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Abstract: This paper introduces a novel hybrid approach that integrates Latin hypercube sampling
(LHS) and Bayesian optimization for optimizing artificial neural networks (ANNSs) in fault detection,
classification, and location for transmission lines. The proposed method advances the accuracy and
efficiency of fault diagnosis in power systems, representing a significant step forward compared to
conventional approaches. The test system is a 400 kV, 50 Hz, 300 km transmission system, and the
simulations were carried out in MATLAB/Simulink environment. Using the strategic insight of LHS,
optimal initial points were determined, which subsequently formed the basis for the Bayesian
optimization to further refine the learning rate and training epochs. Within the fault detection domain,
the model showcased remarkable precision when deployed on an evaluation dataset of 168 cases,
accurately detecting every instance of normal and faulty scenarios. This culminated in an astounding
100% accuracy in fault detection. In terms of fault classification, the ANN model, trained on a
dataset of 495 instances, revealed perfect regression coefficients across the training, testing, and
validation subsets. When tested against unseen data, it demonstrated its proficiency by correctly
classifying 154 out of 154 cases, showcasing a 100% F1 score. Also, the accuracy figures in terms of
fault location fluctuated between 99.826% and 99.999%, with a mean absolute percentage error
(MAPE) of 0.053%. The model’s mean square error (MSE) stood at 0.0083, while the mean absolute
error (MAE) was calculated at 0.0717. A deep dive into diverse fault types reaffirmed the model's
precision, underscoring its consistent performance across various fault scenarios. The trained models
were deployed on three different transmission lines and the models exhibited remarkable precision in
all the cases tested. In summary, the innovative hybrid optimized ANN model, weaving together the
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strengths of LHS and Bayesian optimization, signifies an advancement in the field of power system
fault analysis, ushering in heightened efficiency and reliability.
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1. Introduction

As an indispensable part of modern civilization, power systems are the lifeline supporting
various sectors, including residential, commercial, and industrial domains. The continuous and
reliable functioning of these systems is, therefore, a critical concern. One of the primary challenges
that threaten the integrity of power systems is the occurrence of faults in power transmission lines.
These faults, if undetected or misclassified, can cause significant disruptions, leading to economic
losses and potential safety hazards [1].

Fault detection, classification, and location methods play a crucial role in ensuring the reliability
and stability of power transmission networks [2]. In these intricate systems, the occurrence of faults
can lead to disruptive outages and potentially severe consequences, underscoring the urgency for
accurate and swift fault analysis to trigger timely corrective actions. Traditional approaches often
rely heavily on domain expertise and manual interventions, thereby limiting their scalability and
applicability in real-time scenarios [2]. With the emergence of advanced technologies, such as
artificial neural networks (ANNS) [1,3], support vector machines (SVMs) [4-6], and evolutionary
algorithms [7], the landscape of fault analysis has undergone a transformative shift. These modern
methodologies harness the power of machine learning, pattern recognition, and optimization
techniques to significantly enhance fault detection accuracy, facilitate the classification of various
fault types, and precisely locate faults within the distribution network. As power systems continue to
grow in complexity and scale, these innovative approaches offer the promising potential to optimize
the efficiency, precision, and speed of fault analysis, ultimately contributing to the establishment of
more dependable and resilient power distribution networks.

The versatility of convolutional neural networks (CNNs) becomes evident in their capacity to
adeptly learn intricate features from a wide range of data, consequently enabling accurate fault
identification and precise location in power transmission networks [8]. However, the inherent
black-box nature of CNNs presents challenges related to interpretability, potentially hindering a clear
understanding of the decision-making processes underlying their outcomes [9]. Moreover, CNN
training demands considerable computational resources and extended timeframes, potentially
impeding their deployment in real-time applications [10]. Additionally, the effectiveness of CNNs
heavily relies on the availability of extensive and representative labeled datasets, which could pose
limitations in scenarios characterized by limited data availability [11]. Striking a balance between
these advantages and challenges is paramount when harnessing CNNs for fault analysis within power
transmission networks.

The backpropagation (BP) algorithm, initially proposed by [1,3], stands as a pivotal technique
for enhancing fault classification, detection, and location using ANNs. Through iterative weight
adjustments driven by error propagation, BP bolsters fault detection, classification, and location
accuracy, enabling ANNs to grasp intricate patterns within complex data [1]. This adaptability to
nonlinear relationships in power system data renders BP well-suited for fault detection
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applications [12]. However, its effectiveness hinges on a well-structured architecture and sufficient
labeled data [13], and its susceptibility to issues like vanishing gradients and slow convergence must
be acknowledged [14]. Nonetheless, the demonstrated success of the BP algorithm solidifies its
crucial role in advancing fault detection and classification [1,3].

Various methods have been explored for fault classification, detection, and location in power
distribution networks. Model-based approaches offer accurate fault detection based on system
models but rely on precise model representation and might struggle with model mismatch. Expert
systems utilize rule-based decision-making, providing interpretability but requiring extensive domain
knowledge and manual rule creation. Machine learning techniques, including support vector
machines (SVMs), exhibit strong generalization capabilities but might demand large amounts of
labeled data for training. Evolutionary algorithms offer a global search strategy but might have
longer convergence times. Hybrid methods, which combine multiple techniques, aim to harness the
strengths of different approaches, but their complexity might lead to increased computational
requirements. These methods underscore the tradeoffs between accuracy, interpretability, data
requirements, and computational efficiency, presenting a spectrum of choices for enhancing fault
analysis in power distribution networks.

In transmission lines, several types of faults can occur, which can disrupt the normal operation of
power systems. These include single-line-to-ground (SLG), line-to-line (LL), double-line-to-ground
(DLG), and three-phase faults [15]. SLG faults are the most common, occurring when one phase
comes in contact with the ground. LL faults involve a short circuit between two phases, while DLG
faults occur when two phases are short to the ground. Three-phase faults are rare but the most severe,
as they involve a short circuit between all three phases [16]. Each type of fault exhibits different
characteristics in terms of voltage and current waveforms, making accurate detection and classification
critical for power system reliability [15,17,18]

The meticulous calibration of learning rates and epochs is pivotal for efficient training in ANNSs.
As emphasized by [19,20], the right balance guarantees swift and effective convergence,
safeguarding against potential pitfalls of underfitting or overfitting. Furthermore, adaptive
methodologies, like those proposed by [21], have shown promise in optimizing this equilibrium,
automating the intricate balance between learning rate and epoch settings. Early stopping, supported
by findings from [22,23], offers an efficient strategy to prevent overfitting by monitoring validation
set performance. Ultimately, leveraging these advancements in training and optimization techniques
can lead to a more robust and streamlined ANN training process [24,25].

Latin hypercube sampling (LHS) is recognized for its efficient, scalable exploration of
hyperparameter spaces, offering uniform and comprehensive coverage [26]. Its adaptability to
various machine learning algorithms and hyperparameters sets it apart [26,27]. Moreover, its parallel
processing capabilities and lack of preconceived assumptions enhance its utility in hyperparameter
tuning [28]. Bayesian optimization (BO) uses probabilistic models like Gaussian processes,
balancing exploration and exploitation in hyperparameter tuning [29]. Its sequential and adaptive
nature ensures informed decisions and quicker convergence [30]. Despite challenges in
high-dimensional spaces, its versatility and the ability to integrate prior knowledge bolster its
effectiveness [28].

While various methods for fault detection, classification, and location in transmission lines exist,
most suffer from tradeoffs between accuracy and computational efficiency. Techniques such as grid
search and random search often face limitations like long convergence times and suboptimal
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solutions [30]. Overfitting and underfitting remain significant challenges in fault detection models,
where overly complex models may fit the noise in the data, and overly simple models may fail to
capture essential fault patterns [3]. Balancing these issues is critical for ensuring that models
generalize well to unseen data while maintaining high accuracy in fault detection, classification, and
location.

LHS has been explored in other domains for efficiently covering parameter spaces [31], but its
application in transmission line fault detection remains underexplored. Additionally, BO, while
effective for hyperparameter tuning, is rarely combined with LHS in power system fault detection,
classification, and location applications. This paper addresses these gaps by proposing a hybrid
LHS-BO optimized ANN, designed to mitigate overfitting and underfitting while improving the
precision, efficiency, and generalization of fault detection, classification, and location in transmission
lines.

The novelty of this approach lies in the integration of LHS for diverse initial sampling of the
hyperparameter space, followed by BO for targeted optimization, which balances exploration and
exploitation to find optimal model configurations’ hyperparameters. This hybrid strategy reduces
overfitting by preventing the model from becoming overly sensitive to specific training data, while
also reducing underfitting by ensuring the model complexity is appropriate for the fault detection,
classification, and location tasks.

2. Materials and methods

This section presents the various theoretical concepts employed in this study for the
development of the algorithm for the detection, classification, and location of transmission line
faults.

2.1. Latin hypercube sampling

Latin hypercube sampling (LHS) is a systematic and efficient sampling technique used to create
representative samples of a multidimensional parameter space [32]. It aims to improve the coverage
and diversity of the sampled space compared to simple random sampling. LHS is particularly useful
in various scientific and engineering applications, including sensitivity analysis, uncertainty
quantification, and optimization, where exploring a wide range of input parameter combinations is
essential [31,33]. LHS builds upon the concept of dividing each input parameter into equally
probable intervals and then selecting a single value from each interval to form a sample point. The
key idea is to ensure that no two sample points share the same value in the same interval for any
parameter (hence "Latin™ in the name). This property helps in improving the space-filling and
diversity of the sample.

2.2. Bayesian optimization

Bayesian optimization (BO) is a global optimization technique used to find the optimal
configuration of a costly-to-evaluate objective function [24]. It works iteratively by building a
surrogate model, typically a Gaussian process (GP), of the objective function and then using an
acquisition function to decide where to evaluate the true objective function [34]. The acquisition
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function guides the search by balancing exploration (sampling in uncertain regions) and exploitation
(sampling in regions with high predicted values).

2.2.1. Expected improvement (EI) acquisition function

The expected improvement acquisition function quantifies the potential of improving over the
current best value f;,.,; at each evaluation point. It is defined as follows in (1):

(f() - f est) X P(Z) + 0 (x) X $(2),0(x) >0
El(x) = { b 5(0) = 0 1)

Where:

e f(x) isthe predicted mean of the GP at point x.

® fies: IS the best-observed function value so far.

e a(x) isthe predicted standard deviation of the GP at point x.

e ®(.) isthe cumulative distribution function of the standard normal distribution.
e ¢(.) isthe probability density function of the standard normal distribution.

X)— es
o 7 — f( ();(,j:)b t
The El value is used to guide the selection of the next point to evaluate in Bayesian optimization.
It represents the potential improvement over the current best value and is influenced by the uncertainty
of the GP predictions.

2.2.2. Expected improvement per second plus (EI — PS%)

EI-PS+ is an extension of the EIl acquisition function for optimizing real-world systems where
evaluations take time. It takes into account both the expected improvement and the time taken for the
evaluation. The acquisition function is modified to account for the tradeoff between improving the
objective and the time spent on evaluation, as in (2):

EI(x)

—_ + —
El = PS*(x) = 7>

@)

Where:

e EI(x) isthe original expected improvement.

e T(x) is the expected time required to evaluate the function at point x.
2.3. Artificial neural networks (ANNS)

Acrtificial neural networks (ANNS) are a cornerstone of artificial intelligence (Al) and one of the
prime tools used in machine learning [3]. They are computational models that are inspired by the
human brain's interconnected network of neurons [18]. ANNs mimic biological neural networks,
comprising nodes organized in layers. Neurons process and transmit information via weighted
connections. ANNs excel in pattern recognition, classification, and regression. They learn by
adjusting connection weights based on data, capturing intricate relationships.
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2.3.1. Multi-layer feedforward neural network

A multi-layer feedforward neural network, also known as a feedforward neural network or
multi-layer perceptron (MLP), is a type of ANN architecture in which information flows in one
direction, from the input layer through the hidden layers to the output layer, without any cycles or
loops [18]. This architecture is characterized by its ability to approximate complex nonlinear
functions [1]. An illustration of a multi-layered feedforward neural network (FNN) with a single
hidden layer is provided in Figure 1, showcasing inputs, outputs, biases, and the interconnected
weights.

Input layer

Hidden layer Qutput layer

Figure 1. Architecture of FNN with one hidden layer.

In Figure 1, the input variables (X1, X,... ,X,) are represented, where wj; signifies the input
weights originating from the i input neuron toward the j"™ hidden neuron. Additionally, b; denotes
the input bias associated with the jth hidden neuron, wjx represents the connection weight extending
from the | hidden neuron to the k™ output neuron, and by signifies the bias pertaining to the k™
output neuron. The mathematical representation is shown in (3), where y is the output.

y=f(b+Xiwx;) (3)
2.3.2. Activation functions

Activation functions are essential for neural networks, providing the nonlinearity that shapes
neuron outputs. Common functions include "tansig" (hyperbolic tangent sigmoid) and "purelin”
(linear). Tansig uses the hyperbolic tangent to map inputs between -1 and 1, introducing nonlinearity
that is crucial in hidden layers, with a smooth gradient for efficient learning. Purelin maintains the
weighted sum of inputs without adding nonlinearity, making it useful for output layers that require
continuous results, like regression tasks, where a wider range of output values is needed.

2.4. Normalization of 3-phase voltages and current

Following data collection, the next step is data preprocessing, which includes the normalization
of the three-phase voltages and currents. In power systems, voltage and current measurements have
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different magnitudes and variability. Standard min-max scaling, which normalizes all features to the
same range (typically [0, 1]), might not capture the distinct nature of these measurements and hence
is not ideal for fault data analysis for power transmission lines [35]. The range is defined according
to (4) where X,,;,, and X,,,, are the lower and upper bounds, respectively.
X—Xomin
Xnorm = (X—) (4)

max —Xmin
2.4.1. Modified min-max scaling normalization

In fault data analysis for power transmission lines, modified min-max scaling is advantageous
over standard scaling due to its adaptability to diverse data types [35,36], like phase voltages and
currents. This method tailors scaling ranges to specific feature characteristics, enhancing model
accuracy and sensitivity in detecting faults. It effectively addresses skewed distributions and prevents
information loss, crucial for accurately interpreting power system data and ensuring effective fault
detection. This customized approach aligns closely with the unique requirements of power
transmission systems analysis.

X_Xmin

Xnorm = (X ) X(B—A)+A (5)

max _Xmin
Where A and B are the new X,,;,, and X,,,, Vvalues, respectively.

The phase voltages and currents are both normalized with the modified min-max scaling
normalization (5) in the intervals [A, B;] and [A,, B,], respectively.

This preprocessing technique transforms raw data, enabling data mining algorithms to focus on
structural patterns rather than magnitudes. Real-world simulations often have outliers that affect
ANN performance. Removing outliers ensures the model learns from consistent data.

2.5. Trained models’ performance evaluation
The metrics used to evaluate the performance of the trained models are the mean square error

(MSE), mean absolute percentage error (MAPE), and mean absolute error (MAE). These metrics are
computed using (6), (7), and (8), respectively.

__ Y, [Output ;—Target ;]?
MSE = Number of data sets (n) (6)
_ l n Output j—Target ;
MAPE = n Zi:l Target ; X 100% (7)
MAE = % iL1|Output; — Target;| (8)

25.1. F1score

The F1 score is a metric that combines precision and recall to evaluate the performance of
classification models, especially for imbalanced datasets [37]. It is the harmonic mean of precision
and recall, providing a single score that reflects the balance between false positives and false
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negatives as in (11). Precision is the percentage of correct positive predictions out of all positive
predictions made as in (9) [37,38], while recall is the percentage of correct positive predictions out of
all actual positives in the dataset as shown in (10). Accuracy measures the proportion of correctly
classified samples out of the total samples. In binary classification, it is calculated as in (12).

True Positives (TP) (9)
True Positives (TP)+False Positives (FP)

Precision =

True Positives (TP) (10)
True Positives (TP)+False Negatives (FN)

Recall =

F —1Score = 2 X Precision XRecall (11)

Precision +Recall

True Positives (TP)+ True Negatives (TN)

Accuracy = (12)

Total Samples

2.6.  Methodology

Next, the research for the development of the algorithm for the detection, classification, and
location of transmission line faults is conducted.

2.6.1. Modeling 400 kV, 300 km transmission line in MATLAB simulink

This paper employed MATLAB Simulink to model a 400 kV, 300 km transmission line [39].
This software offers an intuitive interface for dynamic system modeling using block diagrams. The
transmission line is modeled using a distributed parameter line model, which is fed from sources at
both ends representing Thevenin’s equivalent of the two sub-stations, as shown in Figure 2. The
300 km line was divided into 5 km segments for thorough analysis. Simulation under normal and
faulty conditions provided comprehensive data for training an ANN. The model was simulated in
both normal and faulty conditions. Normal operation represents an unblemished, baseline state.
Faulty simulations mirror real-world power system scenarios. These include diverse faults like single
line-to-ground, line-to-line, double line-to-ground, and three-phase faults. Faults were introduced at
various positions every 5 km, assessing how location influences behavior. These diverse conditions
offered vital data for robust ANN training. Data collected included three-phase voltages and currents.
Simulink's “Voltage Measurement” and “Current Measurement” blocks captured measurements at
each 5 km section. The processed data was partitioned into three subsets: 70% for training, 15% for
testing, and 15% for validation.

The deployment data, multiples of 20 km, were withheld from training and reserved for model
testing. This practice gauges the model's performance on new unseen data, mirroring real-world
scenarios. Evaluating the ANN's capability to identify line conditions and faults in these unseen data
segments reflects its real-world potential. The trained and optimized ANN models were deployed on
three different transmission lines—220 kV, 100 km [40], 500 kV, 200 km [41], and 400 kV,
300 km [12]—after being tested on unseen data assessing their performance against underfitting,
overfitting, and accuracy.
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Figure 2. Simulink model of the transmission line.
2.6.2. Latin hypercube sampling (LHS) and Bayesian optimization (BO) algorithms

The LHS algorithm explores the hyperparameter space by generating samples that cover the
entire range of each hyperparameter [34]. While Latin hypercube sampling (LHS) and Bayesian
optimization (BO) have been applied in various optimization tasks, their combined application has not
been explored especially for fault detection, classification, and location in power transmission lines.
LHS is particularly effective in exploring the hyperparameter space by ensuring diverse initial
conditions, while BO refines the search by focusing on the most promising areas identified by LHS.
This hybrid approach significantly reduces the computational cost associated with hyperparameter
tuning while improving model performance. The integration of these techniques promises a faster
convergence to optimal solutions and more accurate fault classification. By evaluating the network's
performance with different hyperparameter combinations, it aims to find promising regions in the
hyperparameter space for subsequent optimization. The BO is illustrated in Figure 3, and the
proposed framework for fault detection, classification, and location is also illustrated in Figure 4.

Latin hypercube sampling (LHS) algorithm:
1. Initialize the number of LHS iterations and an empty array to store the LHS results.
o Set the desired number of LHS iterations to explore the hyperparameter space.

o Create an empty array to store the results of each LHS iteration.
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10.

11.

Generate a Latin hypercube sample using the specified number of iterations and the length of the
hyperparameter variables.

Generate a Latin hypercube sample with the specified number of iterations and the number of
hyperparameter variables.

Start a loop for each LHS iteration.
Begin the loop to iterate over each iteration of the Latin hypercube sampling.

Inside the loop, generate hyperparameters for the current iteration by iterating over each
hyperparameter variable.

Iterate over each hyperparameter variable to generate specific hyperparameter values for the
current iteration.

Map the LHS sample from the unit interval to the variable range, taking into account whether the
variable is of integer or continuous type.

Scale the LHS sample values from the unit interval to their corresponding ranges, accounting
for variable types (integer or continuous).

Update the network's hyperparameters with the generated hyperparameters.

Update the hyperparameters of the network (e.g., learning rate, epochs) with the generated
hyperparameters for the current iteration.

Train the network using the updated hyperparameters and the training data and obtain the
training record.

Train the neural network using the updated hyperparameters and the training data.

Obtain the training record, which contains information about the training process (e.g.,
performance, validation errors).

Evaluate the network’s performance by extracting the best validation performance from the
training record.

Extract the best validation performance achieved during training from the training record.

Check if the current performance is better than the previous best performance. If it is, update the
best hyperparameters with the current hyperparameters and update the best performance.

Compare the current performance with the previously recorded best performance.

If the current performance is better, update the best hyperparameters with the current
hyperparameters and update the best performance value.

Store the current iteration’s results (iteration number, hyperparameters, and performance) in the
LHS results array.

Save the results of the current LHS iteration, including the iteration number, hyperparameters
used, and the corresponding performance, into the LHS results array.

End the loop.

Conclude the loop for the Latin hypercube sampling.
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By incorporating training and testing within the SMBO loop, the algorithm can iteratively

optimize the hyperparameters based on the performance of unseen testing data. This enables the
SMBO algorithm to fine-tune the model for better generalization and improve its performance on
unseen data.

2.6.3.  Sequential model-based optimization (SMBO) algorithm with training and testing:

1.

10.

Set the initial point for Bayesian optimization as the best hyperparameters obtained from the
Latin hypercube sampling.

Initialize the starting point for Bayesian optimization with the best hyperparameters found in
the Latin hypercube sampling step.

Specify the number of SMBO iterations.

Determine the desired number of iterations for the sequential model-based optimization loop.
Start a loop for each SMBO iteration.

Begin the loop to iterate over each iteration of the sequential model-based optimization.
Print the current SMBO iteration number.

Display the current iteration number for monitoring the progress of the SMBO loop.

Perform Bayesian optimization using the specified objective function, hyperparameter variables,
and other settings.

Apply Bayesian optimization to find the optimal hyperparameters by optimizing the specified
objective function using the defined hyperparameter variables and other specified settings.

Obtain the optimal hyperparameters from the Bayesian optimization results.

Extract the hyperparameters that yield the best performance from the results of Bayesian
optimization.

Train the network using the optimal hyperparameters and the training data.
Use the obtained optimal hyperparameters to train the neural network using the training data.
Evaluate the network’s performance on the testing data.

Assess the performance of the trained network on the testing data to evaluate its generalization
ability.

Store the performance of the trained network on the testing data as the objective value for
Bayesian optimization.

Save the obtained performance of the trained network on the testing data as the objective value,
which will be used by Bayesian optimization to guide the search in subsequent iterations.

Update the initial point with the optimal hyperparameters found in the current iteration.

Update the initial point for the next iteration of Bayesian optimization with the
hyperparameters that yielded the best performance in the current iteration.
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11. End the loop.
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Figure 3. Flowchart of Latin hypercube sampling and Bayesian optimization algorithms.
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The system comprises three neural networks (ANNSs) designed to detect, classify, and locate
faults in a power system, sharing common algorithms, learning functions, and performance metrics.
The three neural networks used for fault detection, classification, and location were designed with
varying structures to best suit the specific task. The fault detector uses a simpler network architecture
(6-12-12-1), because the task of detecting whether a fault is present or not is relatively straightforward.
However, the fault classifier (6-12-12-4) requires a more complex structure to accurately classify
faults across multiple classes (e.g., SLG, LL, DLG, and three-phase faults). The fault locator
(6-12-12-1) also uses a similar structure to the detector because it only needs to estimate a continuous
value, the distance to the fault, rather than classify it. These architecture choices were made to optimize
performance while keeping computational complexity manageable.

1. Fault detector: This 6-12-12-1 feedforward neural network identifies 11 fault conditions with a
binary output (1 for fault, O for normal). It uses the Levenberg—Marquardt (LM) algorithm for
backpropagation learning and the LEARNGDM function for efficient processing. Trained on
2646 datasets of voltage and current signals, it is evaluated using mean squared error (MSE).
Data is split 70% for training, 15% for validation, and 15% for testing.

2. Fault classifier: This 6-12-12-4 feedforward neural network, as shown in Figure 5, determines
which phase (A, B, C, or ground) has a fault. It employs the same LM algorithm and
LEARNGDM function for training, evaluated with MSE. Trained on 4950 data points, it uses
the same 70/15/15 data split.

AIMS Electronics and Electrical Engineering
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Hidden Layer Hidden Layer 2 Output Layer

Figure 5. FNN structure of the fault classifier.

3. Fault locator: Similar to the detector as seen in Figure 6, this 6-12-12-1 feedforward neural
network estimates the distance to a fault from substations. Using the same LM algorithm,
LEARNGDM function, and TANSIG activation functions, it assesses performance with MSE. It
is trained on 3465 data points, with the same data split.

Hidden Layer 1 Hidden Layer 2 Output Layer

LAl

Figure 6. FNN structure of the fault detector and locator.

The consistent use of the LM algorithm for backpropagation learning and LEARNGDM for
efficient processing, with performance measured by MSE, ensures a unified approach to fault
detection, classification, and location in power systems.

3. Results

3.1. Preprocessing of input data

The modified min-max normalization technique is essential for preprocessing voltage and
current data from power transmission lines for machine learning applications like fault location. By
scaling the data, the model can effectively learn from patterns in the voltages and currents, which
remain consistent regardless of fault distance. Figure 7 illustrates the transformation of raw data using
the modified min-max normalization technique. This method enhances the algorithm’s ability to detect
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subtle patterns in voltage and current data, improving fault location accuracy across varying
operational conditions.
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Figure 7. Waveforms of the modified min-max normalization technique.

3.2. Evaluation of the network with the best hyperparameters

After determining the best hyperparameters, the network is trained using these optimized
settings to ensure the best possible performance. Once trained, the network's performance is
evaluated across three subsets of the data: training, validation, and testing.

Figure 8 shows optimization results using LHS. LHS uniformly samples the parameter space.
The learning rate vs. performance plot indicates most combinations achieve near-zero performance,
the optimization goal, suggesting effective learning rate distribution by LHS. Similarly, for epochs vs.
performance, uniform performance distribution across epochs with near-zero values implies
successful optimization. The spread of data points indicates effective exploration of the parameter

space by LHS, with most samples nearing the ideal performance.
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Figure 8. LHS performance metrics.

Figure 9 depicts results from Bayesian optimization over two hyperparameters: epochs and
learning rate (Ir), as in Figure 11. Each blue dot represents a tested hyperparameter combination,
plotted against the objective function's estimated value, typically a loss function. The red line
indicates the model mean, the average predicted performance. The red star denotes the “"model
minimum feasible”, the most promising hyperparameter set. The black dot is the "next point"”, where
the algorithm will probe next. Blue points cluster at lower learning rates and moderate-to-high
epochs, indicating promising optimization regions. This visualization aids in understanding the
optimization landscape and convergence behavior.
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Figure 9. Objective function model performance.

The box plots in Figure 10 help to visualize the spread and central tendency of the parameters
tested during optimization, providing insights into the stability of the model against these parameters.
The optimization has narrowed down to a specific range for learning rates while allowing more

variability in the number of epochs.
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Figure 10. Boxplots of Bayesian optimization performance.

AIMS Electronics and Electrical Engineering

Volume 8, Issue 4, 508-541.



525

3.2.1. Fault detection

Impressively, by epoch 2, the optimized ANN demonstrated an MSE of 9.5079 x 10~!! and a
regression R of 1, as shown in Figures 11 and 12. Figure 12 shows the mean squared error (MSE)
across three epochs of neural network training. The MSE for training decreases significantly, while
the validation MSE remains low and stable, suggesting the model is generalizing well. The test MSE
is initially higher but converges toward the validation MSE, indicating consistent performance on
unseen data. The “Best” mark on the graph indicates the epoch where the validation MSE is at its
lowest, which is the ideal point for the model's performance. There is no sign of overfitting or
underfitting, as the validation and test errors do not increase over time, and the training error
converges with the validation error without becoming too low.
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Figure 11. Training, testing, and validation regression of FNN fault detector.
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Best Validation Performance is 9.5079e-11 at epoch 2
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Figure 12. Best validation performance of FNN fault detector.
3.2.2. Fault classification

Figure 13 elegantly showcases the regression plots for the fault classification model in power
transmission lines, each plot vividly capturing the model’s stellar performance across different
datasets: training, validation, testing, and all data combined. With regression values (R) for training,
validation, testing, and all data hitting the perfect score of 1, the model demonstrates an impeccable
correlation between its predictions and the actual target values, underlining its superior predictive
accuracy.

All three errors start low and remain relatively flat throughout the epochs, as shown in Figure
14. The best performance according to the validation set is marked early, around the first epoch, as
indicated by the dotted line with a circle. This flat trend suggests the model was very quickly
optimized and did not significantly improve or worsen over additional training epochs, indicating
stable performance across the board. The consistency between the training, validation, and test errors
suggests that the network generalizes well without overfitting or underfitting.
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Figure 13. Training, testing, and validation regression of FNN fault classifier.

Best Validation Performance is 2.1782e-10 at epoch 0
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Figure 14. Best validation performance of FNN fault classifier.

3.2.3. Fault location

A strong positive correlation is evident from the training, testing, and validation regression
curves of the trained model. Specifically, the model achieved a regression coefficient (R) of 0.99999
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for both training and validation, while the testing data achieved a perfect R of 1.00000, and the best
validation performance was 0.060262, as seen in Figures 15 and 16. The consistent performance of
the model on both validation and test sets after the first epoch, without further significant drops in
error, indicates that the model reached its learning capacity given the current complexity and data.
There are no signs of overfitting or underfitting after the initial learning phase; overfitting would be
indicated by an increasing validation error as the training error continued to decrease, and
underfitting would be indicated by a high error that did not decrease.
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Figure 15. Training, testing, and validation regression of FNN fault locator.
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Best Validation Performance is 0.060262 at epoch 0
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Figure 16. Best validation performance of FNN fault locator.

The training, validation, and test bars reaching close to the “Zero Error” line as seen in Figure
17 indicate that the model accurately located faults in all three datasets. Such high performance
across the board is an indication that the model is highly effective at generalizing from its training
data to unseen data, which is crucial for reliable real-world application in fault location on
transmission lines.
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Figure 17. Histogram showing the error performance of FNN fault locator.
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4. Discussion
4.1. Deployment on unseen data

In the realm of machine learning, the deployment of a trained ANN model on unseen data for
evaluation stands as a cornerstone in determining the model's real-world efficacy. This critical step
involves rigorously testing the model against new, previously unexposed datasets to evaluate its
ability to generalize beyond the conditions of its training environment.

4.1.1. Fault detection

When tested on an evaluation dataset of 168 cases, encompassing 11 different short-circuit fault
types and normal scenarios, the ANN model's precision was exemplary. It accurately identified every
case, 14 normal and 154 faulty, as detailed in Figure 18. The performance metrics underscore its
effectiveness, achieving consistent 100% accuracy, precision, recall, and F1 score. This exemplary
performance highlights the effectiveness of the optimization techniques used in refining the ANN for
fault detection, demonstrating its potential for robust applications in real-world power systems.

FAULT DETECTION

No Fault

True Conditions

Fault

No Fault i . Fault
Predicted Conditions

Figure 18. Confusion matrix of deployment result of FNN fault detector

4.1.2. Fault classification

The confusion matrix displayed for fault classification in power transmission systems
exemplifies perfect model accuracy, with a 100% success rate in identifying various fault types, as
shown in Figure 19. A confusion matrix is an essential tool in these scenarios, providing clear and
organized insight into the model's classification capabilities. In this instance, the matrix indicates that
out of 154 fault cases, the model correctly classified all 154, demonstrating impeccable precision.
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Furthermore, the model achieved 100% in all key performance metrics: precision, recall, F1 score,
and accuracy, as seen in Figure 20.

Fault Classification

True Class

RICNC SN B I S SR SR S

Predicted Class

Figure 19. Confusion matrix of deployment result of FNN fault classifier.

Figure 20. Performance metrics of FNN fault classifier.

4.1.3. Fault location

Model deployment on evaluation data:

When the trained model was deployed on unseen evaluation data, comprising 154 cases across
11 different short-circuit fault types, impressive results were observed. The overall minimum and
maximum errors were 0.001% and 0.174%, respectively, while the overall accuracy ranged from
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99.826% to 99.999%. The mean absolute percentage error (MAPE) for this dataset stood at 0.053%,
meaning that the accuracy of the model was 99.947%, the MSE was found to be 0.0083, and the
MAE was also found to be 0.0717. As we endeavored to unpack the intricacies of our model's
performance, as shown in Figure 21, we meticulously analyzed the results in tandem with the diverse
fault types present. This analytical approach was pivotal in discerning the model's nuanced
competencies and potential areas for enhancement.
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Figure 21. Boxplot of percentage accuracy of various short-circuit fault types.

Symmetrical faults analysis:

ABCG faults:

e Errorrange: 0.011% to 0.103%
e Accuracy: 99.897% to 99.947%

e MAPE: 0.053%

Double-line-to-ground faults analysis:

ABG faults:

e Error range: 0.001% to 0.132%
e Accuracy: 99.868% to 99.999%

e MAPE: 0.061%

Line-to-line faults analysis

AB faults:

e Error range: 0.002% to

0.174%

e Accuracy: 99.826% to

99.998%
e MAPE: 0.065%

ACG faults:

e Error range: 0.004% to 0.127%
e Accuracy: 99.873% to 99.996%

MAPE: 0.042%

AC faults:

ABC faults:

Error range: 0.001% to 0.072%

Accuracy: 99.

928% to 99.999%

MAPE: 0.045%

e Error range: 0.004% to .

0.143%

e Accuracy: 99.857% to

99.996%
e MAPE: 0.060%
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BCG faults:

Error range: 0.001% to 0.122%
Accuracy: 99.878% to 99.999%
MAPE: 0.054%

BC faults:

Error range: 0.007% to
0.106%

Accuracy: 99.894% to
99.993%

MAPE: 0.048%
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Line-to-ground faults analysis

AG faults:

e Error range: 0.005% to
0.118%

e Accuracy: 99.882% to
99.995%

e MAPE: 0.048%

e Errorrange: 0.001% to 0.115%

BG faults:

e Accuracy: 99.885% to
99.999%
o MAPE: 0.052%

CG faults:

Error range: 0.005% to

0.093%

e Accuracy: 99.907% to
99.995%

e MAPE: 0.055%

The deployment of the model on unseen data yielded impressive results, as shown in Table 1 for
line-to-line faults and Table 2 for line-to-ground faults. This granular analysis provides a
comprehensive perspective on the model's performance, illustrating its adaptability and precision
across a diverse array of fault scenarios in the power transmission network.

Table 1. Predicted results of line-to-line faults.

Fault type AB AC BC
Actual fault  Predicted  Absolute Predicted Absolute Predicted Absolute
distance fault percentage fault percentage fault percentage
distance accuracy distance accuracy distance accuracy
20 20.000 99.998 20.018 99.908 19.996 99.978
40 40.070 99.826 39.972 99.931 39.982 99.955
60 59.978 99.964 60.003 99.995 60.038 99.936
80 80.054 99.933 79.982 99.978 80.026 99.968
100 100.038 99.962 99.899 99.899 99.971 99.971
120 120.098 99.918 119.913 99.928 119.896 99.913
140 139.958 99.970 140.200 99.857 139.930 99.950
160 159.893 99.933 160.006 99.996 160.062 99.961
180 179.894 99.941 180.248 99.862 180.191 99.894
200 199.868 99.934 200.044 99.978 200.137 99.931
220 220.318 99.856 219.938 99.972 219.902 99.955
240 239.854 99.939 239.905 99.961 239.982 99.993
260 259.891 99.958 259.836 99.937 260.171 99.934
280 279.898 99.963 280.132 99.953 279.975 99.991
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Table 2. Predicted results of single line-to-ground faults.

Fault type AG BG CG
Actual fault  Predicted Absolute Predicted Absolute Predicted Absolute
distance fault percentage fault percentage fault percentage
distance accuracy distance accuracy distance accuracy
20 19.996 99.978 20.013 99.933 19.988 99.938
40 39.991 99.977 39.957 99.894 40.036 99.909
60 60.071 99.882 60.038 99.936 60.052 99.913
80 80.032 99.960 80.092 99.885 79.951 99.939
100 100.053 99.947 100.061 99.939 99.980 99.980
120 120.074 99.938 120.121 99.899 120.111 99.907
140 139.898 99.927 139.991 99.994 140.045 99.968
160 159.911 99.944 159.945 99.966 159.959 99.975
180 180.102 99.944 179.984 99.991 179.875 99.930
200 199.974 99.987 200.106 99.947 200.112 99.944
220 219.833 99.924 220.147 99.933 220.159 99.928
240 239.905 99.960 239.927 99.970 239.988 99.995
260 260.093 99.964 259.971 99.989 260.145 99.944
280 280.014 99.995 279.998 99.999 279.900 99.964

4.2. Evaluation of the trained ANN models on three different transmission lines

The deployment of the trained ANN models on power transmission lines of varying lengths
provided a robust test of fault detection, classification, and location of the trained models’
capabilities.

4.2.1. Deployment of the trained ANN model across transmission lines for fault detection

The trained ANN model was successfully deployed on three different transmission lines to
evaluate its ability to detect faults in power systems. Throughout the tests, the model demonstrated
flawless performance, achieving a 100% accuracy rate across all scenarios, which included a variety
of short-circuit fault types and normal operating conditions. Additionally, the model not only reached
perfect accuracy but also maintained 100% precision, recall, and F1 score, showcasing its
exceptional capability to consistently identify and classify each fault type accurately without any
errors. This comprehensive performance solidifies the ANN model as a highly effective and reliable
tool for fault detection in power system applications.

4.2.2. Deployment of the trained ANN model across transmission lines for fault classification

The deployment of the trained ANN model across power transmission lines of varying lengths
demonstrated outstanding fault classification capabilities, with 100% precision, recall, F1 score, and
accuracy in each scenario. Initially tested on a 100 km line with 209 cases, the model accurately
identified every case, excelling across multiple fault types. In subsequent tests on 200 and 300 km
lines, involving 429 and 649 unseen cases, respectively, the model consistently maintained perfect
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classification performance despite a higher scale and complexity, as seen in Figures 22 and 23,
respectively. These deployments collectively highlight the model's robustness and adaptability in
accurately detecting faults, confirming its effectiveness and reliability in practical applications.
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Figure 22. Confusion matrix of deployment result of FNN fault classifier on 500 kV, 200 km.
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Figure 23. Confusion matrix of deployment result of FNN fault classifier on 400 kV, 300 km.
4.2.3. Deployment of the trained ANN model across transmission lines for fault location

The trained and optimized ANN model was again deployed on the same three different
transmission lines after being tested on unseen data for fault location, assessing its performance
against underfitting, overfitting, and accuracy. In the first deployment case, the model demonstrated
remarkable accuracy and precision across 209 cases, with an impressive minimum error of 0.0003%
and maximum accuracy of 99.9997%. In the second scenario, involving 429 cases, the model
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exhibited noteworthy performance with a minimum error of 0.0002% and a maximum accuracy of
99.9998%. Finally, in the third deployment, with 649 cases, the model maintained commendable
results, showcasing a minimum error of 0.0001% and a maximum accuracy of 99.9999%. The
average percentage accuracies for the performance evaluation of the trained ANN model on the three
test systems are shown in Figure 24. These findings highlight the model's reliability, versatility, and
scalability in identifying short-circuit fault types within power transmission networks, with
consistently high accuracy and low error rates across different deployment scenarios.

99.974

99.934 A

Mean Percentage Accuracy (%)

99.894 -

Deployment Results

Figure 24. Performance of FNN fault locator on test systems.

4.3. Comparison of the proposed optimized ANN fault locator with related techniques in the

literature

The proposed optimized ANN model for fault location in power transmission systems
demonstrated a remarkably high average percentage accuracy of 99.947%. This performance notably
surpasses several previous methodologies in the field, as illustrated in Table 3.

Table 3. Comparison of the proposed LHS-BO ANN fault locator with related

techniques in the literature.

Technique Percentage accuracy (%)
ANN [1] 97.56
Stockwell Transform ANN [42] 96.16
CNN-LSTM [43] 99.11
Transfer learning [44] 97.85
ANN-WT [18] 98.64
ANN [45] 99.27
SVM parameter [46] 98.96
Proposed LHS-BO ANN 99.947
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5. Conclusions

The hybrid optimized ANN model, specifically engineered to meet the unique demands of power
transmission systems, has demonstrated exceptional proficiency in fault detection, classification, and
location. Its advanced capabilities solidify its role as a pivotal tool for the next generation of fault
analysis solutions in power systems.

In the area of fault detection, the model exhibited flawless performance. Evaluated against a
dataset of 168 cases, it achieved a perfect accuracy rate of 100%, distinguishing between normal and
faulty scenarios with remarkable precision. This result highlights the extraordinary potential unlocked
through the synergy of LHS and BO combined with ANN technology.

For fault classification, the model displayed both robustness and precision, successfully
classifying 154 out of 154 cases with 100% accuracy, precision, recall, and F1 score, even on unseen
data. This showcases the model’s adaptability and reliability in handling various fault types.

In terms of fault location, the model's performance was equally remarkable, achieving accuracy
rates between 99.826% and 99.999% across 154 cases. With a negligible MAPE of 0.053%, low MSE
of 0.0083, and MAE of 0.0717, the model accurately located faults, whether symmetrical or
line-to-ground, confirming its reliability and precision.

In conclusion, the hybrid optimized ANN model offers a powerful and versatile solution for fault
detection, classification, and location in transmission systems. Its high accuracy and robust
performance across varied fault scenarios make it an invaluable tool for modern power systems. By
addressing the current limitations and exploring future directions, this model has the potential to
significantly improve fault management and enhance the reliability of power transmission networks,
heralding a new era in the field of power system fault analysis.

Recommendations and future work

While the hybrid optimized ANN model has demonstrated exceptional performance, several
areas for improvement and future research are worth exploring. First, further testing with real-world
transmission line data is recommended to confirm the model's robustness and generalizability outside
of the simulated environment. Additionally, the model could benefit from integration with distributed
power systems and microgrids, where the complexity of fault detection increases and additional data
sources, such as weather conditions, may play a significant role. Although the hybrid LHS-BO
approach enhances performance, optimizing computational efficiency is critical when scaling the
model for real-time systems, especially those with large datasets. Future work could also focus on
how noise and uncertainty in sensor measurements affect model accuracy, further strengthening its
reliability in practical, less controlled environments. Addressing these aspects will enhance the
model's applicability and effectiveness in real-world scenarios.

Limitations

The primary limitation of the current study is that it has been tested exclusively in simulated
conditions. The model has yet to be validated with real-time data, which may include unmodeled
complexities such as communication delays, non-ideal sensor data, and environmental factors that
could influence its performance. Additionally, the method’s computational demands, particularly in
real-time fault diagnosis, need to be assessed and optimized for large-scale power systems.
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