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Abstract: This paper introduces a novel hybrid approach that integrates Latin hypercube sampling 

(LHS) and Bayesian optimization for optimizing artificial neural networks (ANNs) in fault detection, 

classification, and location for transmission lines. The proposed method advances the accuracy and 

efficiency of fault diagnosis in power systems, representing a significant step forward compared to 

conventional approaches. The test system is a 400 kV, 50 Hz, 300 km transmission system, and the 

simulations were carried out in MATLAB/Simulink environment. Using the strategic insight of LHS, 

optimal initial points were determined, which subsequently formed the basis for the Bayesian 

optimization to further refine the learning rate and training epochs. Within the fault detection domain, 

the model showcased remarkable precision when deployed on an evaluation dataset of 168 cases, 

accurately detecting every instance of normal and faulty scenarios. This culminated in an astounding 

100% accuracy in fault detection. In terms of fault classification, the ANN model, trained on a 

dataset of 495 instances, revealed perfect regression coefficients across the training, testing, and 

validation subsets. When tested against unseen data, it demonstrated its proficiency by correctly 

classifying 154 out of 154 cases, showcasing a 100% F1 score. Also, the accuracy figures in terms of 

fault location fluctuated between 99.826% and 99.999%, with a mean absolute percentage error 

(MAPE) of 0.053%. The model’s mean square error (MSE) stood at 0.0083, while the mean absolute 

error (MAE) was calculated at 0.0717. A deep dive into diverse fault types reaffirmed the model's 

precision, underscoring its consistent performance across various fault scenarios. The trained models 

were deployed on three different transmission lines and the models exhibited remarkable precision in 

all the cases tested. In summary, the innovative hybrid optimized ANN model, weaving together the 
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strengths of LHS and Bayesian optimization, signifies an advancement in the field of power system 

fault analysis, ushering in heightened efficiency and reliability. 

Keywords: Latin; hypercube; Bayesian; optimization; transmission; artificial neural network 

 

1. Introduction 

As an indispensable part of modern civilization, power systems are the lifeline supporting 

various sectors, including residential, commercial, and industrial domains. The continuous and 

reliable functioning of these systems is, therefore, a critical concern. One of the primary challenges 

that threaten the integrity of power systems is the occurrence of faults in power transmission lines. 

These faults, if undetected or misclassified, can cause significant disruptions, leading to economic 

losses and potential safety hazards [1]. 

Fault detection, classification, and location methods play a crucial role in ensuring the reliability 

and stability of power transmission networks [2]. In these intricate systems, the occurrence of faults 

can lead to disruptive outages and potentially severe consequences, underscoring the urgency for 

accurate and swift fault analysis to trigger timely corrective actions. Traditional approaches often 

rely heavily on domain expertise and manual interventions, thereby limiting their scalability and 

applicability in real-time scenarios [2]. With the emergence of advanced technologies, such as 

artificial neural networks (ANNs) [1,3], support vector machines (SVMs) [4–6], and evolutionary 

algorithms [7], the landscape of fault analysis has undergone a transformative shift. These modern 

methodologies harness the power of machine learning, pattern recognition, and optimization 

techniques to significantly enhance fault detection accuracy, facilitate the classification of various 

fault types, and precisely locate faults within the distribution network. As power systems continue to 

grow in complexity and scale, these innovative approaches offer the promising potential to optimize 

the efficiency, precision, and speed of fault analysis, ultimately contributing to the establishment of 

more dependable and resilient power distribution networks. 

The versatility of convolutional neural networks (CNNs) becomes evident in their capacity to 

adeptly learn intricate features from a wide range of data, consequently enabling accurate fault 

identification and precise location in power transmission networks [8]. However, the inherent 

black-box nature of CNNs presents challenges related to interpretability, potentially hindering a clear 

understanding of the decision-making processes underlying their outcomes [9]. Moreover, CNN 

training demands considerable computational resources and extended timeframes, potentially 

impeding their deployment in real-time applications [10]. Additionally, the effectiveness of CNNs 

heavily relies on the availability of extensive and representative labeled datasets, which could pose 

limitations in scenarios characterized by limited data availability [11]. Striking a balance between 

these advantages and challenges is paramount when harnessing CNNs for fault analysis within power 

transmission networks. 

The backpropagation (BP) algorithm, initially proposed by [1,3], stands as a pivotal technique 

for enhancing fault classification, detection, and location using ANNs. Through iterative weight 

adjustments driven by error propagation, BP bolsters fault detection, classification, and location 

accuracy, enabling ANNs to grasp intricate patterns within complex data [1]. This adaptability to 

nonlinear relationships in power system data renders BP well-suited for fault detection 
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applications [12]. However, its effectiveness hinges on a well-structured architecture and sufficient 

labeled data [13], and its susceptibility to issues like vanishing gradients and slow convergence must 

be acknowledged [14]. Nonetheless, the demonstrated success of the BP algorithm solidifies its 

crucial role in advancing fault detection and classification [1,3]. 

Various methods have been explored for fault classification, detection, and location in power 

distribution networks. Model-based approaches offer accurate fault detection based on system 

models but rely on precise model representation and might struggle with model mismatch. Expert 

systems utilize rule-based decision-making, providing interpretability but requiring extensive domain 

knowledge and manual rule creation. Machine learning techniques, including support vector 

machines (SVMs), exhibit strong generalization capabilities but might demand large amounts of 

labeled data for training. Evolutionary algorithms offer a global search strategy but might have 

longer convergence times. Hybrid methods, which combine multiple techniques, aim to harness the 

strengths of different approaches, but their complexity might lead to increased computational 

requirements. These methods underscore the tradeoffs between accuracy, interpretability, data 

requirements, and computational efficiency, presenting a spectrum of choices for enhancing fault 

analysis in power distribution networks. 

In transmission lines, several types of faults can occur, which can disrupt the normal operation of 

power systems. These include single-line-to-ground (SLG), line-to-line (LL), double-line-to-ground 

(DLG), and three-phase faults [15]. SLG faults are the most common, occurring when one phase 

comes in contact with the ground. LL faults involve a short circuit between two phases, while DLG 

faults occur when two phases are short to the ground. Three-phase faults are rare but the most severe, 

as they involve a short circuit between all three phases [16]. Each type of fault exhibits different 

characteristics in terms of voltage and current waveforms, making accurate detection and classification 

critical for power system reliability [15,17,18] 

The meticulous calibration of learning rates and epochs is pivotal for efficient training in ANNs. 

As emphasized by [19,20], the right balance guarantees swift and effective convergence, 

safeguarding against potential pitfalls of underfitting or overfitting. Furthermore, adaptive 

methodologies, like those proposed by [21], have shown promise in optimizing this equilibrium, 

automating the intricate balance between learning rate and epoch settings. Early stopping, supported 

by findings from [22,23], offers an efficient strategy to prevent overfitting by monitoring validation 

set performance. Ultimately, leveraging these advancements in training and optimization techniques 

can lead to a more robust and streamlined ANN training process [24,25]. 

Latin hypercube sampling (LHS) is recognized for its efficient, scalable exploration of 

hyperparameter spaces, offering uniform and comprehensive coverage [26]. Its adaptability to 

various machine learning algorithms and hyperparameters sets it apart [26,27]. Moreover, its parallel 

processing capabilities and lack of preconceived assumptions enhance its utility in hyperparameter 

tuning [28]. Bayesian optimization (BO) uses probabilistic models like Gaussian processes, 

balancing exploration and exploitation in hyperparameter tuning [29]. Its sequential and adaptive 

nature ensures informed decisions and quicker convergence [30]. Despite challenges in 

high-dimensional spaces, its versatility and the ability to integrate prior knowledge bolster its 

effectiveness [28]. 

While various methods for fault detection, classification, and location in transmission lines exist, 

most suffer from tradeoffs between accuracy and computational efficiency. Techniques such as grid 

search and random search often face limitations like long convergence times and suboptimal 
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solutions [30]. Overfitting and underfitting remain significant challenges in fault detection models, 

where overly complex models may fit the noise in the data, and overly simple models may fail to 

capture essential fault patterns [3]. Balancing these issues is critical for ensuring that models 

generalize well to unseen data while maintaining high accuracy in fault detection, classification, and 

location. 

LHS has been explored in other domains for efficiently covering parameter spaces [31], but its 

application in transmission line fault detection remains underexplored. Additionally, BO, while 

effective for hyperparameter tuning, is rarely combined with LHS in power system fault detection, 

classification, and location applications. This paper addresses these gaps by proposing a hybrid 

LHS–BO optimized ANN, designed to mitigate overfitting and underfitting while improving the 

precision, efficiency, and generalization of fault detection, classification, and location in transmission 

lines. 

The novelty of this approach lies in the integration of LHS for diverse initial sampling of the 

hyperparameter space, followed by BO for targeted optimization, which balances exploration and 

exploitation to find optimal model configurations’ hyperparameters. This hybrid strategy reduces 

overfitting by preventing the model from becoming overly sensitive to specific training data, while 

also reducing underfitting by ensuring the model complexity is appropriate for the fault detection, 

classification, and location tasks. 

2. Materials and methods 

This section presents the various theoretical concepts employed in this study for the 

development of the algorithm for the detection, classification, and location of transmission line 

faults. 

2.1. Latin hypercube sampling  

Latin hypercube sampling (LHS) is a systematic and efficient sampling technique used to create 

representative samples of a multidimensional parameter space [32]. It aims to improve the coverage 

and diversity of the sampled space compared to simple random sampling. LHS is particularly useful 

in various scientific and engineering applications, including sensitivity analysis, uncertainty 

quantification, and optimization, where exploring a wide range of input parameter combinations is 

essential [31,33]. LHS builds upon the concept of dividing each input parameter into equally 

probable intervals and then selecting a single value from each interval to form a sample point. The 

key idea is to ensure that no two sample points share the same value in the same interval for any 

parameter (hence "Latin" in the name). This property helps in improving the space-filling and 

diversity of the sample. 

2.2. Bayesian optimization  

Bayesian optimization (BO) is a global optimization technique used to find the optimal 

configuration of a costly-to-evaluate objective function [24]. It works iteratively by building a 

surrogate model, typically a Gaussian process (GP), of the objective function and then using an 

acquisition function to decide where to evaluate the true objective function [34]. The acquisition 
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function guides the search by balancing exploration (sampling in uncertain regions) and exploitation 

(sampling in regions with high predicted values). 

2.2.1. Expected improvement (EI) acquisition function 

The expected improvement acquisition function quantifies the potential of improving over the 

current best value 𝑓𝑏𝑒𝑠𝑡  at each evaluation point. It is defined as follows in (1): 

𝐸𝐼 𝑥 =  
 𝑓 𝑥 − 𝑓𝑏𝑒𝑠𝑡  × Φ 𝑍 + 𝜎 𝑥 × 𝜙 𝑍 , 𝜎(𝑥) > 0   

0,                                                        𝜎(0) = 0
              (1) 

Where: 

 𝑓 𝑥  is the predicted mean of the GP at point x. 

 𝑓𝑏𝑒𝑠𝑡  is the best-observed function value so far. 

 𝜎 𝑥  is the predicted standard deviation of the GP at point x. 

 Φ .   is the cumulative distribution function of the standard normal distribution. 

 𝜙 .   is the probability density function of the standard normal distribution. 

 𝑍 =
𝑓 𝑥 −𝑓𝑏𝑒𝑠𝑡

𝜎 𝑥 
 

The EI value is used to guide the selection of the next point to evaluate in Bayesian optimization. 

It represents the potential improvement over the current best value and is influenced by the uncertainty 

of the GP predictions. 

2.2.2. Expected improvement per second plus (𝐸𝐼 − 𝑃𝑆+) 

EI-PS+ is an extension of the EI acquisition function for optimizing real-world systems where 

evaluations take time. It takes into account both the expected improvement and the time taken for the 

evaluation. The acquisition function is modified to account for the tradeoff between improving the 

objective and the time spent on evaluation, as in (2): 

𝐸𝐼 − 𝑃𝑆+ 𝑥 =
𝐸𝐼 𝑥 

𝑇 𝑥 
                                    (2) 

Where: 

 𝐸𝐼 𝑥  is the original expected improvement. 

 𝑇 𝑥  is the expected time required to evaluate the function at point x. 

2.3. Artificial neural networks (ANNs) 

Artificial neural networks (ANNs) are a cornerstone of artificial intelligence (AI) and one of the 

prime tools used in machine learning [3]. They are computational models that are inspired by the 

human brain's interconnected network of neurons [18]. ANNs mimic biological neural networks, 

comprising nodes organized in layers. Neurons process and transmit information via weighted 

connections. ANNs excel in pattern recognition, classification, and regression. They learn by 

adjusting connection weights based on data, capturing intricate relationships. 
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2.3.1. Multi-layer feedforward neural network 

A multi-layer feedforward neural network, also known as a feedforward neural network or 

multi-layer perceptron (MLP), is a type of ANN architecture in which information flows in one 

direction, from the input layer through the hidden layers to the output layer, without any cycles or 

loops [18]. This architecture is characterized by its ability to approximate complex nonlinear 

functions [1]. An illustration of a multi-layered feedforward neural network (FNN) with a single 

hidden layer is provided in Figure 1, showcasing inputs, outputs, biases, and the interconnected 

weights. 

 

Figure 1. Architecture of FNN with one hidden layer. 

In Figure 1, the input variables (x1, x2,… ,xn) are represented, where wij signifies the input 

weights originating from the i
th

 input neuron toward the j
th

 hidden neuron. Additionally, bj denotes 

the input bias associated with the j
th

 hidden neuron, wjk represents the connection weight extending 

from the j
th

 hidden neuron to the k
th

 output neuron, and bk signifies the bias pertaining to the k
th
 

output neuron. The mathematical representation is shown in (3), where y is the output. 

𝑦 = 𝑓 𝑏 +  𝑤𝑖𝑥𝑖
𝑛
𝑖=1                (3) 

2.3.2. Activation functions  

Activation functions are essential for neural networks, providing the nonlinearity that shapes 

neuron outputs. Common functions include "tansig" (hyperbolic tangent sigmoid) and "purelin" 

(linear). Tansig uses the hyperbolic tangent to map inputs between -1 and 1, introducing nonlinearity 

that is crucial in hidden layers, with a smooth gradient for efficient learning. Purelin maintains the 

weighted sum of inputs without adding nonlinearity, making it useful for output layers that require 

continuous results, like regression tasks, where a wider range of output values is needed. 

2.4. Normalization of 3-phase voltages and current 

Following data collection, the next step is data preprocessing, which includes the normalization 

of the three-phase voltages and currents. In power systems, voltage and current measurements have 
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different magnitudes and variability. Standard min-max scaling, which normalizes all features to the 

same range (typically [0, 1]), might not capture the distinct nature of these measurements and hence 

is not ideal for fault data analysis for power transmission lines [35]. The range is defined according 

to (4) where 𝑋𝑚𝑖𝑛  and 𝑋𝑚𝑎𝑥  are the lower and upper bounds, respectively.  

𝑋𝑛𝑜𝑟𝑚 =  
𝑋−𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥 −𝑋𝑚𝑖𝑛
                (4) 

2.4.1. Modified min-max scaling normalization  

In fault data analysis for power transmission lines, modified min-max scaling is advantageous 

over standard scaling due to its adaptability to diverse data types [35,36], like phase voltages and 

currents. This method tailors scaling ranges to specific feature characteristics, enhancing model 

accuracy and sensitivity in detecting faults. It effectively addresses skewed distributions and prevents 

information loss, crucial for accurately interpreting power system data and ensuring effective fault 

detection. This customized approach aligns closely with the unique requirements of power 

transmission systems analysis. 

𝑋𝑛𝑜𝑟𝑚 =  
𝑋−𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥 −𝑋𝑚𝑖𝑛
 ×  𝐵 − 𝐴 + 𝐴          (5) 

Where A and B are the new 𝑋𝑚𝑖𝑛  and 𝑋𝑚𝑎𝑥  values, respectively. 

The phase voltages and currents are both normalized with the modified min-max scaling 

normalization (5) in the intervals  𝐴1, 𝐵1  and  𝐴2 , 𝐵2 , respectively. 

This preprocessing technique transforms raw data, enabling data mining algorithms to focus on 

structural patterns rather than magnitudes. Real-world simulations often have outliers that affect 

ANN performance. Removing outliers ensures the model learns from consistent data. 

2.5. Trained models’ performance evaluation 

The metrics used to evaluate the performance of the trained models are the mean square error 

(MSE), mean absolute percentage error (MAPE), and mean absolute error (MAE). These metrics are 

computed using (6), (7), and (8), respectively. 

𝑀SE =
  Output 𝐢−Target i  

2n
i=1

Number  of  data  sets   n 
                                      (6) 

𝑀APE =
1

n
  

Output 𝐢−Target i   

Target i
 × 100% n

i=1                            (7) 

𝑀AE =
1

n
  Output𝐢 − Targeti  

n
i=1                                 (8) 

2.5.1. F1 score 

The F1 score is a metric that combines precision and recall to evaluate the performance of 

classification models, especially for imbalanced datasets [37]. It is the harmonic mean of precision 

and recall, providing a single score that reflects the balance between false positives and false 
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negatives as in (11). Precision is the percentage of correct positive predictions out of all positive 

predictions made as in (9) [37,38], while recall is the percentage of correct positive predictions out of 

all actual positives in the dataset as shown in (10). Accuracy measures the proportion of correctly 

classified samples out of the total samples. In binary classification, it is calculated as in (12). 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒  𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠   𝑇𝑃 

𝑇𝑟𝑢𝑒  𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠   𝑇𝑃 +𝐹𝑎𝑙𝑠𝑒  𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠   𝐹𝑃 
             (9) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒  𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠   𝑇𝑃 

𝑇𝑟𝑢𝑒  𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠   𝑇𝑃 +𝐹𝑎𝑙𝑠𝑒  𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠   𝐹𝑁 
               (10) 

𝐹 − 1 𝑆𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛  ×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +𝑅𝑒𝑐𝑎𝑙𝑙
                       (11) 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑟𝑢𝑒  𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠   𝑇𝑃 + 𝑇𝑟𝑢𝑒  𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠   𝑇𝑁 

𝑇𝑜𝑡𝑎𝑙  𝑆𝑎𝑚𝑝𝑙𝑒𝑠
            (12) 

2.6. Methodology 

Next, the research for the development of the algorithm for the detection, classification, and 

location of transmission line faults is conducted. 

2.6.1. Modeling 400 kV, 300 km transmission line in MATLAB simulink 

This paper employed MATLAB Simulink to model a 400 kV, 300 km transmission line [39]. 

This software offers an intuitive interface for dynamic system modeling using block diagrams. The 

transmission line is modeled using a distributed parameter line model, which is fed from sources at 

both ends representing Thevenin’s equivalent of the two sub-stations, as shown in Figure 2. The 

300 km line was divided into 5 km segments for thorough analysis. Simulation under normal and 

faulty conditions provided comprehensive data for training an ANN. The model was simulated in 

both normal and faulty conditions. Normal operation represents an unblemished, baseline state. 

Faulty simulations mirror real-world power system scenarios. These include diverse faults like single 

line-to-ground, line-to-line, double line-to-ground, and three-phase faults. Faults were introduced at 

various positions every 5 km, assessing how location influences behavior. These diverse conditions 

offered vital data for robust ANN training. Data collected included three-phase voltages and currents. 

Simulink's ―Voltage Measurement‖ and ―Current Measurement‖ blocks captured measurements at 

each 5 km section. The processed data was partitioned into three subsets: 70% for training, 15% for 

testing, and 15% for validation. 

The deployment data, multiples of 20 km, were withheld from training and reserved for model 

testing. This practice gauges the model's performance on new unseen data, mirroring real-world 

scenarios. Evaluating the ANN's capability to identify line conditions and faults in these unseen data 

segments reflects its real-world potential. The trained and optimized ANN models were deployed on 

three different transmission lines—220 kV, 100 km [40], 500 kV, 200 km [41], and 400 kV, 

300 km [12]—after being tested on unseen data assessing their performance against underfitting, 

overfitting, and accuracy. 
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Figure 2. Simulink model of the transmission line. 

2.6.2. Latin hypercube sampling (LHS) and Bayesian optimization (BO) algorithms 

The LHS algorithm explores the hyperparameter space by generating samples that cover the 

entire range of each hyperparameter [34]. While Latin hypercube sampling (LHS) and Bayesian 

optimization (BO) have been applied in various optimization tasks, their combined application has not 

been explored especially for fault detection, classification, and location in power transmission lines. 

LHS is particularly effective in exploring the hyperparameter space by ensuring diverse initial 

conditions, while BO refines the search by focusing on the most promising areas identified by LHS. 

This hybrid approach significantly reduces the computational cost associated with hyperparameter 

tuning while improving model performance. The integration of these techniques promises a faster 

convergence to optimal solutions and more accurate fault classification. By evaluating the network's 

performance with different hyperparameter combinations, it aims to find promising regions in the 

hyperparameter space for subsequent optimization. The BO is illustrated in Figure 3, and the 

proposed framework for fault detection, classification, and location is also illustrated in Figure 4. 

Latin hypercube sampling (LHS) algorithm: 

1. Initialize the number of LHS iterations and an empty array to store the LHS results. 

 Set the desired number of LHS iterations to explore the hyperparameter space. 

 Create an empty array to store the results of each LHS iteration. 
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2. Generate a Latin hypercube sample using the specified number of iterations and the length of the 

hyperparameter variables. 

 Generate a Latin hypercube sample with the specified number of iterations and the number of 

hyperparameter variables. 

3. Start a loop for each LHS iteration. 

 Begin the loop to iterate over each iteration of the Latin hypercube sampling. 

4. Inside the loop, generate hyperparameters for the current iteration by iterating over each 

hyperparameter variable. 

 Iterate over each hyperparameter variable to generate specific hyperparameter values for the 

current iteration. 

5. Map the LHS sample from the unit interval to the variable range, taking into account whether the 

variable is of integer or continuous type. 

 Scale the LHS sample values from the unit interval to their corresponding ranges, accounting 

for variable types (integer or continuous). 

6. Update the network's hyperparameters with the generated hyperparameters. 

 Update the hyperparameters of the network (e.g., learning rate, epochs) with the generated 

hyperparameters for the current iteration. 

7. Train the network using the updated hyperparameters and the training data and obtain the 

training record. 

 Train the neural network using the updated hyperparameters and the training data. 

 Obtain the training record, which contains information about the training process (e.g., 

performance, validation errors). 

8. Evaluate the network's performance by extracting the best validation performance from the 

training record. 

 Extract the best validation performance achieved during training from the training record. 

9. Check if the current performance is better than the previous best performance. If it is, update the 

best hyperparameters with the current hyperparameters and update the best performance. 

 Compare the current performance with the previously recorded best performance. 

 If the current performance is better, update the best hyperparameters with the current 

hyperparameters and update the best performance value. 

10. Store the current iteration's results (iteration number, hyperparameters, and performance) in the 

LHS results array. 

 Save the results of the current LHS iteration, including the iteration number, hyperparameters 

used, and the corresponding performance, into the LHS results array. 

11. End the loop. 

 Conclude the loop for the Latin hypercube sampling. 
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By incorporating training and testing within the SMBO loop, the algorithm can iteratively 

optimize the hyperparameters based on the performance of unseen testing data. This enables the 

SMBO algorithm to fine-tune the model for better generalization and improve its performance on 

unseen data.  

2.6.3. Sequential model-based optimization (SMBO) algorithm with training and testing: 

1. Set the initial point for Bayesian optimization as the best hyperparameters obtained from the 

Latin hypercube sampling. 

 Initialize the starting point for Bayesian optimization with the best hyperparameters found in 

the Latin hypercube sampling step. 

2. Specify the number of SMBO iterations. 

 Determine the desired number of iterations for the sequential model-based optimization loop. 

3. Start a loop for each SMBO iteration. 

 Begin the loop to iterate over each iteration of the sequential model-based optimization. 

4. Print the current SMBO iteration number. 

 Display the current iteration number for monitoring the progress of the SMBO loop. 

5. Perform Bayesian optimization using the specified objective function, hyperparameter variables, 

and other settings. 

 Apply Bayesian optimization to find the optimal hyperparameters by optimizing the specified 

objective function using the defined hyperparameter variables and other specified settings. 

6. Obtain the optimal hyperparameters from the Bayesian optimization results. 

 Extract the hyperparameters that yield the best performance from the results of Bayesian 

optimization. 

7. Train the network using the optimal hyperparameters and the training data. 

 Use the obtained optimal hyperparameters to train the neural network using the training data. 

8. Evaluate the network's performance on the testing data. 

 Assess the performance of the trained network on the testing data to evaluate its generalization 

ability. 

9. Store the performance of the trained network on the testing data as the objective value for 

Bayesian optimization. 

 Save the obtained performance of the trained network on the testing data as the objective value, 

which will be used by Bayesian optimization to guide the search in subsequent iterations. 

10. Update the initial point with the optimal hyperparameters found in the current iteration. 

 Update the initial point for the next iteration of Bayesian optimization with the 

hyperparameters that yielded the best performance in the current iteration. 
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11. End the loop. 

 Conclude the loop for the sequential model-based optimization. 

 

Figure 3. Flowchart of Latin hypercube sampling and Bayesian optimization algorithms. 
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Figure 4. Proposed framework for fault detection, classification, and location. 

2.7. The optimized ANN fault detector, classifier, and locator 

The system comprises three neural networks (ANNs) designed to detect, classify, and locate 

faults in a power system, sharing common algorithms, learning functions, and performance metrics. 

The three neural networks used for fault detection, classification, and location were designed with 

varying structures to best suit the specific task. The fault detector uses a simpler network architecture 

(6-12-12-1), because the task of detecting whether a fault is present or not is relatively straightforward. 

However, the fault classifier (6-12-12-4) requires a more complex structure to accurately classify 

faults across multiple classes (e.g., SLG, LL, DLG, and three-phase faults). The fault locator 

(6-12-12-1) also uses a similar structure to the detector because it only needs to estimate a continuous 

value, the distance to the fault, rather than classify it. These architecture choices were made to optimize 

performance while keeping computational complexity manageable. 

1. Fault detector: This 6-12-12-1 feedforward neural network identifies 11 fault conditions with a 

binary output (1 for fault, 0 for normal). It uses the Levenberg–Marquardt (LM) algorithm for 

backpropagation learning and the LEARNGDM function for efficient processing. Trained on 

2646 datasets of voltage and current signals, it is evaluated using mean squared error (MSE). 

Data is split 70% for training, 15% for validation, and 15% for testing. 

2. Fault classifier: This 6-12-12-4 feedforward neural network, as shown in Figure 5, determines 

which phase (A, B, C, or ground) has a fault. It employs the same LM algorithm and 

LEARNGDM function for training, evaluated with MSE. Trained on 4950 data points, it uses 

the same 70/15/15 data split.  
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Figure 5. FNN structure of the fault classifier. 

3. Fault locator: Similar to the detector as seen in Figure 6, this 6-12-12-1 feedforward neural 

network estimates the distance to a fault from substations. Using the same LM algorithm, 

LEARNGDM function, and TANSIG activation functions, it assesses performance with MSE. It 

is trained on 3465 data points, with the same data split. 

 

Figure 6. FNN structure of the fault detector and locator. 

The consistent use of the LM algorithm for backpropagation learning and LEARNGDM for 

efficient processing, with performance measured by MSE, ensures a unified approach to fault 

detection, classification, and location in power systems. 

3. Results 

3.1. Preprocessing of input data 

The modified min-max normalization technique is essential for preprocessing voltage and 

current data from power transmission lines for machine learning applications like fault location. By 

scaling the data, the model can effectively learn from patterns in the voltages and currents, which 

remain consistent regardless of fault distance. Figure 7 illustrates the transformation of raw data using 

the modified min-max normalization technique. This method enhances the algorithm’s ability to detect 
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subtle patterns in voltage and current data, improving fault location accuracy across varying 

operational conditions. 

 

Figure 7. Waveforms of the modified min-max normalization technique. 

3.2. Evaluation of the network with the best hyperparameters 

After determining the best hyperparameters, the network is trained using these optimized 

settings to ensure the best possible performance. Once trained, the network's performance is 

evaluated across three subsets of the data: training, validation, and testing.  

Figure 8 shows optimization results using LHS. LHS uniformly samples the parameter space. 

The learning rate vs. performance plot indicates most combinations achieve near-zero performance, 

the optimization goal, suggesting effective learning rate distribution by LHS. Similarly, for epochs vs. 

performance, uniform performance distribution across epochs with near-zero values implies 

successful optimization. The spread of data points indicates effective exploration of the parameter 

space by LHS, with most samples nearing the ideal performance. 
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Figure 8. LHS performance metrics. 

Figure 9 depicts results from Bayesian optimization over two hyperparameters: epochs and 

learning rate (lr), as in Figure 11. Each blue dot represents a tested hyperparameter combination, 

plotted against the objective function's estimated value, typically a loss function. The red line 

indicates the model mean, the average predicted performance. The red star denotes the "model 

minimum feasible", the most promising hyperparameter set. The black dot is the "next point", where 

the algorithm will probe next. Blue points cluster at lower learning rates and moderate-to-high 

epochs, indicating promising optimization regions. This visualization aids in understanding the 

optimization landscape and convergence behavior. 
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Figure 9. Objective function model performance. 

The box plots in Figure 10 help to visualize the spread and central tendency of the parameters 

tested during optimization, providing insights into the stability of the model against these parameters. 

The optimization has narrowed down to a specific range for learning rates while allowing more 

variability in the number of epochs. 

 

Figure 10. Boxplots of Bayesian optimization performance. 
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3.2.1. Fault detection 

Impressively, by epoch 2, the optimized ANN demonstrated an MSE of 9.5079 × 10−11  and a 

regression R of 1, as shown in Figures 11 and 12. Figure 12 shows the mean squared error (MSE) 

across three epochs of neural network training. The MSE for training decreases significantly, while 

the validation MSE remains low and stable, suggesting the model is generalizing well. The test MSE 

is initially higher but converges toward the validation MSE, indicating consistent performance on 

unseen data. The ―Best‖ mark on the graph indicates the epoch where the validation MSE is at its 

lowest, which is the ideal point for the model's performance. There is no sign of overfitting or 

underfitting, as the validation and test errors do not increase over time, and the training error 

converges with the validation error without becoming too low. 

 

 

Figure 11. Training, testing, and validation regression of FNN fault detector. 
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Figure 12. Best validation performance of FNN fault detector. 

3.2.2. Fault classification 

Figure 13 elegantly showcases the regression plots for the fault classification model in power 

transmission lines, each plot vividly capturing the model’s stellar performance across different 

datasets: training, validation, testing, and all data combined. With regression values (R) for training, 

validation, testing, and all data hitting the perfect score of 1, the model demonstrates an impeccable 

correlation between its predictions and the actual target values, underlining its superior predictive 

accuracy. 

All three errors start low and remain relatively flat throughout the epochs, as shown in Figure 

14. The best performance according to the validation set is marked early, around the first epoch, as 

indicated by the dotted line with a circle. This flat trend suggests the model was very quickly 

optimized and did not significantly improve or worsen over additional training epochs, indicating 

stable performance across the board. The consistency between the training, validation, and test errors 

suggests that the network generalizes well without overfitting or underfitting. 
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Figure 13. Training, testing, and validation regression of FNN fault classifier. 

 

Figure 14. Best validation performance of FNN fault classifier. 

3.2.3. Fault location 

A strong positive correlation is evident from the training, testing, and validation regression 

curves of the trained model. Specifically, the model achieved a regression coefficient (R) of 0.99999 
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for both training and validation, while the testing data achieved a perfect R of 1.00000, and the best 

validation performance was 0.060262, as seen in Figures 15 and 16. The consistent performance of 

the model on both validation and test sets after the first epoch, without further significant drops in 

error, indicates that the model reached its learning capacity given the current complexity and data. 

There are no signs of overfitting or underfitting after the initial learning phase; overfitting would be 

indicated by an increasing validation error as the training error continued to decrease, and 

underfitting would be indicated by a high error that did not decrease.  

 

Figure 15. Training, testing, and validation regression of FNN fault locator. 
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Figure 16. Best validation performance of FNN fault locator. 

The training, validation, and test bars reaching close to the ―Zero Error‖ line as seen in Figure 

17 indicate that the model accurately located faults in all three datasets. Such high performance 

across the board is an indication that the model is highly effective at generalizing from its training 

data to unseen data, which is crucial for reliable real-world application in fault location on 

transmission lines. 

 

Figure 17. Histogram showing the error performance of FNN fault locator. 
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4. Discussion 

4.1. Deployment on unseen data 

In the realm of machine learning, the deployment of a trained ANN model on unseen data for 

evaluation stands as a cornerstone in determining the model's real-world efficacy. This critical step 

involves rigorously testing the model against new, previously unexposed datasets to evaluate its 

ability to generalize beyond the conditions of its training environment.  

4.1.1. Fault detection 

When tested on an evaluation dataset of 168 cases, encompassing 11 different short-circuit fault 

types and normal scenarios, the ANN model's precision was exemplary. It accurately identified every 

case, 14 normal and 154 faulty, as detailed in Figure 18. The performance metrics underscore its 

effectiveness, achieving consistent 100% accuracy, precision, recall, and F1 score. This exemplary 

performance highlights the effectiveness of the optimization techniques used in refining the ANN for 

fault detection, demonstrating its potential for robust applications in real-world power systems. 

 

Figure 18. Confusion matrix of deployment result of FNN fault detector 

4.1.2. Fault classification 

The confusion matrix displayed for fault classification in power transmission systems 

exemplifies perfect model accuracy, with a 100% success rate in identifying various fault types, as 

shown in Figure 19. A confusion matrix is an essential tool in these scenarios, providing clear and 

organized insight into the model's classification capabilities. In this instance, the matrix indicates that 

out of 154 fault cases, the model correctly classified all 154, demonstrating impeccable precision. 
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Furthermore, the model achieved 100% in all key performance metrics: precision, recall, F1 score, 

and accuracy, as seen in Figure 20. 

 

Figure 19. Confusion matrix of deployment result of FNN fault classifier. 

 

Figure 20. Performance metrics of FNN fault classifier. 

4.1.3. Fault location 

Model deployment on evaluation data: 

When the trained model was deployed on unseen evaluation data, comprising 154 cases across 

11 different short-circuit fault types, impressive results were observed. The overall minimum and 

maximum errors were 0.001% and 0.174%, respectively, while the overall accuracy ranged from 
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99.826% to 99.999%. The mean absolute percentage error (MAPE) for this dataset stood at 0.053%, 

meaning that the accuracy of the model was 99.947%, the MSE was found to be 0.0083, and the 

MAE was also found to be 0.0717. As we endeavored to unpack the intricacies of our model's 

performance, as shown in Figure 21, we meticulously analyzed the results in tandem with the diverse 

fault types present. This analytical approach was pivotal in discerning the model's nuanced 

competencies and potential areas for enhancement. 

 

Figure 21. Boxplot of percentage accuracy of various short-circuit fault types. 

Symmetrical faults analysis: 

 ABCG faults:        ABC faults: 

 Error range: 0.011% to 0.103% 

 Accuracy: 99.897% to 99.947% 

 MAPE: 0.053% 

 Error range: 0.001% to 0.072% 

 Accuracy: 99.928% to 99.999% 

 MAPE: 0.045% 

Double-line-to-ground faults analysis: 

ABG faults: ACG faults: BCG faults: 

 Error range: 0.001% to 0.132% 

 Accuracy: 99.868% to 99.999% 

 MAPE: 0.061% 

 Error range: 0.004% to 0.127% 

 Accuracy: 99.873% to 99.996% 

 MAPE: 0.042% 

 Error range: 0.001% to 0.122% 

 Accuracy: 99.878% to 99.999% 

 MAPE: 0.054% 

Line-to-line faults analysis 

AB faults: AC faults: BC faults: 

 Error range: 0.002% to 

0.174% 

 Accuracy: 99.826% to 

99.998% 

 MAPE: 0.065% 

 Error range: 0.004% to 

0.143% 

 Accuracy: 99.857% to 

99.996% 

 MAPE: 0.060% 

 Error range: 0.007% to 

0.106% 

 Accuracy: 99.894% to 

99.993% 

 MAPE: 0.048% 
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Line-to-ground faults analysis 

AG faults: BG faults: CG faults: 

 Error range: 0.005% to 

0.118% 

 Accuracy: 99.882% to 

99.995% 

 MAPE: 0.048% 

 Error range: 0.001% to 0.115% 

 Accuracy: 99.885% to 

99.999% 

 MAPE: 0.052% 

 Error range: 0.005% to 

0.093% 

 Accuracy: 99.907% to 

99.995% 

 MAPE: 0.055% 

The deployment of the model on unseen data yielded impressive results, as shown in Table 1 for 

line-to-line faults and Table 2 for line-to-ground faults. This granular analysis provides a 

comprehensive perspective on the model's performance, illustrating its adaptability and precision 

across a diverse array of fault scenarios in the power transmission network. 

Table 1. Predicted results of line-to-line faults. 

Fault type AB AC BC 

Actual fault 

distance 

Predicted 

fault 

distance 

Absolute 

percentage 

accuracy 

Predicted 

fault 

distance 

Absolute 

percentage 

accuracy 

Predicted 

fault 

distance 

Absolute 

percentage 

accuracy 

20 20.000 99.998 20.018 99.908 19.996 99.978 

40 40.070 99.826 39.972 99.931 39.982 99.955 

60 59.978 99.964 60.003 99.995 60.038 99.936 

80 80.054 99.933 79.982 99.978 80.026 99.968 

100 100.038 99.962 99.899 99.899 99.971 99.971 

120 120.098 99.918 119.913 99.928 119.896 99.913 

140 139.958 99.970 140.200 99.857 139.930 99.950 

160 159.893 99.933 160.006 99.996 160.062 99.961 

180 179.894 99.941 180.248 99.862 180.191 99.894 

200 199.868 99.934 200.044 99.978 200.137 99.931 

220 220.318 99.856 219.938 99.972 219.902 99.955 

240 239.854 99.939 239.905 99.961 239.982 99.993 

260 259.891 99.958 259.836 99.937 260.171 99.934 

280 279.898 99.963 280.132 99.953 279.975 99.991 
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Table 2. Predicted results of single line-to-ground faults. 

Fault type AG BG CG 

Actual fault 

distance 

Predicted 

fault 

distance 

Absolute 

percentage 

accuracy 

Predicted 

fault 

distance 

Absolute 

percentage 

accuracy 

Predicted 

fault 

distance 

Absolute 

percentage 

accuracy 

20 19.996 99.978 20.013 99.933 19.988 99.938 

40 39.991 99.977 39.957 99.894 40.036 99.909 

60 60.071 99.882 60.038 99.936 60.052 99.913 

80 80.032 99.960 80.092 99.885 79.951 99.939 

100 100.053 99.947 100.061 99.939 99.980 99.980 

120 120.074 99.938 120.121 99.899 120.111 99.907 

140 139.898 99.927 139.991 99.994 140.045 99.968 

160 159.911 99.944 159.945 99.966 159.959 99.975 

180 180.102 99.944 179.984 99.991 179.875 99.930 

200 199.974 99.987 200.106 99.947 200.112 99.944 

220 219.833 99.924 220.147 99.933 220.159 99.928 

240 239.905 99.960 239.927 99.970 239.988 99.995 

260 260.093 99.964 259.971 99.989 260.145 99.944 

280 280.014 99.995 279.998 99.999 279.900 99.964 

4.2. Evaluation of the trained ANN models on three different transmission lines 

The deployment of the trained ANN models on power transmission lines of varying lengths 

provided a robust test of fault detection, classification, and location of the trained models’ 

capabilities. 

4.2.1. Deployment of the trained ANN model across transmission lines for fault detection 

The trained ANN model was successfully deployed on three different transmission lines to 

evaluate its ability to detect faults in power systems. Throughout the tests, the model demonstrated 

flawless performance, achieving a 100% accuracy rate across all scenarios, which included a variety 

of short-circuit fault types and normal operating conditions. Additionally, the model not only reached 

perfect accuracy but also maintained 100% precision, recall, and F1 score, showcasing its 

exceptional capability to consistently identify and classify each fault type accurately without any 

errors. This comprehensive performance solidifies the ANN model as a highly effective and reliable 

tool for fault detection in power system applications. 

4.2.2. Deployment of the trained ANN model across transmission lines for fault classification 

The deployment of the trained ANN model across power transmission lines of varying lengths 

demonstrated outstanding fault classification capabilities, with 100% precision, recall, F1 score, and 

accuracy in each scenario. Initially tested on a 100 km line with 209 cases, the model accurately 

identified every case, excelling across multiple fault types. In subsequent tests on 200 and 300 km 

lines, involving 429 and 649 unseen cases, respectively, the model consistently maintained perfect 
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classification performance despite a higher scale and complexity, as seen in Figures 22 and 23, 

respectively. These deployments collectively highlight the model's robustness and adaptability in 

accurately detecting faults, confirming its effectiveness and reliability in practical applications. 

 

Figure 22. Confusion matrix of deployment result of FNN fault classifier on 500 kV, 200 km. 

 

Figure 23. Confusion matrix of deployment result of FNN fault classifier on 400 kV, 300 km. 

4.2.3. Deployment of the trained ANN model across transmission lines for fault location 

The trained and optimized ANN model was again deployed on the same three different 

transmission lines after being tested on unseen data for fault location, assessing its performance 

against underfitting, overfitting, and accuracy. In the first deployment case, the model demonstrated 

remarkable accuracy and precision across 209 cases, with an impressive minimum error of 0.0003% 

and maximum accuracy of 99.9997%. In the second scenario, involving 429 cases, the model 
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exhibited noteworthy performance with a minimum error of 0.0002% and a maximum accuracy of 

99.9998%. Finally, in the third deployment, with 649 cases, the model maintained commendable 

results, showcasing a minimum error of 0.0001% and a maximum accuracy of 99.9999%. The 

average percentage accuracies for the performance evaluation of the trained ANN model on the three 

test systems are shown in Figure 24. These findings highlight the model's reliability, versatility, and 

scalability in identifying short-circuit fault types within power transmission networks, with 

consistently high accuracy and low error rates across different deployment scenarios.  

 

Figure 24. Performance of FNN fault locator on test systems. 

4.3. Comparison of the proposed optimized ANN fault locator with related techniques in the 

literature 

The proposed optimized ANN model for fault location in power transmission systems 

demonstrated a remarkably high average percentage accuracy of 99.947%. This performance notably 

surpasses several previous methodologies in the field, as illustrated in Table 3. 

Table 3. Comparison of the proposed LHS–BO ANN fault locator with related 

techniques in the literature. 

Technique Percentage accuracy (%) 

ANN [1] 97.56 

Stockwell Transform ANN [42]  96.16 

CNN-LSTM [43] 99.11 

Transfer learning [44] 97.85 

ANN-WT [18] 98.64 

ANN [45]  99.27 

SVM parameter [46] 98.96 

Proposed LHS–BO ANN 99.947 
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5. Conclusions 

The hybrid optimized ANN model, specifically engineered to meet the unique demands of power 

transmission systems, has demonstrated exceptional proficiency in fault detection, classification, and 

location. Its advanced capabilities solidify its role as a pivotal tool for the next generation of fault 

analysis solutions in power systems. 

In the area of fault detection, the model exhibited flawless performance. Evaluated against a 

dataset of 168 cases, it achieved a perfect accuracy rate of 100%, distinguishing between normal and 

faulty scenarios with remarkable precision. This result highlights the extraordinary potential unlocked 

through the synergy of LHS and BO combined with ANN technology. 

For fault classification, the model displayed both robustness and precision, successfully 

classifying 154 out of 154 cases with 100% accuracy, precision, recall, and F1 score, even on unseen 

data. This showcases the model’s adaptability and reliability in handling various fault types. 

In terms of fault location, the model's performance was equally remarkable, achieving accuracy 

rates between 99.826% and 99.999% across 154 cases. With a negligible MAPE of 0.053%, low MSE 

of 0.0083, and MAE of 0.0717, the model accurately located faults, whether symmetrical or 

line-to-ground, confirming its reliability and precision. 

In conclusion, the hybrid optimized ANN model offers a powerful and versatile solution for fault 

detection, classification, and location in transmission systems. Its high accuracy and robust 

performance across varied fault scenarios make it an invaluable tool for modern power systems. By 

addressing the current limitations and exploring future directions, this model has the potential to 

significantly improve fault management and enhance the reliability of power transmission networks, 

heralding a new era in the field of power system fault analysis. 

Recommendations and future work 

While the hybrid optimized ANN model has demonstrated exceptional performance, several 

areas for improvement and future research are worth exploring. First, further testing with real-world 

transmission line data is recommended to confirm the model's robustness and generalizability outside 

of the simulated environment. Additionally, the model could benefit from integration with distributed 

power systems and microgrids, where the complexity of fault detection increases and additional data 

sources, such as weather conditions, may play a significant role. Although the hybrid LHS–BO 

approach enhances performance, optimizing computational efficiency is critical when scaling the 

model for real-time systems, especially those with large datasets. Future work could also focus on 

how noise and uncertainty in sensor measurements affect model accuracy, further strengthening its 

reliability in practical, less controlled environments. Addressing these aspects will enhance the 

model's applicability and effectiveness in real-world scenarios. 

Limitations 

The primary limitation of the current study is that it has been tested exclusively in simulated 

conditions. The model has yet to be validated with real-time data, which may include unmodeled 

complexities such as communication delays, non-ideal sensor data, and environmental factors that 

could influence its performance. Additionally, the method’s computational demands, particularly in 

real-time fault diagnosis, need to be assessed and optimized for large-scale power systems. 
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