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Abstract: Insulators play a crucial role in transmission lines. Insulators exposed to natural
environments are prone to various malfunctions. These faults will seriously affect the safety and
stability of the power grid system operation, so intelligent detection of insulator defects has become
increasingly important. This paper presents an insulator defect detection model based on the improved
MViTv2-T (Multiscale Vision Transformers Version 2 Tiny). The new model utilizes the sore penalty
mechanism (SPM) cluster non-maximum suppression (NMS) algorithm instead of the batched non-
maximum suppression (NMS) algorithm from the original model. Additionally, it introduces the stage
query recollection method, which integrates high-level and low-level module queries within each stage,
along with various experimentation on integration functions between the two. The experimental results
indicate that the improved MViTv2-T model attains an mAP (mean average precision)@0.5:0.95 of
76.1%, mAP@0.5 of 96.1%, and mAR@0.5 of 97.2% in insulator defect detection. Compared to the
original model, there is a 1.8% increase in mAP@0.5:0.95 and a 17% decrease in the detection error
rate at an Intersection over Union (IoU) threshold of 0.5. Furthermore, when compared to standard
two-stage detection models and YOLO series models, the improved MViTv2-T model also exhibits
distinct performance advantages.
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1. Introduction

With the rapid industrial development in China, the demand for electricity has steadily increased,
leading to the expansion of various power facilities such as transmission lines. Insulators play critical
roles in these lines, providing essential electrical insulation and mechanical support functions. Exposed
to the natural environment, insulators are prone to damage like defects and brokenness caused by
diverse and harsh weather conditions. These issues can significantly compromise the safety and
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stability of the power grid system, emphasizing the vital need for regular insulator inspections [1].
Manual inspection remains the primary maintenance method, with power companies relying heavily
on manual checks and maintenance of crucial transmission line components, including insulators.
However, the continuous expansion of the power grid, the proliferation of long-distance transmission
lines, and the placement of lines in remote mountainous areas have posed numerous challenges for
manual inspections, marked by high costs and operational complexities.

In recent years, the proliferation of artificial intelligence technology has led to the widespread
application of defect detection methods based on deep learning across various engineering domains,
significantly impacting the field [2, 3]. Numerous researchers have proposed deep learning-based
insulator defect detection methods. [4] introduced the bidirectional feature pyramid network (BiFPN)
module into YOLOv5, and then the BiFPN module and SimAM were combined, achieving higher
detection accuracy while maintaining a high detection speed. [5] merged YOLOv3 with SRCNN.
Experimental findings indicate that this approach boosts detection accuracy by 1% to 3% compared
to Faster R-CNN and SSD, offering improved speed and nearly achieving real-time performance.
However, challenges persist in detecting small targets. [6] proposed an improved YOLOv8n-based
insulator defect detection model, introducing a triplet attention module. They put forward a lighter
SC-Detect to replace the original SC-Detect and reconstructed the neck structure using GSConv-
based Slim-neck, reducing the model’s parameters and computational load to meet the requirements
of high accuracy and real-time performance. [7] presented a multi-scale insulator defect detection
approach, which is introduced by utilizing the detection transformer (DETR). The approach includes a
multi-scale backbone, a self-attention upsampling (SAU) module, and the insulator defect (IDIoU)
loss function, resulting in exceptional performance in detecting small defects. [8] introduced a
dense connection architecture incorporating multi-scale features, an adaptive weight transfer module
operating at multiple scales, and a multi-branch detection unit. This architecture successfully enables
the accurate identification and precise localization of insulator defects, outperforming the comparison
algorithm in terms of both accuracy and speed. [9] presented an insulator defect detection framework in
an unsupervised image reconstruction manner. Collecting and using the catenary insulator defect (CID)
dataset, they achieved high accuracy without manual annotations. [10] presented an enhanced Faster R-
CNN algorithm that employs the ResNeSt network as its backbone. This improved model integrates the
regional proposal network (RPN) within the ResNeSt network to boost the extraction of defect features,
leading to a heightened detection accuracy of 98.38% for insulator defects. [11] proposed a detection
method based on a microwave technique and an automatic detection system to detect the internal
defects of composite insulators, performing efficiently, while being labor-saving and robust. [12]
proposed a coordinate attention mechanism (CAM) and feature channel shuffle operation (CSO) YOLO
(CACS-YOLO). Using synthetic weather algorithms for data enhancement and introducing the CAM
and CSO in the YOLOv8m model, they improved the detection precision and reduced the parameters
of the model.

Several challenges arise when detecting crucial components in transmission lines like insulators,
including substantial scale variations in detection targets involving numerous small and medium-
sized objects [13, 14], intricate backgrounds, and occlusion occurrences [15, 16]. To address these
challenges while catering to practical engineering needs, it is crucial to strike a balance between
detection precision and speed. Consequently, the current research focuses on creating a lightweight,
precise, and robust defect detection model [17, 18].
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In this paper, we propose a defect detection model for insulator defect detection according to
the requirements of intelligent inspection of power grids. Unlike other research that widely applies
the YOLO model in the field of insulator defect detection, we innovatively introduce the MViTv2
model based on transformers. Unlike other research that tends to add complex modules to improve
performance, we attempt to introduce no additional modules or increase complex computational
processes, focusing instead on fully integrating and utilizing the features learned by each layer of the
model. In this way, we achieve higher detection accuracy without introducing additional parameters
and significantly slowing the detection speed. Our model’s metrics meet the engineering application
standards and can be applied to the front-end acquisition equipment for power grid inspection and
monitoring.

2. Dataset and its statistics

The insulator defect dataset in this paper mainly comes from the State Grid Corporation of China
and Yunnan Limited Company of China Southern Power Grid. All insulator images are sourced
from real insulators on China’s power grid transmission lines, and collected through fixed or drone
photography. Due to the difficulty of collection, the sample size is limited. The State Grid Corporation
of China provides the normal type and the defect type insulator samples, with 600 and 248 images,
respectively; Yunnan Limited Company of China Southern Power Grid provides the broken type and
the defect type insulator samples, with 232 and 134 images each. Therefore, there are 600 images for
normal insulators, 382 for defect insulators, and 232 for broken insulators, totaling 1214 images.

The insulator is composed of insulator units and metal connectors. Insulators with all intact insulator
units are the normal type insulators; insulators with one or more broken insulator units are the broken
type insulators, which can still perform their normal functions but need to be replaced; insulators with
one or more missing insulator units are the defect type insulators, which have completely lost their
normal functions and need to be replaced urgently. Figure 1 shows the three categories of labeled
targets.

(a) Normal (b) Defect (c) Broken

Figure 1. Three categories of labeled targets.

This paper visualizes statistics on the dataset, as shown in Figure 2. Figure 2(a) displays the number
of samples for each category, Figure 2(b) presents the width and height of detected targets relative to
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the image, and Figure 2(c) shows the statistics of all image sizes.

(a) Number of samples for each category (b) Width and Height of detected targets

(c) All image sizes

Figure 2. Dataset statistics visualization.

From Figure 2(a), it can be seen that in the insulator defect dataset, the majority of detected targets
are normal insulators, while the number of broken and defect insulator targets is relatively small,
indicating the presence of a sample imbalance issue in the dataset.

Observing Figure 2(b), it is evident that over half of the detection targets in the insulator defect
dataset cover a small area of the whole image, while some targets occupy a larger area, highlighting
noticeable variations in target sizes. This underscores the necessity for the model to possess robust
multi-scale detection capabilities.

Based on Figure 2(c), it is clear that more than half of the images in the insulator defect dataset
have dimensions below 2000 x 2000. However, a notable fraction of images exhibit larger dimensions,
indicating an uneven distribution of image sizes within the dataset. During model training, images are
usually resized, which can result in the loss of features in oversized images.

All images contain one or more detection targets, typically against backgrounds of hills, land,
sky, forests, and grasslands, which are varied and complex. The dataset also includes cases of target
occlusion, adding to the difficulty of detection.
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Considering the dataset characteristics and practical requirements, this paper utilizes Facebook’s
multiscale vision transformers (MViTv2) model as the original model and opts for its tiny version
model with fewer parameters and quicker detection speed. Subsequently, the model will be improved
to better align with the insulator defect dataset and enhance defect detection performance.

3. Methods

In practical engineering applications, the detection model needs to be integrated into the cameras
for real-time detection in crucial areas (substations and abnormal monitoring areas); in non-crucial
areas, the cameras take scheduled photos and transmit them to the data center for detection. Thus,
the detection model should have faster speed and higher accuracy under the same configuration. The
MViTv2 model is a deep learning model derived from ViT (vision transformer). Its accuracy and
speed are aligned with the demands of practical engineering applications. In this paper, we choose the
MViTv2-T model as the original model. Based on the characteristics of our application, we replace the
NMS algorithm and propose the stage query recollection method.

3.1. MViTv2-T model

The MViTv1 [19] model was proposed by Facebook in 2021 to address the issues of large
parameters and computational complexity in ViTs by introducing attention pooling, which reduces
the number of parameters and computational burden. The MViTv2 [20] model, improved and released
by Facebook in 2022. Figure 3 shows the self-attention mechanism of the MViTv1 model and the
MViTv2 model for comparison.

(a) MViTv1 (b) MViTv2

Figure 3. The self-attention mechanism of the MViTv1 model and the MViTv2 model.

The main improvement of MViTv2 is the relative position embedding and residual pooling
connection, as shown in the red part of Figure 3(b). MViTv1’s modeling between two tokens only
depends on their absolute positions in the image, even if their relative positions remain unchanged,
this ignores the fundamental principle of shift-invariance in vision. To address this, MViTv2 uses
relative position embedding, which only depends on the relative location distance between tokens.
From MViTv1, it is evident that pooling attention significantly reduces computational complexity and
memory requirements, and enhances the network’s feature extraction capability. To better train the
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pooling attention blocks, MViTv2 employs a residual pooling connection, which increases information
flow.

The formula for the self-attention mechanism calculation in the MViTv2 model is

Attn(Q,K,V) = so f tmax
(

QKT

√
dk

)
V + Q (1)

where, Q, K, and V are the query, key, and value matrices obtained through Linearq,k,v, and dk is the
dimension of the key matrix.

The MViTv2-T model is divided into three parts: feature extraction module (Backbone with FPN),
RPN, and ROI. The structure of the MViTv2-T model is shown in Figure 4.

Figure 4. The structure of the MViTv2-T model.

The backbone of the MViTv2-T model comprises ten interconnected MViT blocks organized into
4 stages. The structure of the backbone is depicted in Figure 5.

Figure 5. The structure of the backbone.

3.2. SPM cluster NMS

The MViTv2-T model is a two-stage detection model that uses the batched NMS algorithm
implemented in Torchvision to suppress the candidate boxes obtained by RPN. The principle of the
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traditional NMS algorithm is to perform NMS on all bounding boxes (BBox) together. The difference
of the batched NMS algorithm lies in performing NMS only on the BBoxes within each category,
while the calculation principle is the same. Therefore, this algorithm suffers the same drawback as the
traditional NMS algorithm: even if the number of candidate boxes before and after NMS is restricted by
hyperparameters, there are still too many redundant candidate boxes, further affecting the subsequent
detection performance. To avoid this situation and balance accuracy and speed, this paper considers
using the SPM cluster NMS [21] algorithm to replace the batched NMS algorithm. The pseudocode
for the SPM Cluster NMS algorithm is shown below:

Algorithm 1 SPM Cluster NMS Algorithm
Input:

boxes (Tensor[N, 4]) ▷ Bounding boxes
scores (Tensor[N, 1]) ▷ Scores for each box
NMS threshold (float) ▷ IoU threshold for NMS

Output:
boxes kept (Tensor[M, 4]) ▷ Filtered bounding boxes
scores kept (Tensor[M, 1]) ▷ Filtered scores

1: scores, idx← sort(scores, descending=True) ▷ Sort scores and get indices
2: boxes← boxes[idx] ▷ Rearrange boxes based on sorted indices
3: iou← box iou(boxes, boxes) ▷ Compute IoU matrix
4: C← triu(iou, diagonal=1) ▷ Upper triangular IoU matrix
5: Initialize i← 0
6: while i < 200 do
7: A← C ▷ Store current IoU matrix
8: maxA← max(A, dim=0)[0] ▷ Find column maximum values
9: E← (maxA < NMS threshold) ▷ Create exclusion mask

10: C← iou · E ▷ Element-wise multiplication with IoU
11: if A.equal(C) then
12: break ▷ Exit loop if stable
13: end if
14: i← i + 1
15: end while
16: scores← prod(exp(−C2/0.2), 0) · (scores.squeeze(1)) ▷ Penalty on scores
17: keep← scores > 0.01 ▷ Apply score thresholding
18: return boxes[keep], scores[keep] ▷ Return filtered boxes and scores

This NMS algorithm introduces the score penalty mechanism (SPM), and its formula is

S cores j = S cores j

∏
i

e−
C2

i j
0.2 (2)

where, S cores is a tensor of size N representing the scores of N candidate boxes in the preliminary
detection of RPN, and C is the intermediate matrix in the NMS calculation process.

The IoU matrix represents the relevance between boxes. In Algorithm 1, the IoU matrix is an upper
triangular matrix calculated after score-descending sorting Boxes and S cores. When i < j, the IoUi j is
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meaningful and represents the similarity between Boxi and Box j, with S corei ≥ S core j. The larger the
IoUi j, the higher the similarity between the two boxes, and the greater the likelihood of retaining only
one. The iteratively derived C matrix also possesses this characteristic. The SPM penalizes the score
of the box by quantifying the likelihood, and due to the characteristics of the upper triangular matrix,
S core j is only penalized by those boxes with higher scores than S core j. For the calculation process of
the SPM, refer to the example in Figure 6.

Figure 6. The calculation process of the SPM.

In Figure 6, C02 = 0.13 implies that the similarity between Box0 and Box2 is 0.13, which indicates
a high probability of retaining both boxes simultaneously. Therefore, by calculating, the similarity of
0.13 is transformed into a penalty ratio of 0.92, signifying that Box0 exerts a minimal penalty on Box2.
Similarly, the penalty ratio 0.93 indicates the penalty exerted by Box1 on Box2. When these values are
multiplied column-wise, the penalty ratio 0.86 represents the combined penalty of Box0 and Box1 on
Box2, where both S core0 and S core1 are greater than S core2.

3.3. Stage query recollection

Because most insulators are located in the wild with complex and changing backgrounds, and
are constrained by shooting angles leading to common occlusion phenomena, some missed and false
detections occur during detection. To address missed detections and false detections caused by complex
backgrounds and occlusions, this paper proposes integrating the query of high-level modules and the
query of low-level modules in each stage, fully utilizing contextual information to enhance the saliency
of detection targets, helping the model better locate features and extract features, known as stage query
recollection. This method can fully integrate and utilize contextual image information and semantic
information, enhancing the saliency of detection targets in situations like complex backgrounds and
occlusions. The stage query recollection method is shown in Figure 7.

Figure 7. The stage query recollection method.
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The formula for the self-attention mechanism after the stage query recollection method is

Attn{Q,K,V} = so f tmax
( fn

(
Qhigh,Qlow

)
KT

√
dk

)
V + Qlow (3)

where Qhigh represents the query of the MViT Block with high-level, Qlow represents the query of the
MViT Block with low-level, and fn is the function that integrates the Qhigh and the Qlow.

Initially, we present three basic integration functions fn to integrate two queries, each with
progressively increasing parameters from left to right, as depicted in Figure 8.

Figure 8. Three basic fn functions.

The Conv block consists of Conv2d, GELU, and BatchNorm, while the inner block consists of 2
conv block, and Conv2d, as shown in Figure 9(a) and in Figure 9(b), respectively.

Figure 9. The structures of Conv Block and Inner Block.

In Figure 9(b), the inner block imitates the CNN and transformer fusion module in the experimental
part of TransXNet [22], where the inner block equals max(16,C/Ratio), and Ratio is a manually set
hyperparameter, while Figure 9(a) represents the basic module simplified from inner block.

The three basic fn functions in Figure 8 are

f1(Qhigh,Qlow) = Qhigh + Qlow

f2
(
Qhigh,Qlow

)
= Conv

(
Concat

(
Qhigh,Qlow

))
f3(Qhioh,Qlow) = Inner(Concat(Qhioh,Qlow),Ratio)

(4)

where Concat is the concatenation of matrices along the channel dimension, and Conv and Inner
represent the Conv block and the inner block, respectively.

The three basic fn functions proposed above assume equal importance between Qhigh and Qlow:
the proportion between the two is 1:1, meaning the importance of the two is equal. Furthermore,
introducing additional blocks into the model increases the number of parameters. To decrease the
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additional number of parameters, the hypothesis is made that perhaps the importance of integrating
the query of high-level and low-level modules is not equal. Hence, this paper introduces an additional
hyperparameter representing the proportion between Qhigh and Qlow, as illustrated in Figure 10.

Figure 10. Three fn functions with hyperparameters.

The three fn functions in Figure 10 are

f4
(
Qhigh,Qlow

)
= W0 × Qhigh +W1 × Qlow

f5
(
Qhigh,Qlow

)
= Conv

(
Concat

(
W0 × Qhigh,W1 × Qlow

))
f6(Qhigh,Qlow) = Inner(Concat(W0 × Qhigh,W1 × Qlow),Ratio)

(5)

where, W0 represents the ratio of Qhigh, and W1 represents the ratio of Qlow.

4. Experiments

4.1. Data augmentation

Due to the insufficient sample images and the sample imbalance, it is necessary to augment the data.
The data augmentation in this paper and its examples are shown in Figure 11.

(a) Normal (b) Random rotation (center fixed) (c) Random rotation (center variable)

(d) Mirror flipping (e) Adjusting image saturation (f) Adding noise

Figure 11. Data augmentation examples.
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After data augmentation, the numbers of the training set, validation set, and test set are 1800, 600,
and 600, respectively, with an equal number of images for each of the three categories in each subset.

This paper visualizes statistics on the dataset after data augmentation, as shown in Figure 12. Figure
12(a) displays the number of various detection targets after data augmentation, Figure 12(b) presents
the width and height of detected targets relative to the image after data augmentation, and Figure 12(c)
shows the statistics of all image sizes after data augmentation.

(a) Number of various detection targets (b) Distribution of sizes for various detection
targets

(c) All image sizes statistics

Figure 12. Dataset statistics visualization.

4.2. Experiment configuration and evaluation index

The operating system used in the experiment is Windows 11, and the GPU selected is an Nvidia
GeForce RTX 4090. The deep learning framework utilized is Detectron2. During training, multi-scale
training is employed (scaling the shorter edge to the range [480, 800] and ensuring the longer edge is
under 1333). The optimization is performed using the AdamW optimizer (with β1 = 0.9, β2 = 0.999,
the initial learning rate of 1.6×10−4, Batch size of 4, and weight decay of 0.1). The loss functions used
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during training are the smoothing L1 loss and the cross-entropy Loss, respectively. The total training
duration is 150 epochs. The drop path rate is configured as 0.1. We employed automatic mixed
precision in PyTorch for training, utilizing the pretrained Mask RCNN-MViTv2-T model trained on
Imagenet-1k.

This paper utilizes some of the evaluation metrics from COCO 2017 for experimental assessment,
including average precision (AP), AP50, AP75, AR50, and FPS. To align with commonly used metrics,
this paper conducted conversions. AP corresponds to mAP@0.5:0.95, which involves computing mAP
across IoU thresholds from 0.5 to 0.95 in intervals of 0.05, then averaging the results. AP50 and AP75
represent mAP@0.5 and mAP@0.75, respectively, indicating average precision at IoU thresholds of
0.5 and 0.75. AR50 is equivalent to mAR@0.5, denoting the ratio of correct predictions to all positive
predictions at an IoU threshold 0.5. FPS stands for frames per second, signifying the detection model’s
processing speed in images per second. In this research, uniform evaluation metrics in the table are
employed, namely mAP@0.5:0.95, mAP@0.5, mAP@0.75, mAR@0.5, and FPS.

The formulas for calculating precision(P), recall(R), mean average precision(mAP), average
recall(AR), and mean average recall(mAR) are

P =
T P

T P + FP

R =
T P

T P + FN

(6)

where TP indicates a positive sample correctly predicted as positive, FP indicates a negative sample
incorrectly predicted as positive, and FN denotes a positive sample incorrectly predicted as negative,
representing a missed detection.

The formulas for mean average precision(mAP), average recall(AR), and mean average
recall(mAR) are as follows:

AP =
∫ 1

0
p(r)dr

mAP =
∑K

i=1 APi

K

AR = 2
∫ 1

0.5
recall(o)do

mAR =
∑K

i=1 ARi

K

(7)

where K represents the total number of categories, and APi and ARi represent the AP and AR of
category i, respectively.

4.3. Experimental results and analysis

4.3.1. Experimental results of the SPM Cluster NMS

To mitigate the problem of excessive redundant candidate boxes generated during the NMS stage
by the detection model, this paper explores the substitution of the Batched NMS algorithm. The
experimental investigation includes the evaluation of various improved NMS algorithms such as soft
NMS [23], DIoU NMS [24], fast NMS [25], cluster NMS, and SPM cluster NMS.
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The batched NMS algorithm is retained for model training, following the procedures outlined in
the soft NMS paper. However, different improved NMS algorithms are employed for testing and
comparative analysis during the evaluation of the test model’s detection performance. Table 1 presents
comparative experiments of each improved NMS algorithm.

Table 1. Comparative experiments of each improved NMS algorithm.

Method
mAP

@0.5:0.95/%
mAP@0.5/% mAP@0.75/% mAR@0.5/% FPS

Original model 74.3 95.3 87.3 95.8 22.2
Soft NMS 75.3 95.4 87.6 96.1 0.5

DIoU NMS 74.5 95.4 87.9 96.1 0.8
Fast NMS 67.9 88.2 79.7 89.3 20.6

Cluster NMS 74.7 95.4 87.1 96.2 17.2
SPM Cluster NMS 75.4 95.4 87.4 96.2 17.1

From Table 1, it can be illustrated that the soft NMS algorithm exhibits high detection accuracy;
however, its sequential structure underutilizes the GPU’s high-speed computing capabilities, resulting
in a noticeable drop in detection speed. The DIoU NMS algorithm also shows slow detection speed
without improving detection performance. In contrast, the fast NMS, cluster NMS, and SPM cluster
NMS algorithms demonstrate similar detection speeds. Specifically, the fast NMS algorithm achieves
low detection accuracy, the cluster NMS algorithm only marginally enhances detection accuracy, while
the SPM cluster NMS algorithm matches the soft NMS algorithm’s performance with a moderate FPS
reduction. Hence, this indicates the suitability of the SPM cluster NMS algorithm for the insulator
defect dataset analyzed in this paper. Consequently, the SPM cluster NMS algorithm is selected as the
replacement for the traditional NMS algorithm in this research.

After replacing the traditional NMS algorithm with the SPM cluster NMS algorithm, this paper
visualizes the detection boxes selected by RPN, as shown in Figure 13. The left image in Figure 13 is
the RPN detection image using the batched NMS algorithm, while the right image is the RPN detection
image using the SPM cluster NMS algorithm, with green boxes visualizing the candidate boxes.

(a) Candidate boxes of the broken type

AIMS Electronics and Electrical Engineering Volume 9, Issue 1, 1–25.
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(b) Candidate boxes of the defect type

(c) Candidate boxes of the normal type

Figure 13. Comparison of candidate boxes of two NMS algorithms.

4.3.2. Experimental results of the stage query recollection

This paper proposes implementing the Stage Query Recollection method and explores different
integration functions to tackle the challenges posed by missed detections and false alarms resulting
from complex backgrounds and occlusions.

This paper first conducts experimental comparisons of three basic integration functions, with Table
2 comparing experimental results.

Table 2. Comparative experiments of three basic integration functions.

method
hyper-

parameter
mAP

@0.5:0.95/%
mAP@0.5/% mAP@0.75/% mAR@0.5/% FPS #Params

Original model - 74.3 95.3 87.3 95.8 22.2 41.0M
f1 - 75.2 95.7 87.3 95.3 22.6 41.0M
f2 - 74.0 95.3 86.9 96.0 15.7 41.1M

f3
Ratio = 0.5 75.3 96.0 87.7 95.3 21.4 41.6M
Ratio = 1 75.6 96.4 87.0 97.0 21.7 41.3M
Ratio = 4 75.0 95.6 86.9 96.4 21.9 41.1M

From Table 2, it can be seen that after the introduction of stage query recollection, using f1 as the
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integration function, i.e., directly adding the high-level module Query with the low-level module Query,
the experimental results show that while maintaining closeness to the original detection model in terms
of FPS, there is an improvement of 0.9% and 0.4% in mAP@0.5:0.95 and mAP@0.5, respectively,
without introducing additional parameters. Using f2 as the integration function, i.e., a Conv block,
the experimental results show that after introducing an additional parameter load of 0.1M, almost
all indicators exhibited varying degrees of decline. Using f3 as the integration function, i.e., the
inner block with the hyperparameter ratio set to 1, the experimental results show that its overall
performance is optimal, with around a 1% improvement in metrics such as mAP@0.5:0.95, mAP@0.5,
and mAR@0.5. However, this integration function introduces an additional parameter load of 0.3 M.

This paper then introduces two hyperparameters based on the above three basic integration functions
and conducts experiments.

Table 3 shows comparative experiments of three integration functions after the inclusion of
hyperparameters.

Table 3. Comparative experiments of three integrations with hyperparameters.

method hyperparameter
mAP

@0.5:0.95/%
mAP

@0.5/%
mAP

@0.75/%
mAR

@0.5/%
FPS #Params

Original model - 74.3 95.3 87.3 95.8 22.2 41.0M
f3 Ratio = 1 75.6 96.4 87.0 97.0 21.7 41.3M

f4

W0 = 0.7,W1 = 0.3 75.2 95.9 86.7 96.7 22.8

41.0M
W0 = 0.6,W1 = 0.4 75.5 96.4 87.7 97.2 22.6
W0 = 0.4,W1 = 0.6 75.1 95.3 87.8 96.0 22.7
W0 = 0.3,W1 = 0.7 74.8 95.8 86.3 96.7 22.6

f5

W0 = 0.7,W1 = 0.3 74.3 95.3 86.6 96.1 15.8

41.1M
W0 = 0.6,W1 = 0.4 75.0 95.3 86.8 96.1 15.7
W0 = 0.4,W1 = 0.6 74.5 95.7 88.1 96.5 15.6
W0 = 0.3,W1 = 0.7 74.0 95.1 86.8 95.8 15.7

f6
Ratio = 1

W0 = 0.7,W1 = 0.3 74.9 95.4 87.7 96.5 21.5

41.3M
W0 = 0.6,W1 = 0.4 74.8 95.6 86.9 96.1 21.3
W0 = 0.4,W1 = 0.6 75.1 95.7 86.4 96.4 21.4
W0 = 0.3,W1 = 0.7 74.9 95.3 87.3 95.9 21.4

From Table 3, it can be seen that after introducing stage query recollection, using the f4 with W0 =

0.6 and W1 = 0.4, the experimental results show that its metrics of mAP@0.5:0.95 and mAP@0.5 are
similar to those of the f3 with Ratio = 1, and it outperforms the latter in terms of mAP@0.75 and
does not introduce additional parameter load. Using f5 and f6 with Ratio = 1 as integration functions,
after introducing hyperparameters, these two integration functions did not show a significant overall
improvement. Among them, the mAP@0.75 metric of f5 with W0 = 0.4 and W1 = 0.6 was the highest.
In conclusion, this paper considers that f3 with Ratio = 1 and f4 with W0 = 0.6 and W1 = 0.4 are more
suitable for the insulator defect dataset in this paper.
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Figure 14. Comparison of the visual feature map.

Figure 14 shows the visual feature map comparison of the original model, f3 with Ratio = 1, and

AIMS Electronics and Electrical Engineering Volume 9, Issue 1, 1–25.



17

f4 with W0 = 0.6 and W1 = 0.4. From left to right, the order is the original model, f3, and f4, with
the detection targets highlighted in green boxes. In Figure 14, the color range from blue to green and
then to red represents the attention level from low to high. Blue represents low attention, while red
represents high attention.

In Figure 14, the green boxes represent the annotated boxes. It can be seen that, in the feature
map generated by the original model on the far left, some annotated box positions either do not pay
attention to features, or the level of attention is low, which cannot effectively assist in the subsequent
classification stage, resulting in missed detections and false detections. And, other conclusions can be
drawn: After adding f3 with Ratio = 1 and f4 with W0 = 0.6 and W1 = 0.4, the model pays more
attention to some detection targets with complex backgrounds, occlusions, and some targets at the
edges, avoiding some missed detections and false positives, thereby improving the detection accuracy
of the model.

4.3.3. Ablation experiment

To further validate the effectiveness of all the proposed improvements in this paper, a detailed
ablation experiment is conducted on the proposed improvements. Table 4 shows the results of the
ablation experiment.

Table 4. Ablation experiment results.

SPM Cluster NMS
f 6

(Ratio = 1)
f 4

(W0 = 0.6,W1 = 0.4)
mAP

@0.5:0.95/%
mAP@0.5/% mAP@0.75/%

74.3 95.3 87.3
! 75.4 95.4 87.4

! 75.6 96.4 87.0
! 75.5 96.4 87.7

! ! 76.0 96.3 87.1
! ! 76.1 96.2 87.9

From Table 4, the following conclusions can be drawn. The original MViTv2-T model’s
mAP@0.5:0.95 and mAP@0.5 stabilize at 74.3% and 95.3% respectively; the improved MViTv2-T
model outlined above surpasses the original model in terms of both mAP@0.5:0.95 and mAP@0.5
performance metrics. Specifically, with the inclusion of f3 with Ratio = 1 and the SPM cluster
NMS algorithm, the improved MViTv2-T model achieves mAP@0.5:0.95 and mAP@0.5 stabilizing
at 76.0% and 96.3%, respectively; with the inclusion of f4 with W0 = 0.6 and W1 = 0.4, and the
SPM Cluster NMS algorithm, the improved MViTv2-T model achieves mAP@0.5:0.95 and mAP@0.5
stabilizing at 76.1% and 96.2%, respectively. Hence, when contrasting the improved MViTv2-T model,
which employs two distinct integration functions, with the original MViTv2-T model, there is an
increase of approximately 1.8% in mAP@0.5:0.95 and about 1.0% in mAP@0.5.

4.3.4. Overall detection results

This paper compares the improved MViTv2-T model with the original MViTv2-T model, and the
detection results are shown in Figure 15. The types are defined as follows: type 0 for broken, type 1
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for defect, and type 2 for normal.

(a) Results from the original MViTv2-T model’s detection
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(b) Results from the improved MViTv2-T model’s detection with f3
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(c) Results from the improved MViTv2-T model’ detection with f4

Figure 15. Contrast between our improved model and the original MViTv2-T model.
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From Figure 15, the improved MViTv2-T model in this paper performs better in detecting some
missed and false detection targets compared to the original model. Additionally, for some detection
targets with relatively low scores, the improved MViTv2-T model will assign higher scores.

4.3.5. Comparison for model training

Figure 16 shows the contrast in mAP@0.5:0.95 and mAP@0.5 curves for our models. The red
curve represents the original MViTv2-T model, the blue curve represents the MViTv2-T model using
f3 with Ratio = 1, and the green curve represents the MViTv2-T model using f4 with W0 = 0.6 and
W1 = 0.4.

(a) Comparisons of mAP@0.5:0.95 (b) Comparisons of mAP@0.5

Figure 16. Contrast in mAP@0.5:0.95 and mAP@0.5 curve.

4.3.6. Loss iteration during training

Figure 17 shows the loss iteration process of the MViTv2-T model using f3 with Ratio = 1 and f 4
with W0 = 0.6 and W1 = 0.4. The entire training process used an NVIDIA GeForce RTX 4090 GPU
with 24GB memory and lasted 14 hours.

(a) Loss curve of f3 with Ratio = 1 (b) Loss curve of f4 with W0 = 0.6,W1 = 0.4

Figure 17. Loss curve of f3 and f4.
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4.3.7. Experimental comparisons with other models

To objectively assess the advantages of the improvements in this paper, the improved MViTv2-
T model is compared with commonly used defect detection models in industry. All defect detection
models are trained on the same augmented dataset with the same software/hardware environment, using
the same parameters during training. In the same insulator defect dataset, the comparative experiments
with other models are shown in Table 5.

Table 5. Comparative experiments with other models in the same insulator defect dataset.

Models
mAP

@0.5:0.95/%
mAP@0.5/% mAP@0.75/% mAR@0.5/% FPS GFLOPs

RetinaNet 64.3 86.8 74.1 92.4 12.6 93.6
Faster-RCNN 66.1 88.6 76.7 90.4 13.4 38.5
Mask-RCNN 65.2 87.1 77.4 88.7 13.4 9.2

Cascade-RCNN 69.0 87.9 78.6 90.2 8.5 9.2
FCOS 53.2 81.6 60.7 90.6 13.3 80.1

YOLOv5n 64.8 90.8 74.1 85.2 52.9 4.2
YOLOv5m 73.5 94.5 85.3 91.6 31.1 48.2
YOLOv5l 74.4 95.5 86.9 93.3 25.8 108.3
YOLOv7t 66.2 90.8 74.9 86.1 44.4 12.9
YOLOv7 73.8 93.9 86.5 89.6 22.8 104.5
YOLOv8s 72.3 91.8 81.3 88.4 41.3 28.3
YOLOv8m 73.1 93.0 82.3 90.1 37.9 78.1
YOLOv8l 73.2 92.7 81.7 88.1 29.2 163.9
YOLOv9c 67.0 89.4 76.4 84.4 17.4 102.1

Ours-1 76.0 96.3 87.1 96.7 16.3 9.9
Ours-2 76.1 96.2 87.9 97.0 17.4 9.7

From Table 5, the following conclusions can be drawn: The improved MViTv2-T model presented
in this paper demonstrates superior detection accuracy and recall performance compared to other defect
detection models. Furthermore, the improved MViTv2-T model demonstrates quicker detection times
compared to other analyzed models with the same number of parameters. However, it is worth noting
that the improved MViTv2-T model lags slightly in FPS compared to YOLO. Given the standard 5-
minute sampling interval for monitoring equipment in industrial defect detection, the higher detection
accuracy provided by the improved MViTv2-T model is particularly advantageous.

5. Conclusions

In this paper, we propose the improved MViTv2-T model by replacing the batched NMS algorithm
with the SPM cluster NMS algorithm, proposing stage query recollection, and further experimenting
with various integration functions, the model’s mAP@0.5:0.95 for detecting insulator defects in power
transmission lines increases by about 1.7%, mAP@0.5 increases by about 1.0%, and mAR@0.5
increases by about 1.2%.
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Unlike the pure CNN models, YOLO focuses on being lightweight and fast, and RCNN focuses on
higher accuracy. This paper introduces a model based on transformers, which increases the parameters
and achieves higher detection accuracy without slowing down the detection speed. This model can not
only be applied to insulator defect detection, but also to other defect detection areas.

Furthermore, the experiments in this paper still have shortcomings and limitations, such as: (1)
not involving broader integration functions; (2) integrating more modules of Query; (3) more fully
utilizing the Query, Key, and Value matrices; (4) using mathematical methods to select the optimal
hyperparameters; (5) emulating the attention mechanism in deep convolutional networks to extend the
hyperparameters to the dimensions of length, width, and channel of matrices. The upcoming research
will continue to delve deeper based on the improved model. Our goal is to reduce the number of
model layers and explore more effective integration functions to fully utilize the feature information
generated by each layer of the model. We aim to achieve higher detection performance while reducing
the number of parameters, maintaining or surpassing the model’s performance, making it more suitable
for insulator defect detection and potentially applicable to other fields.
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