑏
0

0
𝑏

0
0

0
0
 
𝑇

 

The components of the function f(x) are nonlinear functions, 𝑥 = [𝑖𝑠𝑑   𝑖𝑠𝑞   𝜙𝑟   Ω]𝑇 is the state 

space vector, and the control vector 𝑢𝑠 is defined by  𝑢𝑠𝑑   𝑢𝑠𝑞  
𝑇
. The objective of vector control is 

to enable decoupling control of torque and rotor flux. After orientation of the flux, the 

electromagnetic torque becomes: 

𝑇𝑒 = µ 𝜙𝑟 𝑖𝑠𝑞  (5)  

Additionally, the direct stator current component may be used to reconstruct the rotor flux using the 

third equation in Eq (4): 

𝜙 𝑟 =
𝑀

𝑇𝑟𝑠 + 1
𝑖𝑠𝑑    (6)  

Where s is the Laplace operator. According to (5) and (6), we obtain two independent actions: the 

stator component 𝑖𝑠𝑑  controls the flux, and 𝑖𝑠𝑞  controls the torque, achieving the classical direct 

FOC control objective [3]. 

The synchronous rotating frame angle θ𝑠 can be determined by integrating the synchronous 

angular frequency 𝜔𝑠 as below: 

𝜃 𝑠 =   𝜔 𝑠𝑑𝑡 =   𝜔 𝑟 + 𝑝𝛺 𝑑𝑡 (7)  

The slip angular frequency 𝜔𝑟  is given by: 

𝜔 𝑟 =  
𝛼𝑀

𝜙 𝑟
𝑖𝑠𝑞   (8)  

In the following section we will apply two techniques, the first-order and the second-order sliding 

mode, to control the IM. 

3. Sliding mode control strategy 

3.1. Problem formulation 

Although a sliding mode method is known to be robust to disturbances and parametric 

uncertainties, one particular drawback in classical sliding mode techniques (first-order SM) is the 

chattering phenomena, which is essentially motion that oscillates around the sliding surface. To 

overcome this undesirable phenomenon, the higher-order sliding mode concept has been introduced 
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by Levant et al. [24]. 

Consider a dynamic system of the form: 

𝑥 = 𝑎(𝑥) + 𝑏(𝑥)𝑢 (9)  

𝑆 = 𝑆(𝑥, 𝑡)  (10)  

Where 𝑥 ∈ 𝑅𝑛 , 𝑢 ∈ 𝑅 are the state and control input of system, a(x), b(x) are smooth functions, S is 

the smooth output function, and n is the dimension of the system. 

Let the system be closed by some dynamical discontinuous feedback; we may construct 

consecutive total time derivatives, and the closed-system state-space variables' continuous functions 

are 𝑆 = 𝑆 = 𝑆 = ⋯ = 𝑆(𝑟−1). The fundamental objective is to establish a limited time convergence 

onto the so-called r-order sliding mode, which is composed locally of Filippov trajectories and is 

represented as the non-empty surface 𝑆 = 𝑆 = 𝑆 = ⋯ = 𝑆(𝑟−1) = 0. Additionally, the regulation of 

the rth-order sliding mode achieves greater accuracy in terms of chattering [25]. 

However, because the chosen outputs have a relative degree equal to two with regard to S, a 

finite time convergence to S = 0 can only be accomplished using higher-order sliding modes. As it 

occurs, a first-order sliding mode controller would yield an asymptotic convergence. This finding 

serves as further justification for using a second-order sliding mode in addition to the chattering 

reduction. The twisting method is a popular example of a second-order algorithm. In general, the 

second-order sliding controller needs the sliding surface and its derivative to be made available and 

is determined by the equalities 𝑆 = 𝑆 = 0. The purpose is to produce 𝑆 = 0 in finite time while 

keeping S on zero by discontinuous feedback control. For every limited input, system trajectories are 

meant to be indefinitely extendible in time, and the system is understood in the Filippov sense [34]. 

The dynamics of sliding function S may be characterized as follows: 

𝑆 = 𝐴(𝑥) + 𝐵(𝑥)𝑢  (11)  

Where S and 𝑆  are assumed to be measurable. This is accomplished by computing the second total 

time derivative of S along the trajectories of (9) under these conditions [25]: 𝐴 𝑥 =   𝑆  
𝑢=0

 and 

𝐵 𝑥 =
𝜕𝑆 

𝜕𝑢
 ≠ 0 , where the functions 𝐴(𝑥)  and 𝐵(𝑥)  are some unknown smooth functions 

satisfying the following conditions: 

 𝐴(𝑥) ≤  𝐶0 , 𝐾𝑚 ≤ 𝐵(𝑥) ≤ 𝐾𝑀 (12)  

Where  𝐶0 , 𝐾𝑚 , 𝐾𝑀  are three positive coefficients. The uncertainties of the sliding mode dynamics 

of (10) are clearly bound by positive constants, implying that the state variables may also be 

confined. Then, (11) and (12) imply the following differential inclusion: 

𝑆 =  −𝐶0 ,  𝐶0 +  𝐾𝑚  ,  𝐾𝑀 𝑢 (13)  

We suggest the twisting algorithm, created by A. Levant, which has an easy-to-use design and 

simple shape. This algorithm relies on appropriately switching control between two distinct values 

to ensure that the trajectories in the phase plane converge to the origin within a finite time [29]. The 

convergence of the twisting algorithm is ensured by a geometric progression that takes the shape of 

a spiral movement around the origin. The control law of the twisting algorithm is provided by: 

𝑢 =  
−𝜆𝑚𝑠𝑔𝑛 𝑆      𝑖𝑓  𝑆𝑆 ≤ 0

−𝜆𝑀𝑠𝑔𝑛 𝑆      𝑖𝑓  𝑆𝑆 > 0
  (14)  
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Where 𝜆𝑚  , 𝜆𝑀  are positive constants, with 0 < 𝜆𝑚 < 𝜆𝑀 ,   ,    𝐾𝑚𝜆𝑀 − 𝐶0 > 𝐾𝑀𝜆𝑚 + 𝐶0. 

The twisting algorithm is well-suited for controlling systems with second-order dynamics or 

those requiring precision in higher-order derivatives, such as trajectory tracking in different 

applications. Introducing a twisting algorithm into sliding mode control (SMC) is primarily aimed at 

addressing limitations of traditional sliding mode control, such as chattering, while improving 

control performance and robustness. 

The twisting algorithm offers finite-time convergence to the sliding surface compared to 

conventional SMC techniques that could only guarantee asymptotic convergence. This property is 

crucial in time-critical systems or applications requiring fast stabilization. The twisting algorithm 

achieves continuous convergence; it gets rid of abrupt control actions with smooth control updates 

and, by mitigating chattering, it decreases mechanical stress on actuators. By producing smoother 

control signals, the twisting algorithm improves overall system performance and lowers control 

input energy, making it desirable to several applications [28,33]. In practice, implementing the 

twisting algorithm is easy, but we need to obtain the first derivative of the switching surface. 

4. Induction motor control by sliding mode method 

4.1. First-order SM control of IM 

The chosen sliding surface is defined by:  

𝑆 𝑥 = 𝑘𝑒 + 𝑒  ,      𝑘 > 0 (15)  

Such as: 

(𝑥)  =   
𝑠𝜔

𝑠𝜑
 , 𝑒 =  

𝑒𝜔

𝑒𝜑
 =  

𝛺 − 𝛺𝑟𝑒𝑓

𝜑 − 𝜑𝑟𝑒𝑓
  , φ = 𝜙𝑟𝑑

2 , 𝑘 =  
k1 0
0 k2

  

Where e is the error between the measured rotor speed Ω, the estimated value of the square of the 

flux modulus φ, and their references Ω𝑟𝑒𝑓  and 𝜑𝑟𝑒𝑓 . 

For good tracking of speed and flux, it is important to make the surface invariant  S  x = 0  

and attractive  𝑆𝑇S  < 0 . The derivative of the surface gives: 

𝑆  𝑥 = 𝑘𝑒  + 𝑒 = 𝑄 𝑥 + 𝑅 𝑥 𝑢𝑠 (16)  

Q x =  
q1 x 

q2 x 
 , R x = −

𝜙𝑟𝑑

σLs
 

0 μ
2αM 0

   

q1 x = (k1 −
F

j
)Ω − k1Ω ref + μ αMisd isq −  α + δ 𝜙rd isq − ωs𝜙rd isd − pβωφ −

C r

j
− Ω 𝑟𝑒𝑓      

q2 x = k2φ − k2φ ref + 2αM αM𝑖𝑠𝑑
2 −  3α + δ 𝜙rd isd + ωs𝜙rd isq  + 2α2 βM + 2 φ − 𝜑 𝑟𝑒𝑓  

The surface S = 0 is invariant if S  = 0, where 𝑄 𝑥 + 𝑅 𝑥 𝑢𝑒𝑞 = 0, so we can therefore deduce 

the equivalent component as follows: 

𝑢𝑒𝑞 = − 𝑅 𝑥  −1𝑄 𝑥   (17)  
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The surface S becomes attractive if we choose 𝑢𝑔𝑙𝑖𝑠  in the following form: 

𝑢𝑔𝑙𝑖𝑠 = − [𝑅 𝑥  −1   
𝜆𝛺 0
0 𝜆𝜑

  
𝑠𝑛𝑔 𝑠𝛺 

𝑠𝑛𝑔 𝑠𝜑 
 +  

𝑘𝛺𝑠𝛺

𝑘𝜑𝑠𝜑
   (18)  

λΩ, λφ, kΩ, and kφ are positive constants chosen such that: 

 
𝜆Ω  𝑎𝑛𝑑  𝑘Ω >   q1 x    

𝜆𝜑   𝑎𝑛𝑑  𝑘𝜑 >   q2 x    
  

In sliding mode, Equation (15) becomes: 

𝑒 𝛺 = −𝑘1𝑒𝛺

𝑒 𝜑 = −𝑘2𝑒𝜑
  (19)  

From (19), the tracking errors in speed eΩ  and flux eφ  converge exponentially toward 0. 

The sliding mode control law 𝑢𝑠 = 𝑢𝑒𝑞 + 𝑢𝑔𝑙𝑖𝑠  is given by: 

𝑢𝑠 = − [𝑅 𝑥  −1  𝑄 𝑥 +  
𝜆𝛺 0
0 𝜆𝜑

  
𝑠𝑛𝑔 𝑠𝛺 

𝑠𝑛𝑔 𝑠𝜑 
 +  

𝑘𝛺𝑠𝛺

𝑘𝜑𝑠𝜑
    (20)  

In practice, we encountered vibration problems hindering the proper functioning of the motor due to 

the chattering. For this, we replaced the sign function [sng(S)] of the discontinuous part of the 

control law of (20) with the saturation function (Sat), to avoid or at least lessen it. We define the 

following saturation function [12,24]: 

𝑆𝑎𝑡(𝑆(𝑥)) =    
𝑠𝑔𝑛 𝑆      𝑖𝑓   𝑆 > 𝜀

𝑆

𝜀
          𝑖𝑓    𝑆 ≤ 𝜀

   (21)  

Where 𝜀 is the boundary layer thickness. 

Mitigating vibration problems caused by chattering by replacing the sign function Sng(S) with 

a saturation function Sat(S) is an effective strategy in control systems, particularly in sliding mode 

control (SMC). The continuous nature of Sat(S) within the boundary layer ε reduces high-frequency 

switching, minimizing mechanical vibrations and noise and improving actuator lifetime; this means 

that we can get softened control action near the switching surface. 

 

Figure 1. Discontinuous function Sng(S) and continuous function Sat(S). 
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The introduction of a boundary layer ε compromises the perfect tracking behavior of the sliding 

mode. If ε is too large, the system may exhibit steady-state error. Selecting an appropriate ε is critical; 

it should be large enough to avoid chattering but small enough to ensure accurate tracking within the 

desired response time. In practice, by judiciously adjusting the parameter ε, a compromise can be 

found between robustness, precision, and vibration reduction. This concept is widely used in 

industrial applications requiring precise and reliable control of motors [12,35]. There are several types 

of functions with different boundary layers, such as tanh  
𝑆

𝜀
 ,    

𝑆

𝑆+ε
    ,

2

𝜋
atan  

𝑆

𝜺
  , . . . etc. 

4.1.1. Stability analysis 

The suggested sliding mode controllers must meet the requirements of Lyapunov's stability 

theory in order to ensure the stability of the system. The selection of the positive Lyapunov's 

function is as follows: 

𝑉 =
1

2
𝑆𝑇𝑆    (22)  

The time derivative of V is that: 

𝑉 = 𝑆 𝑇𝑆    (23)  

Substituting (16) and (20) into (23), the derivative of Lyapunov function V becomes: 

𝑉 =  (𝑄 𝑥 − 𝑅 𝑥  [𝑅 𝑥  −1 𝑄 𝑥 + 𝜆𝑠𝑛𝑔 𝑆 + 𝑘𝑆  . 𝑆    (24)  

With: 𝜆 =   
𝜆Ω 0
0 𝜆𝜑

 , 𝑘 =  
𝑘Ω

𝑘𝜑
    

 𝑉 = −𝜆. 𝑆. 𝑠𝑛𝑔 𝑆 − 𝑘𝑆2 = −𝜆 𝑆 − 𝑘𝑆2 < 0    (25)  

The stabilized system will occur when the attaining Lyapunov function criterion 𝑉 < 0 is met by 

the designed nonlinear sliding mode controller, as indicated by (20).  

4.2. Second-order SM control of IM 

We take into consideration the uncertain model of the asynchronous motor provided by the 

form in order to construct a control by second-order sliding modes that guarantees robust 

performance in the face of parametric changes and disturbances: 

𝑥 = 𝑓(𝑥) + 𝛥𝑓(𝑥) + (𝑔(𝑥) + 𝛥𝑔(𝑥))𝑢𝑠     (26)  

Where 𝑓(𝑥) and 𝑔(𝑥) constitute the nominal parts, and ∆f, ∆g represents uncertainties such that: 

∆𝑓 = [∆𝑓1 ∆𝑓2 ∆𝑓3 ∆𝑓4]𝑇 ,   ∆𝑔 =  
∆𝑔1 0 0 0

     0 ∆𝑔2 0 0   
 
𝑇

    

The control vector is us  so that 𝑢𝑠 ≤  𝑢 𝑚𝑎𝑥 . 



89 

AIMS Electronics and Electrical Engineering  Volume 9, Issue 1, 81–98. 

The relative degree of a system is the derivative number of the output to explicitly see the input 

(the command). To develop the control law according to the twisting algorithm, we choose the 

sliding surface S given by (27), such that the relative degree equals 2. 

𝑆 =  
𝑠1

𝑠2
 =  

𝛺 − 𝛺𝑟𝑒𝑓

𝜑 − 𝜑𝑟𝑒𝑓
     (27)  

Substituting (26) in the second derivative of S, we obtain: 

𝑆 = 𝐻 𝑥 + 𝐺 𝑥 𝑢𝑠 =  𝐻  𝑥 + ∆𝐻 + (𝐺  𝑥 + ∆𝐺)𝑢𝑠    (28)  

with: 

𝐻 𝑥 =  
𝐻1 𝑥 

𝐻2 𝑥 
 =  

𝐻 1 𝑥 

𝐻 2 𝑥 
 +  

∆𝐻1

∆𝐻2
 , 𝐺 𝑥 =  

0 𝐺1 𝑥 

𝐺2 𝑥 0
 =  

0 𝐺 1 𝑥 

𝐺 2 𝑥 0
 +  

0 ∆𝐺1

∆𝐺2 0
     

𝐻 1 𝑥 =  𝜇 𝛼𝑀𝑖𝑠𝑑 𝑖𝑠𝑞 −  𝛼 + 𝛿 
𝑟𝑑

𝑖𝑠𝑞 − 𝜔𝑠𝑟𝑑
𝑖𝑠𝑑 − 𝑝𝛽𝜔𝜑 −

𝐶 
𝑟

𝑗
−

𝐹

𝑗
Ω − Ω 𝑟𝑒𝑓  

∆𝐻1 = µ[ф𝑟𝑑 ∆𝑓2 + 𝑖𝑠𝑞∆𝑓3] − 𝐹∆𝑓4 + ∆𝑓 4 

𝐻 2 𝑥 = 2𝛼𝑀 𝛼𝑀𝑖𝑠𝑑
2 −  3𝛼 + 𝛿 

𝑟𝑑
𝑖𝑠𝑑 + 𝜔𝑠𝑟𝑑

𝑖𝑠𝑞  + 2𝛼2 𝛽𝑀 + 2 𝜑 − 𝜑 𝑟𝑒𝑓  

∆𝐻2 = 𝑓3 4𝛼𝑀𝑖𝑠𝑑 − 6𝛼
𝑟𝑑

+ 𝑓3 + 2𝛼𝑀
𝑟𝑑
𝑓1 + 2

𝑟𝑑
𝑓 3 

𝐺 1 𝑥 = −𝜇𝑏
𝑟𝑑  

, 𝐺 2 𝑥 = 2𝛼𝑀𝑏
𝑟𝑑

, ∆𝐺1 = µ
𝑟𝑑

∆𝑔1 , ∆𝐺2 = 2𝛼𝑀
𝑟𝑑

∆𝑔2 

It is assumed that  ∆𝐻1 ,  ∆𝐻2 ,  ∆G1  𝑎𝑛𝑑  ∆G2  are limited. The load torque 𝑇𝐿 must also be 

bound as well as its first derivative.  

By using the twisting method, the system's trajectories are forced to develop on the surface S 

after a finite amount of time, creating a second-order sliding regime that results in 𝑆 = 𝑆 = 0.  

The proposed final control using state space feedback is given by: 

𝑢𝑠  = 𝐺−1 𝑥 [−𝐻  𝑥 + 𝑣]     (29)  

G (𝑥) is invertible and 𝑣 = [𝑣1    𝑣2]𝑇  is considered the new discontinuous feedback control.  

By replacing us  in (28), the dynamics of Ω and 
𝑟
 take the following form: 

𝑆 =  ∆𝐻 − ∆𝐺 𝐺 −1𝐻  +  1 + ∆𝐺𝐺 −1 𝑣     (30)  

Assume that the following functions are bounded,  𝑣, such as: 

0 < 𝐾𝑚𝑖 ≤  1 + ∆𝐺𝑖  𝐺 𝑖
−1

 ≤ 𝐾𝑀𝑖  

  ∆𝐻𝑖 − ∆𝐺𝑖  𝐺 𝑖
−1

𝐻 𝑖  < 𝐶0𝑖              
, 𝑖 = 1, 2      (31)  
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with Kmi, KMi, and C0i being positive constants.  

According to (30) and (31), it is possible to apply the previously presented twisting algorithm. 

The control 𝑣 is then defined by: 

𝑣𝑖 =  
−𝜆𝑚𝑖  𝑠𝑔𝑛 𝑆      𝑖𝑓    𝑆𝑖𝑆 

𝑖 ≤ 0

−𝜆𝑀𝑖  𝑠𝑔𝑛 𝑆      𝑖𝑓    𝑆𝑖𝑆 
𝑖 > 0

 , 𝑖 = 1, 2  (32)  

Where λmi, λMi are positive constants checking the following conditions: 

0 < 𝜆𝑚𝑖 < 𝜆𝑀𝑖 ,   𝐾𝑚𝑖 𝜆𝑀𝑖 − 𝐶0𝑖 > 𝐾𝑀𝑖𝜆𝑚𝑖 + 𝐶0𝑖  

For its implementation, we need the sign of the derivative of the surface (𝑆 ), which can either 

be obtained by the Matlab function (du/dt) or estimated in a time interval by the sign of the 

expression 𝑆 𝑡 − 𝑆(𝑡 − 𝜏) where 𝜏 is the sampling period. 

5. Experimental setup 

The presented sliding mode controls are implemented using an experimental configuration that 

includes an ADC interface board (CP1104) and a Dspace card (DS1104 controller board with 

TMS320F240 slave CPU). The DC bus voltage is linked to a three-phase VSI inverter with a 10 kHz 

switching frequency. PWM output channels, encoder inputs, and analog inputs are all included in the 

experimental setup. The control program is written in Matlab/Simulink real-time interface. The IM 

used is a three-phase Y-connected four-pole 1.5 kW, 50 Hz, 3.5 A rating. Detailed IM parameters are 

given in Table 1. 

Table 1. Induction motor parameters. 

Parameter Value Unit 

Nominal rate power  1.5  kW 

Nominal rotor speed 1140  rpm 

Nominal voltage  220/380  V 

Rated load  10  Nm 

Number of pole pairs p 2 poles 

Resistances: Rr, Rs 4.2, 5.72  Ω 

Inductances: Lr, Ls 0.462  H 

Inductance mutual M 0.4402  H 

Inertia moment j 0.0049  kg.m2 

Friction coefficient F 0.003  N.m.s 

 

5.1. Presentation of the benchmark 

The overall configuration of the control system for IM is shown in Figure 2. All parameters of 

IM are taken to be known and constant, with the exception of the rotor time constant Tr, which will 

change while the motor is running. 
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Figure 2. Block diagram of the proposed control scheme. 

The two proposed sliding mode vector controls use the measured velocity Ω, estimated flux 𝜙 𝑟  

given by (6), corresponding position angle 𝜃 𝑠  given by (7), and stator current measurements 

(𝑖𝑠𝑑 , 𝑖𝑠𝑞 ). These control inputs control the three-phase inverter, making it possible to impose the 

monitoring of the flux and speed trajectories. The load torque is imposed on the asynchronous 

machine by a powder brake powered by a direct current of 0.15 A; the sampling period is 𝑇𝑒 =

10−4𝑠. The reference speed is applied as soon as the rotor flux is established. 5 Hz is utilized as the 

low pass filter's cutoff frequency for the measured speed. 

The sliding mode control block diagram of the first-order SMC and second-order SMC are 

shown in Figures 3 and 4, respectively. 

 

Figure 3. Block diagram of the speed discontinuous control law 𝑢𝑔𝑙𝑖𝑠 of the first-order SMC scheme. 

 

Figure 4. Block diagram of the speed discontinuous control law 𝑣1 of the second-order 

SMC scheme. 
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To make a more relevant comparison of the proposed control laws, the speed profiles were 

designed, allowing us to evaluate their performance at variable speeds (low speed, nominal speed, 

inversed speed), in the presence of the load torque and the variation of the rotor time constant Tr, 

and to highlight the tracking capabilities of control algorithms at different regimes. Figure 5 shows 

the profiles used during the experimental tests. The criteria for comparing control laws include the 

quality of the transition regime response and the ability to track various speed references under 

conditions of load torque and parameter variations. 

   

Figure 5. Reference profiles used for different speed control tests. 

5.2. Experimental results of the implemented controls 

To compare and confirm the efficacy of the suggested first- and second-order sliding mode 

controls under the same conditions, several experimental findings are given. The response of each 

method is observed under different operating conditions such as a step change in the load torque, 

speed variation, and variation of the rotor time constant. The regulation parameters of the 

second-order SMC used in experimental tests are as follows: speed gain constant, 𝜆𝑀1 = 3200, 

𝜆𝑚1 = 1000, rotor flux gain constant, 𝜆𝑀2 = 8500, 𝜆𝑚2 = 4000. 

Test 1: Tracking performance 

We present the disturbance rejection and evaluate the IM's speed progression. The test is related 

to the performances of the drive system at 150 rad/s reference speed shown in Figure 5; a load 

torque of 7.8 Nm is applied from t = 4 s to t = 10 s. Figure 6 shows that speed tracking is very 

quietly maintained while a proper rejection of the load torque is achieved. Speed and flux responses 

as well as disturbance rejection are improved by second-order SMC. 

The stator current and the stator voltage responses in the synchronous reference frame (d, q) 

given by Figure 7 show a perfect decoupling between the torque and the rotor flux, with a good 

reduction of the chattering in the second-order SM control by the twisting algorithm. Stator current 

components 𝑖𝑠𝑞  vary proportionally to the applied load torque, presenting the response of the 

electromagnetic torque. 

 



93 

AIMS Electronics and Electrical Engineering  Volume 9, Issue 1, 81–98. 

 

Figure 6. Experimental dynamic responses of speed and rotor flux under load torque TL 

= 7.8 Nm. Comparison between the two responses of first-order and second-order SMC. 

   

First-order SMC 

  

Second-order SMC 

Figure 7. Experimental dynamic responses under load torque TL = 7.8 Nm of stator 

current and stator voltage in synchronous reference frame. 

Test 2: Speed variation 

We take into account the speed tracking performances for a broad variety of reference speeds in 

this test. First, the induction motor is accelerated to 50 rad/s from a standstill; then, it is accelerated 

again to 140 rad/s and decelerated to a low speed of 10 rad/s. The twisting control algorithm, as 

shown in Figure 8, illustrates the strong speed tracking and proper rejection of the load torque, 
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presenting extremely weak oscillations at low speeds compared to the control carried out by the 

first-order sliding mode. 

As seen in Figure 9, the reference speed has been modified to the trapezoidal shape in order to 

validate speed tracking. It is evident that even in reverse speed operation, the speed converges to the 

reference trajectory and rejects the load torque rather effectively. Stator voltages (𝑢𝑠𝛼  , 𝑢𝑠𝛽 ) 

recorded in the stationary reference frame, shown by Figure 9, present a satisfactory response, and 

the SOSMC control with twisting algorithm improved chattering reduction. 

 

Figure 8. Speed variation under load torque. Comparison between the two speed 

responses of first-order and second-order SMC. 

 

 

First-order SMC       Second-order SMC 

 

Figure 9. Experimental dynamic responses of reverse speed and stator voltage 

(𝑢𝑠𝛼  , 𝑢𝑠𝛽 ) under load torque TL = 7.8 Nm. 
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Test 3: Robustness against parametric variations. 

This test was performed to validate and evaluate system performance and robustness against 

parameter variation. During this test, 100% variation of 1/Tr is taken into account from t = 8.2 s to 

t = 12.2 s, and the load torque is applied at t = 4 s, as shown in Figure 10. The rotor flux is perfectly 

oriented on the d-axis, and the load torque is rejected with great efficiency, resulting in superb speed 

control, no noticeable changes when the torque is increased, and no significant chattering. Results 

obtained by the second-order SM control are improved compared to those of the first order.  

 

Figure 10. Experimental dynamic responses under load torque TL = 7.8 Nm 

 and 100% variation of 1/Tr. 

6. Conclusions 

Two sliding mode techniques have been proposed and implemented for speed and rotor flux 

control of induction motors. Through the results obtained experimentally, the two sliding mode 

techniques allowed us to synthesize a robust control of the induction motor. Under load and rotor 

time constant variations, acceleration, deceleration, and speed reversal modes were investigated for 

speed convergence and speed tracking in various speed ranges. By comparing the first-order and 

second-order sliding mode control, we discovered that the twisting algorithm achieved smoother 

speed and rotor flux forms than the first-order sliding mode control. Also, the reduction in ripple in 

voltage and current responses revealed an improved dynamic performance of the induction motor. 

We conclude that the second-order sliding mode control reliably decreases chattering under all 

conditions while still maintaining the advantages of the classical sliding mode control. 
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