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Abstract: This paper presents an integrated approach combining a sequential neural network (SNN) 

with model predictive control (MPC) to enhance the performance of a permanent magnet 

synchronous motor (PMSM). We address the challenges of traditional control methods that struggle 

with the dynamics and nonlinear nature of PMSMs, offering a solution that leverages the predictive 

capabilities of MPC and the adaptive learning potential of neural networks. Our SNN-MPC model is 

contrasted with state-of-the-art genetic algorithm (GA) and ant colony optimization (ACO) methods 

through a comprehensive simulation analysis. This analysis critically examines the dynamic 

responses, including current, torque, and speed profiles, of the PMSM under proposed hybrid control 

strategies. The heart of the work deals with the optimal switching states and subsequent voltage 

injection to the inverter fed PMSM drive by a predefined minimization principle of a current 

modulated objective function, where MPC constitutes an integral finite control set (IFCS) 

mechanism for voltage vector selection and thereby selects the optimized integral gains Kd and Kq for 

direct and quadrature axes, respectively, with the FCS gain Kfcs obtained from implemented 

intelligent techniques. Based on the control criteria, the SNN-MPC scheme was established as the 

preferred benchmark with optimized tuning values of Kd = 0.01, Kq = 0.006, and Kfcs = 0.13, as 

compared to the gain values tuned from GA and ACO. The experimental setup utilized MATLAB 

and a Python environment for robust and flexible simulation, ensuring an equitable basis for 

comparison across all models. 

Keywords: permanent magnet synchronous motor; model predictive control; genetic algorithm; ant 

colony optimization; sequential neural network; voltage source inverter; finite control set; integral 

finite control set 
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Abbreviations: MPC: model predictive control; PCC: predictive current control; FCS: finite control 

set; IFCS: integral finite control set; PMSM: permanent magnet synchronous motor; SVM: space 

vector modulation; VSI: voltage source inverter; IGBT: insulated gate bipolar transistor; SNN: 

sequential neural network; GA: genetic algorithm; ACO: ant colony optimization 

List of Symbols 

(i d , i q)      Components of stator current in (d, q) reference frame 

(v d , v q)      Components of stator voltage in (d, q) reference frame 

S a, S b, S c     Switching states of the inverter 

R s       Winding resistance offered to stator  

L d , L q      Inductance of direct and quadrature axes 

J        Moment of inertia 

B       Friction viscous gain 

P       Number of poles 

ɷ s , ɷ e      Stator and electrical speed 

T e, T L      Electrical and load torque 

V DC      DC bus voltage 

VaN, VbN, VcN     Phase voltages 

Φ mg      Rotor flux 

𝒊𝒅(𝒕𝒊+𝟏), 𝒊𝒒(𝒕𝒊+𝟏)   Predicted values of current in d-q frame 

𝒊𝒅
∗,  𝒊𝒒

∗
      Desired values of current in d-q frame 

TS       Sampling Interval 

Θ       Rotor angle position 

1. Introduction 

Permanent magnet synchronous motors (PMSMs) represent a significant advancement in 

electric motor technology [1,2], characterized by their use of permanent magnets embedded in or 

attached to the rotor. This design contributes to their high efficiency, compact size, and superior 

performance compared to traditional induction motors. PMSMs are widely utilized in various 

applications, including electric vehicles [3], industrial automation, robotics, and renewable energy 

systems, where high efficiency and precise control are paramount.  

1.1. Background 

The inherent advantages of PMSMs, such as their ability to operate at high speeds and their 

dynamic response capabilities, make them an ideal choice for applications demanding high 

performance and reliability. Controlling PMSMs presents unique challenges, primarily due to their 

complex dynamics and the need for precise control of torque and speed under varying operational 

conditions [4]. Achieving optimal performance [5] requires sophisticated control algorithms capable 

of adapting to changes in load and ensuring efficient operation throughout the motor's speed range. 

The complexity of PMSM control is further compounded by the nonlinear characteristics of the 

motor and the interaction between the magnetic fields of the stator and the permanent magnets on the 

rotor [6]. Traditional control algorithms, such as field-oriented control (FOC) and direct torque 
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control (DTC) [7,8], have been the cornerstone of PMSM control strategies [9‒14]. In addition to 

this, inverter fed machine drive parameters can be regulated by duty cycle compensations [15,16] 

and lead to an optimal management of machine operation. 

However, the quest for improved performance has led to the exploration of predictive control 

algorithms. These algorithms, including the genetic algorithm (GA) [17] and ant colony optimization 

(ACO) [20], offer advantages in terms of their ability to predict future states of the motor and adjust 

control actions accordingly. Predictive control algorithms aim to optimize the motor's performance 

by considering future operational scenarios, thereby enhancing efficiency, reducing energy 

consumption, and improving dynamic response. The sequential neural network model predictive 

control (SNN-MPC) model represents a novel approach in the realm of PMSM control. By 

integrating neural networks [17‒19] with model predictive control [9‒14], the SNN-MPC model 

aims to leverage the predictive capabilities of neural networks to enhance the accuracy and efficiency 

of control actions. This model stands out by its ability to adapt to changing conditions in real time, 

offering a significant improvement over traditional algorithms in terms of performance optimization 

and adaptability. The SNN-MPC model adapts quickly to changing motor conditions, providing 

real-time control with minimal oscillations and energy consumption. It offers improved adaptability 

and fault detection compared to GA and ACO. However, the framework requires significant 

computational resources for training and execution, which may limit its practicality in 

resource-constrained environments. Additionally, ongoing model tuning requires high-quality 

training data that represents diverse motor dynamics. GA and ACO, while less adaptable, are simpler 

and more efficient in computationally limited settings. 

1.2. Literature review and research gap 

In the evolving landscape of optimization techniques, particularly in the application to 

permanent magnet synchronous motors (PMSMs), a diverse array of studies have demonstrated the 

efficacy of integrating ant colony optimization (ACO), particle swarm optimization (PSO), and 

neural networks to enhance system performance and efficiency. Mao et al. [19] delved into the realm 

of neural network-based model predictive control for PMSMs, unveiling a strategy that significantly 

reduces overshoot by 5.87% and rise time by 0.036 s. Their model, which employs particle swarm 

optimization (PSO) to train echo state networks (ESN), showcases an innovative approach to 

stabilizing and accurately predicting motor speed, thereby optimizing predictive control and 

enhancing robustness against parameter variations and load disturbances. This study not only 

highlights the potential of neural networks in predictive control but also emphasizes the role of PSO 

in refining the training process for improved system response and stability. 

Further extending the exploration of hybrid optimization methods, Valdez et al. [20] introduced 

a novel hybrid technique that amalgamates ACO and PSO, optimized for modular neural networks. 

This method, aimed at classifying images of human faces, outperforms traditional optimization 

techniques, underscoring the synergy between ACO and PSO in tackling complex optimization 

problems. On a different note, Saeed and Sheikhyounis [21] applied a combination of PSO and 

neural network techniques to enhance power quality in distribution systems, demonstrating a 

significant reduction in total harmonic distortion and an improvement in system resilience to power 

disturbances. Similarly, Chafi and Afrakhte’s [22] investigation into short-term electrical load 

forecasting [23] using neural networks and PSO algorithm presents a compelling case for the 
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accuracy and efficiency of these techniques in predicting electrical loads, thereby facilitating more 

effective power grid management.  

These studies collectively underscore the versatility and effectiveness of ACO, PSO, and neural 

network-based optimization techniques [24‒30] across various applications, from motor 

control [31,32] to power quality improvement and load forecasting. By leveraging these methods, 

researchers and practitioners can achieve substantial improvements in system performance, 

efficiency, and accuracy, paving the way for innovative solutions in the field of optimization and 

control systems. 

1.3. Motivations 

The review of the referred literature highlighted the strengths and weaknesses of various 

algorithms applied to machine drives and provides valuable insights into their suitability for different 

operational scenarios. The findings from this study underscore the potential of the SNN-MPC model 

to revolutionize PMSM control, offering a promising avenue for future research and development. 

The superior performance of the SNN-MPC model suggests that integrating neural networks with 

predictive control algorithms can significantly enhance motor control dynamics. Future research 

could focus on refining the SNN-MPC model, exploring other advanced control strategies, and 

applying these findings to real-world PMSM systems to fully realize their potential benefits. The 

evolution of PMSM control strategies continues to be a dynamic and exciting field, with the promise 

of further advancements that will enhance the efficiency and performance of electric motors across a 

wide range of applications. 

1.4. Challenges 

The challenges of the proposed sequential neural network based predictive controller can be 

stated as follows: 

1. Computational complexity: The integration of a sequential neural network with model 

predictive control requires significant computational power due to the predictive modeling and 

optimization involved. 

2. Data requirements: Accurate training requires high-quality datasets covering diverse motor 

conditions, which can be challenging to collect and preprocess. 

3. Model tuning: Fine-tuning the predictive models to accommodate different load conditions 

requires careful parameter adjustment and validation. 

The proposed MPC model overcomes the challenges and the desired goal with its dynamic 

modeling and flexible control architecture. 

1.5. Contributions 

The main contribution of this work is the integration of sequential neural networks (SNN) with 

model predictive control (MPC) for improved control of permanent magnet synchronous motors 

(PMSM). The SNN predicts motor behavior, while MPC optimizes real-time adjustments to torque 

and speed. This hybrid approach ensures smoother and more accurate control compared to genetic 
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algorithm (GA) and ant colony optimization (ACO) methods. Additionally, it enhances fault 

detection by learning and recognizing patterns in motor behavior, reducing downtime and improving 

reliability. 

The comparative analysis of the SNN-MPC model against traditional GA and ACO methods has 

been conducted using a detailed experimental setup that utilized MATLAB and Google Colab's 

Python environment. This setup allowed for the simulation of PMSM control scenarios, providing a 

platform for evaluating the performance of each control algorithm. The criteria for performance 

evaluation included efficiency, response time, and the accuracy of the motor in achieving desired 

states, such as specific speeds or torque levels and minimum current errors. The experimental 

analysis revealed that the SNN-MPC model exhibited superior performance in several key areas 

compared to the GA and ACO methods. Notably, the SNN-MPC model demonstrated enhanced 

efficiency and faster response times, indicating its potential to significantly improve PMSM control. 

1.6. Organization of the paper 

The research article demonstrates the dynamic control aspects of various intelligent 

computational techniques such as GA, ACO, and SNN-MPC models coordinated with predictive 

attributes. The study and contributions of the paper portray the adaptive and superior predictive 

control characteristics of the SNN model with respect to GA and ACO by encapsulating the current, 

speed, and torque responses of the modelled PMSM drive.  

This paper is organized as follows: Section 1 presents the introduction with background, review 

of the literature, motivations, challenges, and contributions from the authors. Section 2 highlights the 

dynamic modeling of the PMSM and simplified mathematical model of the three phase inverter 

circuit. In addition to this, predictive control with FCS approach is also included for further 

assessment. Section 3 depicts the system architectures of the proposed hybrid controllers, those 

compounded with predictive and intelligent algorithms. These include GA, ACO, and SNN based 

predictive controllers with an advanced integral action. Section 4 illustrates the dynamic 

characteristics of current and torque and speed responses of the PMSM tuned from each of the 

implemented control techniques with a comparison benchmark. The overall research outcomes and 

determinations from the applied optimization algorithms are presented in Section 5 as concluding 

revelations. 

2. Proposed optimal control methodology 

2.1. Model predictive control technique 

The model predictive control (MPC) technique stands out for its precision and adaptability, 

particularly when applied to the control of permanent magnet synchronous motors (PMSMs).  

This technique hinges on the accurate prediction and adjustment of motor currents to achieve 

optimal performance, leveraging the d-q-0 reference frame for current values. The process begins 

with the specification of reference current values in the d-q frame, which are provided as external 

inputs. These reference currents, detailed in the context of their time periods, serve as benchmarks 

for the system's performance. The core of the MPC strategy involves a meticulous comparison 

between the reference current values and the actual currents measured from the PMSM model. By 
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utilizing the rotor angle position, the system can transform the reference values from the d-q frame 

back into three-phase quantities, enabling a direct comparison. The MATLAB simulation block plays 

a crucial role in this process, predicting the optimal switching states for the converter to minimize the 

predefined cost function (J), i.e., the error between the reference and measured currents. This 

predictive capability extends to forecasting the load current for upcoming sampling intervals, taking 

into account the potential voltage vectors that could influence the system's behavior. 

2.2. Dynamic modeling of PMSM drive 

In the exploration of high-efficiency electric motors, the surface-mounted permanent magnet 

synchronous motor (PMSM) emerges as a prime candidate due to its high power density capabilities. 

This study models a PMSM, focusing on its behavior in generating sinusoidal back electromagnetic 

force (EMF) in the absence of field current, deliberately omitting saturation effects on the rotor 

frame for simplification, as referenced in the work by Wang et al. [1]. 

𝑑𝑖𝑑

𝑑𝑡
=  

1

Ld
  𝜗𝑑 −  R. 𝑖𝑑 + (𝜔𝑒 . L𝑞 . 𝑖𝑞)                                                           (1) 

  
𝑑𝑖𝑞

𝑑𝑡
=  

1

Lq
  𝜗𝑞 −  R. 𝑖𝑞 −  𝜔𝑒 . L𝑑 . 𝑖𝑑 − (𝜔𝑒 . 𝜑𝑚𝑔 )                                    (2) 

𝑑𝜔𝑒

𝑑𝑡
=  

P

J
  𝑇𝑒 −  

B

P
𝜔𝑒 − (𝑇𝐿)                               (3) 

                    𝑇𝑒 =  
3

2
P 𝑖𝑞 . 𝜑𝑚𝑔 +  L𝑑 − L𝑞 𝑖𝑑 𝑖𝑞                                                             (4) 

 

𝑖𝑑  and 𝑖𝑞  are the measured currents in the d-axis and q-axis, expressed in amperes (A). 𝑣𝑑  and 𝑣𝑞  

are the measured voltages in the d-axis and q-axis, expressed in volts (V). 𝜔𝑠 and 𝜔𝑒  are the 

angular speeds of the stator and rotor, expressed in rad/sec, and 𝜑𝑚𝑔 = flux linkage due to permanent 

magnet (Wb). 

The dynamic performance of the PMSM is captured through a set of differential equations that 

describe the evolution of the d-axis and q-axis currents (Eqs 1 and 2), the rotor's angular speed (Eq 3), 

and the electromagnetic torque (Eq 4), under the assumption of sinusoidal back EMF and ignoring 

field current saturation. 

The model's foundation rests on the assumption of equal inductance in the d-axis and q-axis (Ld 

= Lq), a characteristic feature of surface-mounted PMSMs, which simplifies the electromagnetic 

torque equation to Eq 5 when id = 0. This simplification underscores the model's focus on the direct 

control of torque through the manipulation of q-axis current, iq, and the rotor flux constant, φmg, 

without the need for d-axis current manipulation. The parameters essential for simulating the 

PMSM's behavior, including stator resistance, inductance, rotor flux constant, moment of inertia, 

friction viscous gain, and the number of poles, are meticulously detailed in Table 1, providing a 

comprehensive overview for replication and further study. 

The electromagnetic torque can be expressed as below, with the condition of 𝑖𝑑= 0 or surface 

mounted PMSM with equal inductances, i.e., L𝑑 = L𝑞 ,  

                                                                       𝑇𝑒 =  
3

2
P 𝑖𝑞 . 𝜑𝑚𝑔                                                                   (5) 
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Table 1. PMSM parameters [1]. 

Parameters Values Unit 

Stator resistance (R) 2.98 Ω 

Inductance in d-axis (Ld) 0.007 H 

Inductance in q-axis (Lq) 0.007 H 

Flux linkage (𝜑𝑚𝑔 ) 0.125 Wb 

Moment of inertia (J) 0.01e-3 Kgˑm2 

Friction viscous gain (B) 11e-5 Nmˑs 

Number of pole pairs (P) 2  

2.3. Modelling of three phase voltage source inverter 

We consider a 3-φ inverter, which converts 300 V DC to 3-φ AC, for an induction motor of 

squirrel cage type, whose physical parameters are mentioned in Table 1. The inverter operation 

having 180° mode of conduction presents a non-linear discrete time system with 7 voltage outputs & 

8 configuration states. For simplicity and rounding off, in the modeling and mathematical calculation 

for the simulation, we ignore the IGBT (Insulated Gate Bipolar Transistor) saturation voltage and 

diode forward voltage drop. The schematic power circuit of voltage source inverter fed PMSM drive 

is given below in Figure 1. 

 

 

 

 

 

Figure 1. VSI fed PMSM drive. 

The switching state for conversions is carried out with the reference of the gating signal, 𝑆𝑎 , 𝑆𝑏 , 

and 𝑆𝑐 , and represented as follows [1]:  

𝑆𝑎 =  
1, 𝑖𝑓 𝑆𝑤𝑖𝑡𝑐𝑕1 𝑜𝑛 𝑎𝑛𝑑 𝑆𝑤𝑖𝑡𝑐𝑕4 𝑜𝑓𝑓 
0, 𝑖𝑓 𝑆𝑤𝑖𝑡𝑐𝑕1 𝑜𝑓𝑓 𝑎𝑛𝑑 𝑆𝑤𝑖𝑡𝑐𝑕4 𝑜𝑛 

  

𝑆𝑏 =  
1, 𝑖𝑓 𝑆𝑤𝑖𝑡𝑐𝑕2 𝑜𝑛 𝑎𝑛𝑑 𝑆𝑤𝑖𝑡𝑐𝑕5 𝑜𝑓𝑓 
0, 𝑖𝑓 𝑆𝑤𝑖𝑡𝑐𝑕2 𝑜𝑓𝑓 𝑎𝑛𝑑 𝑆𝑤𝑖𝑡𝑐𝑕5 𝑜𝑛  

  

𝑆𝑐 =  
1, 𝑖𝑓 𝑆𝑤𝑖𝑡𝑐𝑕3 𝑜𝑛 𝑎𝑛𝑑 𝑆𝑤𝑖𝑡𝑐𝑕6 𝑜𝑓𝑓 
0, 𝑖𝑓 𝑆𝑤𝑖𝑡𝑐𝑕3 𝑜𝑓𝑓 𝑎𝑛𝑑 𝑆𝑤𝑖𝑡𝑐𝑕6 𝑜𝑛  

  

PMSM 
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Figure 2 represents the simple mathematical model of the three-phase inverter circuit which 

shows the output voltage generation by means of switching signal application. These switching states 

are generated by the optimum operation of predictive algorithms. The details of controlled state 

evaluation by the proposed controllers are described in the next section 

 

Figure 2. Voltage output of VSI. 

2.4. Calibration of MPC with finite control set (FCS)
 

The calibration of model predictive control (MPC) with a finite control set (FCS) was 

undertaken to enhance the control of permanent magnet synchronous motors (PMSM), integrating 

the predictive prowess of MPC with the discrete operational framework of FCS. This method 

optimized the switching states of the power converter, aiming for precise and efficient motor 

performance. In this approach, the control action was selected from a finite set of possible inverter 

switching states, directly addressing the discrete nature of power converters and negating the need 

for additional modulation processes. The calibration process entailed the development of a predictive 

motor model that accurately reflected the motor's dynamics under various switching states and the 

formulation of a cost function to quantify deviations from desired performance metrics. The MPC 

algorithm evaluated each possible switching state's impact on future motor behavior, selecting the 

one that minimized the cost function. This selection process, repeated at each control interval, 

allowed for real-time adjustments to motor operation or load changes. The calibration of FCS-MPC 

also involved tuning the prediction horizon and cost function weighting factors, balancing control 

objectives with computational limitations, thereby ensuring the scheme's effective real-time 

operation. The space vector modulation (SVM) scheme [17], a refined method, is used here to 

regulate the output voltage by controlling the optimal switching states. This approach allowed for 

precise control of the amplitude and phase of the inverter's output voltage, enabling efficient and 

smooth operation of AC motors such as the PMSM.  

The generation of switching states gives rise to eight voltage vectors, provided in Table 3, which 

can be predicted by Equation (6) as follows [1,3,9]:
                                                            

 

                
)(

3

2 2
cbadc SaaSSVv 

                            
(6) 
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Table 2. Switching states with voltage vectors [17]. 

Sa Sb Sc Voltage vector (𝒗   ) 

where 

a = 𝑒−𝑗(2𝜋/3) = −
1

2
+ 𝑗

 3

2
, with a 

phase displacement of 120 ° 

between any two phases in 

Equation (6) 

0 0 0 𝑣0      = 0 

1 0 0 
𝑣1      = 

2

3
 vdc 

1 1 0 
𝑣2      = 

1

3
 vdc + j 

 3

3
 vdc 

0 1 0 
𝑣3      = −

1

3
 vdc +j 

 3

3
 vdc 

0 1 1 
𝑣4     = −

2

3
 vdc  

0 0 1 
𝑣5      = −

1

3
 vdc − j 

 3

3
 vdc 

1 0 1 
𝑣6      = 

1

3
 vdc − j 

 3

3
 vdc 

1 1 1 𝑣7      = 0 

The generalized equations for the predicted load current in the direct-quadrature (d-q) frame 

using forward Euler approximations, which are methods for numerically integrating differential 

equations, are defined in Eqs (7) and (8), respectively [1,4,9]. 

𝑑𝑖𝑑 (𝑡)

𝑑𝑡
≈

𝑖𝑑 (𝑡𝑖+1)−𝑖𝑑 (𝑡𝑖)

𝑇𝑠
                 (7) 

𝑑𝑖𝑞 (𝑡)

𝑑𝑡
≈

𝑖𝑞 (𝑡𝑖+1)−𝑖𝑞 (𝑡𝑖)

𝑇𝑠
                           (8) 

                   𝑖𝑑 (𝑡𝑖+1) = 𝑖𝑑(𝑡𝑖) + 
𝑇𝑠

𝐿𝑑
(𝑣𝑑 (𝑡𝑖) − 𝑅𝑖𝑑 (𝑡𝑖) +𝜔𝑒 𝑡𝑖 𝐿𝑞 𝑖𝑞 𝑡𝑖 )           (9) 

𝑖𝑞 (𝑡𝑖+1) = 𝑖𝑞(𝑡𝑖) + 
𝑇𝑠

𝐿𝑞
(𝑣𝑞 (𝑡𝑖) − 𝑅𝑖𝑞 (𝑡𝑖) + 𝜔𝑒 𝑡𝑖 𝐿𝑑 𝑖𝑑 𝑡𝑖 ) − 𝜔𝑒 𝑡𝑖 φmg )          (10) 

Equations (7) and (8) approximated the rate of change of the direct axis current, id, and the 

quadrature axis current, iq, respectively. The subsequent equations, (9) and (10), provided the 

predicted load currents for the next time interval, ti+1, by incorporating the voltage across the PMSM 

input terminals. 
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Figure 3. Structure of FCS-MPC method in d-q coordinates. 

Figure 5 depicts a control system for a permanent magnet synchronous motor (PMSM) where 

the system began with the generation of a reference current value in the direct-quadrature (d-q) frame, 

which was then fed into the field-oriented control (FOC) system (FCS) block. This block was 

responsible for determining the appropriate control signals to achieve the desired motor performance 

by aligning the stator and rotor fields. The output from the FCS block was directed to a voltage 

source inverter (VSI), which converted the DC power into AC power with the necessary amplitude 

and frequency to drive the PMSM. The performance of the motor was continuously monitored by 

measuring the current, speed, and rotor position. These measurements were fed back into the FCS 

block, creating a closed-loop control system that dynamically adjusted the reference values to meet 

the desired performance criteria. This control methodology allowed for precise speed and torque 

control of the PMSM, which was essential for applications requiring high efficiency and dynamic 

response.  

In this study a two-level, three-phase VSI is considered for application of predictive schemes. 

As the overall modelling and computations are in the d-q-0 reference frame, the voltage vectors 

generated need to be transformed to d-q-0 coordinates from a-b-c coordinates by means of Park’s 

transformation. 

                  
𝜗𝑑

𝜗𝑞
  =  

2

3
 
𝑐𝑜𝑠𝜃 cos(𝜃 −

2𝜋

3
) cos(𝜃 +

2𝜋

3
)

−𝑠𝑖𝑛𝜃 −sin(𝜃 −
2𝜋

3
) −sin(𝜃 +

2𝜋

3
)
   

𝑉𝑎𝑛
𝑉𝑏𝑛

𝑉𝑐𝑛

             (11) 

where 𝜗𝑑 = voltage in d-axis, 𝜗𝑞 = voltage in q-axis, and 𝜃 = rotor position angle. 𝑉𝑎𝑛 , 𝑉𝑏𝑛 , 

and 𝑉𝑐𝑛  are the phase voltages of a-b-c with respect to neutral, respectively, and Vdc = DC voltage 

supplied to VSI. 

The switching combinations and corresponding voltage vectors imposed in the FCS-MPC 

technique are shown in Table 3. 
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Table 3. Switching states with voltage vectors [17]. 

Sa Sb Sc Voltage vector (𝒗   ) 𝑽𝒂𝒏 𝑽𝒃𝒏 𝑽𝒄𝒏 

0 0 0 𝑣0      
−

𝑉𝑑𝑐

2
 −

𝑉𝑑𝑐

2
 −

𝑉𝑑𝑐

2
 

1 0 0 𝑣1      𝑉𝑑𝑐

2
 −

𝑉𝑑𝑐

2
 −

𝑉𝑑𝑐

2
 

1 1 0 𝑣2      𝑉𝑑𝑐

2
 

𝑉𝑑𝑐

2
 −

𝑉𝑑𝑐

2
 

0 1 0 𝑣3       
−

𝑉𝑑𝑐

2
 

𝑉𝑑𝑐

2
 

𝑉𝑑𝑐

2
 

0 1 1 𝑣4     
−

𝑉𝑑𝑐

2
 

𝑉𝑑𝑐

2
 

𝑉𝑑𝑐

2
 

0 0 1 𝑣5      
−

𝑉𝑑𝑐

2
 −

𝑉𝑑𝑐

2
 

𝑉𝑑𝑐

2
 

1 0 1 𝑣6      𝑉𝑑𝑐

2
 −

𝑉𝑑𝑐

2
 

𝑉𝑑𝑐

2
 

1 1 1 𝑣7      𝑉𝑑𝑐

2
 

𝑉𝑑𝑐

2
 

𝑉𝑑𝑐

2
 

 

where  

𝑉𝑎𝑛
𝑉𝑏𝑛

𝑉𝑐𝑛

 = 

 
 
 
 
 𝑆𝑎 − 

1

2

𝑆𝑏 − 
1

2

𝑆𝑐 − 
1

2 
 
 
 
 

 Vdc 

In the FCS-MPC approach, there are seven sets of 𝑣𝑑  and 𝑣𝑞  values are presented based on 

the rotor angular position and sampling time. In this control strategy, the objective function is 

defined as the sum of the squares of the errors between the desired and predicted current values in 

the d-q frame. The objective function (J) is  

   JK= {𝑖𝑑
∗(ti) −𝑖𝑑(𝑡𝑖+1)}2+ {𝑖𝑞

∗
(ti)−𝑖𝑞(𝑡𝑖+1)}2              (12) 

where 𝑖𝑑(𝑡𝑖+1) and 𝑖𝑞(𝑡𝑖+1) are the predicted values of current in the d-q frame, 𝑖𝑑
∗and 𝑖𝑞

∗ are 

the desired values of current in the d-q frame, respectively, and ti is the sampling instant. By 

combining Eqs (9) and (10), Equation (12) can be further modified as 

𝐽𝑘 =  𝑖𝑑
∗ 𝑡𝑖 − 𝑖𝑑 𝑡𝑖 −

𝑇𝑠

𝐿𝑑
 𝑣𝑑 𝑡𝑖 − 𝑅𝑖𝑑 𝑡𝑖 + 𝜔𝑒 𝑡𝑖 𝐿𝑞 𝑖𝑞 𝑡𝑖   

2

+  𝑖𝑞
∗ 𝑡𝑖 − 𝑖𝑞 𝑡𝑖 −

𝑇𝑠

𝐿𝑞
 𝑣𝑞 𝑡𝑖 −            𝑅𝑖𝑞 𝑡𝑖 − 𝜔𝑒 𝑡𝑖 𝐿𝑑 𝑖𝑑 𝑡𝑖 − 𝜔𝑒 𝑡𝑖 𝜑𝑚𝑔   

2

                                      

(13) 

where 𝜑𝑚𝑔 = rotor flux constant or flux linkage, and k is the index from 0 to 7. 
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The control system utilized a receding horizon principle, which predicts the next step's values 

based on the current feedback parameters such as the direct and quadrature currents id(ti) and iq(ti), 

the electrical angular velocity ωe , and the electrical angle θe , from the PMSM model. The objective 

function was computed for each pair of vd−vq values using these feedback parameters from the 

PMSM model, and the one that minimized this function was selected for the next control action. 

Additionally, for programming convenience, the equations governing the system's dynamics were 

also represented in matrix form as follows: 

       
𝑖𝑑 𝑡𝑖+1 

𝑖𝑞 𝑡𝑖+1 
  = (I+𝑇𝑠𝐴𝑚 𝑡𝑖 )  

𝑖𝑑 𝑡𝑖 

𝑖𝑞 𝑡𝑖 
 + 𝑇𝑠𝐵𝑚  

𝑣𝑑 𝑡𝑖 

𝑣𝑞 𝑡𝑖 
 −  

0
𝜔𝑒 𝑡𝑖 𝜑𝑚𝑔 𝑇𝑠

𝐿𝑞

       (14) 

where I is the identity matrix of dimension 2 × 2 

                       𝐴𝑚(𝑡𝑖) = 

−𝑅𝑠

𝐿𝑑

𝑤𝑒(𝑡𝑖)𝐿𝑞

𝐿𝑑

−𝑤𝑒(𝑡𝑖)𝐿𝑑

𝐿𝑞

−𝑅𝑠

𝐿𝑞

                      (15) 

𝐵𝑚  =  

1

𝐿𝑑
0

0
1

𝐿𝑞

                                (16) 

Equation (14) expressed the predicted current values as a function of the voltages, current, and 

inductances in the d-q frame, flux linkage, electrical velocity, and sampling time. Matrix Am(ti) and 

Bm are derived from Eqs (9) and (10) and expressed in Eqs (15) and (16), respectively. This 

formulation provided a clear framework for developing the control algorithms that would operate the 

PMSM efficiently, ensuring optimal performance in accordance with the control objectives. 

From the optimal output feedback control framework in the FCS-MPC method, it can be 

obtained that 

 
𝑣𝑑(𝑡𝑖)

𝑜𝑝𝑡

𝑣𝑞(𝑡𝑖)
𝑜𝑝𝑡   = 𝐾𝑓𝑐𝑠   

𝑖𝑑
∗(𝑡𝑖)

𝑖𝑞
∗(𝑡𝑖)

 −  
𝑖𝑑(𝑡𝑖)
𝑖𝑞(𝑡𝑖)

                         (17) 

where Kfcs is the gain of the optimal voltage matrix. 

3. Proposed predictive controller for integration with intelligent computational algorithms 

The FCS-MPC system has one major disadvantage of a unit time delay when a closed loop 

value is approximated. So, the FCS-MPC system contains some steady stable error due to the closed 

loop action [2,11,12]. The best method to eliminate steady state error is integral action on an 

outer-loop controller. Since the system states are continuous in nature, sampling the response of the 

system by the FCS-MPC method creates a poor inter-sample response. This can be avoided by taking 

an integral term of error between desired and predicted values in the cost function. The algorithm 

used here operates on reference values and measured values in the d-q frame. Speed and rotor 

angular position are also used for providing switching states to the inverter. Except the steady state 

error, the integral action also improves the rejecting quality of low frequency disturbance. Hence, the 

mathematical definition of the optimal voltages obtained from the integral finite control set (IFCS) 

predictive controller in the discrete time control system can be modified as follows: 
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𝑣𝑑(𝑡𝑖)

𝑜𝑝𝑡

𝑣𝑞(𝑡𝑖)
𝑜𝑝𝑡   =  𝐾𝑓𝑐𝑠  

 𝐾𝑑

1−𝑞−1  (𝑖𝑑
∗
 𝑡𝑖 − 𝑖𝑑(𝑡𝑖))

 𝐾𝑞

1−𝑞−1  (𝑖𝑞
∗ 𝑡𝑖 − 𝑖𝑞(𝑡𝑖))

  −  𝐾𝑓𝑐𝑠  
𝑖𝑑(𝑡𝑖)
𝑖𝑞(𝑡𝑖)

          (18) 

where Kd and Kq are the values of integral block parameters used for current error at both the d-axis 

and q-axis, respectively, 0 < 𝐾𝑑 ≤ 1 , and 0 < 𝐾𝑞 ≤ 1 .   
1

1−𝑞−1  represents functionality of an 

integrator.  

The structure of IFCS-MPC is depicted below in Figure 4. In the proposed IFCS predictive 

controller, the inner loop presents the FCS control, and the outer loop demonstrates the integral 

action of the controller. 

 

Figure 4. Structure of IFCS-MPC method. 

The objective function, 𝐽𝑘  is calculated for seven pairs of candidate variables for 

𝑣𝑑  and 𝑣𝑞voltages. The objective function is calculated for k = 0, 1, 2, 6. 

𝐽𝐾= 
𝑇𝑠

2

𝐿𝑑
2 (𝑣𝑑(𝑡𝑖)

𝐾 − 𝑣𝑑(𝑡𝑖)
𝑜𝑝𝑡 )2 + 

𝑇𝑠
2

𝐿𝑞
2 (𝑣𝑞(𝑡𝑖)

𝐾 − 𝑣𝑞(𝑡𝑖)
𝑜𝑝𝑡 )2      (19) 

where 𝑇𝑠 = sampling interval, and 𝐿𝑑 , 𝐿𝑞  are d-axis and q-axis inductance, respectively. 

The matrix representation of newly defined equation of d-q currents that shows the integral 

action of MPC is presented in Eq (20). 

 
𝑖𝑑 𝑡𝑖+1 

𝑖𝑞 𝑡𝑖+1 
  = (I + 𝑇𝑠𝐴𝑚 𝑡𝑖 − 𝑇𝑠𝐵𝑚𝐾𝑓𝑐𝑠 )  

𝑖𝑑 𝑡𝑖 

𝑖𝑞 𝑡𝑖 
 + 𝑇𝑠𝐵𝑚𝐾𝑓𝑐𝑠  

𝑒𝑑 𝑡𝑖 
𝐼

𝑒𝑞 𝑡𝑖 
𝐼 −  

0
𝜔𝑒 𝑡𝑖 𝜑𝑚𝑔 ∆𝑡

𝐿𝑞

      (20) 

where I is the identity matrix of (2 × 2), 

𝐴𝑚(𝑡𝑖) = 

−𝑅𝑠

𝐿𝑑

𝑤𝑒(𝑡𝑖)𝐿𝑞

𝐿𝑑

−𝑤𝑒(𝑡𝑖)𝐿𝑑

𝐿𝑞

−𝑅𝑠

𝐿𝑞

                         (21) 
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𝐵𝑚  =  

1

𝐿𝑑
0

0
1

𝐿𝑞

                               (22) 

𝜑𝑚𝑔  = Flux magnitude in webers,   

𝑒𝑑
𝐼  and 𝑒𝑞

𝐼  are integral errors of d-axis and q-axis, respectively. 

The applied intelligent predictive computational techniques are scheduled by the optimized 

criteria defined in Eqs (18) and (19) to diagnose their superiorities in terms of optimized gains, 

current, torque, and speed responses of the modeled PMSM. 

3.1. Sequential neural network on PMSM 

The sequential neural network (SNN) on a permanent magnet synchronous motor (PMSM) 

represents a sophisticated approach in motor control technology. Leveraging the sequential 

processing capabilities of neural networks, the SNN architecture is designed to sequentially process 

input data, such as motor currents and rotor positions, to dynamically control the PMSM. By learning 

from the temporal patterns of the motor's behavior, the SNN can make informed predictions and 

adjustments to the control signals, ensuring optimal motor performance.
 

 

Figure 5. Proposed sequential network for PMSM. 

Figure 6 structure outlines the design of a sequential neural network (SNN) tailored for 

controlling a permanent magnet synchronous motor (PMSM). Commencing with the input layer 

block, the network receives the reference current in the d-q-0 frame and potentially other motor 

parameters. Next, the pre-processing block prepares the input data for further analysis, akin to signal 

conditioning. Subsequently, the feature extraction block processes the data to discern pivotal 

characteristics essential for motor control.  

The PMSM dynamics block functions as a virtual model of the motor, capturing its intrinsic 

dynamic behavior. An adaptive parameter tuning block is responsible for refining the network's 
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parameters in real time, ensuring the model's accuracy as operating conditions change. The control 

decision block then determines the optimal control actions required. The cost function evaluation 

block measures the performance of these actions against a predefined cost function, typically 

involving the minimization of error between desired and actual motor performance. The output layer 

block generates the final control signals to the motor's inverter. Finally, a feedback loop block, 

crucial during the training phase, allows the network to learn from the system's actual performance 

and continuously adjust its predictions, embodying a dynamic learning capability essential for 

real-world applications. The sequential search parameters for the proposed neural network are 

selected as follows. 

I. Search range: [-1, 1] for both id and iq 

II. Resolution: 100×100 grid points 

III. Iterations: Implicit in the resolution, totaling 1000 

The proposed method emphasizes computational efficiency through optimized predictive 

algorithms and intelligent data processing. The computational complexity, due to the sequential 

neural network processing, is mitigated by model optimization and reducing unnecessary data paths. 

The runtime remains practical for real-world applications due to the model's efficient MPC 

integration and the SNN's predictive learning. We discuss computational complexity in detail, noting 

that the optimized model provides practical predictive accuracy while maintaining acceptable 

runtimes. 

3.2. Genetic algorithm for PMSM 

The application of a genetic algorithm (GA) to a permanent magnet synchronous motor (PMSM) 

involves using this evolutionary computational technique to optimize the motor's performance 

parameters. In this context, a GA starts by randomly initializing a population of potential solutions, 

each representing a set of PMSM control parameters. These individuals are then evaluated for their 

fitness, which reflects how well they meet the predefined performance criteria, such as efficiency, 

torque ripple, or speed control. 

The GA iteratively improves the population through genetic operations—selection, crossover, 

and mutation—based on the fitness values. Over successive generations, the GA converges towards 

optimal solutions, satisfying termination conditions such as a maximum number of iterations or a 

satisfactory fitness level. The result is a set of optimized control parameters that enhance the 

PMSM's operation, potentially leading to improvements in energy consumption, dynamic response, 

and overall system robustness. 

The flowchart in Figure 6 illustrates a genetic algorithm (GA) process used for optimization 

tasks. The process starts with the random initialization of a population of potential solutions, denoted 

as population N. Each individual solution within this population is evaluated for its fitness, indicated 

by the function Ef(x), which determines how well it solves the optimization problem or fits the 

desired criteria. Subsequently, a cost evaluation is performed for each solution based on the same 

fitness values, which could be indicative of an additional evaluation metric or a penalty function 

integrated into the optimization process. 
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Figure 6. Flowchart of GA for PMSM. 

As the algorithm proceeds, it continually checks against a termination condition, typically 

defined by a maximum number of generations, Gmax. If this condition is not met, the algorithm is not 

satisfied, and it goes on to form a new population. This new generation of solutions is created using 

genetic operators such as selection (with a probability Sp%) and crossover (with a probability Pc). 

These operators are fundamental to GA, as they combine and modify solutions in search of improved 

fitness and cost evaluations. The loop continues until the termination condition is satisfied, at which 

point the process ends, hopefully having identified a near-optimal solution to the problem at hand. 

3.3. Ant colony optimization for PMSM 

Ant colony optimization (ACO) applied to a permanent magnet synchronous motor (PMSM) 

leverages the bio-inspired algorithm to find optimal pathways for parameter adjustment and control 

in the motor's management system. The ACO mimics the foraging behavior of ants to solve complex 

optimization problems. In the context of PMSM, a colony of artificial ants systematically searches 

through the multi-dimensional space of motor parameters, such as voltage levels, current profiles, 

and timing of phase commutations. These ants lay down pheromones on paths that yield better motor 

performance, with the pheromone intensity guiding subsequent searches towards these promising 

areas. Over time, the artificial ants converge on a set of solutions that optimize PMSM operation for 

criteria like minimizing energy consumption, maximizing efficiency, or achieving precise speed and 

torque control. This approach is particularly beneficial for PMSMs due to their nonlinear 

characteristics and the complex interplay of their control variables. Through ACO, engineers can 

derive control strategies that enhance the PMSM's functionality in various applications, from electric 

vehicles to industrial automation systems. 
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Figure 7. Flowchart of ACO for PMSM. 

The flowchart shown in Figure 7 illustrates the steps of an ant colony optimization (ACO) 

algorithm adapted for optimizing control parameters in a permanent magnet synchronous motor 

(PMSM). The process begins with the initialization of a number of ants, each representing a potential 

solution. These ants explore the solution space by evaluating the fitness values of their positions with 

respect to the control problem, akin to assessing how well a set of PMSM parameters performs a 

given task. Based on the fitness evaluation, the ants then update the pheromone levels on their paths, 

effectively communicating the quality of their solutions to guide subsequent search efforts.  

The algorithm iterates over this process, continuously updating pheromones and steering the 

colony towards more promising areas of the solution space. The iteration continues until a 

termination condition, typically a predefined number of cycles or a satisfactory level of solution 

quality, is met. If the condition is not met, a new generation of solutions is formed, influenced by the 

accumulated pheromones. Once the termination criterion is satisfied, indicating that an optimal or 

near-optimal solution has likely been found, the process ends. This approach enables a collective, 

pheromone-guided search strategy that is effective for finding optimal control strategies in complex 

systems like PMSMs. The parameters selected for the optimization process of GA and ACO are 

mentioned in Table 4. 

Table 4. Parameter constraints used for GA and ACO. 

GA Parameters ACO Parameters 

Population size = 500 Number of Ants = 500 

Generations = 100 Iterations = 1000 

Crossover probability (cxpb) = 0.5 Pheromone evaporation rate = 0.5 per iteration 

Mutation probability (mutb) = 0.2 Pheromone deposit rate: conceptual rate = 0.1 

Mutation: Gaussian, mu, μ = 0, sigma, σ = 0.2, indpb = 0.1 Search space: [-1,1] for both id and iq 

Selection: Tournament, toursize = 3  
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4. Results and analysis 

Investigating advanced control algorithms for a three-phase induction motor, we introduced a 

novel control model named SNN-MPC, a sequential neural network model predictive control 

algorithm, which was meticulously developed and tested. Subsequently, this innovative approach 

was subjected to a comparative analysis alongside two other established algorithms: genetic 

algorithm (GA) and ant colony optimization (ACO). The comparative study was rigorously designed 

to assess the dynamic responses of the induction motor, with a keen focus on the currents, torque, 

and angular speed, under the governance of these predictive control schemes. Each algorithm was 

applied to the motor's inverter circuit, and simulations were conducted to ensure a robust evaluation 

of their performances.  

The simulation parameters were standardized across all models to ensure a fair comparison, 

maintaining a total simulation time of 0.2 seconds with a sampling interval of 10 microseconds. The 

SNN-MPC model's performance metrics were benchmarked against those achieved by the GA and 

ACO methods, which represent the current state-of-the-art in predictive control algorithms. This 

comparative analysis is critical to determining the efficacy of the SNN-MPC model in enhancing 

motor control dynamics. The forthcoming results and discussions aim to illuminate the strengths and 

potential areas of improvement for each algorithm, providing a comprehensive overview without 

deviation from the original simulation terms set forth in the experimental setup. 

4.1. Experimental setup 

In the experimental setup for the comparative analysis of control algorithms on a three-phase 

induction motor, both MATLAB and Google Colab's Python environment were utilized as the 

primary computational tools. MATLAB, known for its robust toolbox for simulation and 

model-based design, was employed for its advanced capabilities in handling and modeling complex 

control systems like SNN-MPC, GA, and ACO algorithms. Complementing this, Google Colab 

offered a versatile Python environment with powerful libraries for machine learning and numerical 

computation, enabling the implementation and testing of the proposed sequential neural network 

model predictive control (SNN-MPC) algorithm. The integration of these two platforms provided a 

comprehensive approach to the simulation tasks, allowing for extensive data analysis and algorithm 

optimization. In the context of the PMSM dynamics analysis step input reference currents in the d-q 

frame and also a step signal of input load torque have been applied to the modeled machine drive. 

These signals insist to continue through the predicted output trajectories. 

4.2. Experimental results 

4.2.1. Optimized gain parameters (Kd, Kq, Kfcs) 

The fine-tuning of the controller parameters, specifically the direct-axis gain (Kd), the 

quadrature gain (Kq), and the feedback control gain (Kfcs), for the PMSM is crucial to achieve a 

precise and stable control of the motor's speed and torque. Kd was adjusted to optimize the system's 

response to changes in error rate, enhancing the motor's dynamic behavior. Kq, on the other hand, 

was fine-tuned to regulate the quadrature-axis current component, directly influencing torque 

production. 
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Table 5. Optimized gain parameters 

Tuning Technique Kd Kq Kfcs 

SNN 0.01 0.006 0.13 

GA 0.09 0.0056 0.19356 

ACO 0.098 0.007824 0.18236 

 

The table outlines the optimized gain parameters’ values obtained from different tuning 

techniques applied to control systems, specifically using the sequential neural network (SNN), 

genetic algorithm (GA), and ant colony optimization (ACO) methods. For the SNN, the tuning 

resulted in a d-axis gain (Kd) of 0.01, a quadrature gain (Kq) of 0.006, and a feedback gain of inner 

loop in the IFCS architecture (Kfcs) of 0.13, indicating a balanced approach to responsiveness and 

stability.  

The GA technique, known for its ability to navigate complex optimization landscapes, yielded 

slightly higher gains: Kd at 0.09, Kq at 0.0056, and Kfcs at 0.19356, suggesting a strategy leaning more 

towards aggressive control to minimize error and optimize performance. Lastly, the ACO method, 

which simulates the foraging behavior of ants to find optimal solutions, determined Kd to be 0.098, 

Kq to be 0.007824, and Kfcs to be 0.18236. These values reflect a fine-tuned balance, likely aiming to 

enhance system dynamics while maintaining robustness against disturbances. Each set of parameters 

reflects the inherent characteristics and optimization strategies of the respective tuning technique, 

demonstrating the diverse approaches to achieving desired control objectives in complex systems.  

4.2.2. Current dynamic analysis 

The reference current in the d-q frame for system dynamics analysis is depicted in Figure 8. 

 

 

Figure 8. Applied reference currents in d-q frame. 

The plots provided in Figure 9 represent the dynamic current responses of a three-phase 

induction motor under the control of three different optimization algorithms: ant colony optimization 

(ACO), genetic algorithm (GA), and sequential neural network (SNN) control strategies. In these 

graphs, the direct-axis current (id) and quadrature-axis current (iq) are plotted over time, giving 

insights into the performance characteristics of each control method applied to the motor. 
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(a) SNN algorithm 

 

 

(b) Genetic algorithm 

 

 

(c) ACO algorithm 

Figure 9. Results of optimized algorithm in real-time current analysis. 
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For the ACO algorithm, the quadrature current exhibits a steady-state behavior with minimal 

fluctuation around the 1.0 ampere mark, while the direct axis current shows a negative spike before 

stabilizing close to zero, indicating a reactive control action due to a change in load or reference 

input. The GA plot shows both id and iq currents presenting with higher variability and a sudden 

drop, followed by a quick recovery, which might suggest a transient response to a perturbation in the 

system or a shift in control targets. Both currents then stabilize, with iq maintaining a slightly 

positive value and id trending towards a steady negative value, likely indicative of the algorithm's 

strategy to balance torque production against magnetic flux regulation.  

The SNN strategy graph reveals a more consistent and less volatile profile for both iq and id 

currents, with iq hovering just above 1.0 amperes and id remaining close to zero throughout the 

simulation period. This could be interpreted as a more conservative control approach, prioritizing 

stability and smooth response over aggressive adjustments. Overall, the graphs display the distinctive 

impacts of each control algorithm on motor currents, reflecting their inherent operational strategies 

and tuning philosophies. The ACO and GA plots show more aggressive responses to system changes, 

potentially providing faster adaptability at the cost of higher transient fluctuations. In contrast, the 

SNN strategy's plot suggests a focus on maintaining steady-state operation with minimal 

disturbances, potentially at the cost of slower responsiveness to abrupt system changes. Each control 

method's suitability would therefore depend on the specific performance criteria and application 

requirements for the motor control system. 

4.2.3. Predicted torque trajectories 

The provided plots in Figure 10 illustrate the torque response of a permanent magnet 

synchronous motor (PMSM) over a simulated time span of 0.2 seconds, controlled by three different 

optimization techniques: ant colony optimization (ACO), genetic algorithm (GA), and sequential 

neural network (SNN) strategy. Each plot captures the motor's torque as a function of time, shedding 

light on the effectiveness of the respective control algorithm in managing the PMSM's performance. 

Figure 10(a) depicts the reference load torque applied to the modeled drive. A step signal (Figure 

10(a)) is applied to the PMSM, and the predicted torque outputs are acquired as the electrical torque 

with respect to the enforced intelligent optimization proficiencies.  

In all three scenarios, the torque appears to maintain a relatively steady state initially, hovering 

around 1 Nm, which suggests a well-balanced system under nominal operating conditions. However, 

a sharp decline in torque is observed in the latter part of the simulation, indicating a sudden reduction 

in load or a change in the command signal. The motor's reaction to this change is critical to 

understanding each control strategy's robustness and adaptability. The ACO-controlled motor shows 

a stable response before and after the torque dip, implying that the ACO algorithm quickly adapts to 

changes, stabilizing the motor with minimal oscillation. The GA approach reveals a similar pattern, 

with the torque returning to a stable state post-disturbance, suggesting the GA's effectiveness in 

managing the PMSM's dynamics. Lastly, the SNN strategy demonstrates a consistent torque profile, 

with the system returning to a steady state after the initial disturbance. This consistent response may 

indicate that the SNN strategy is tuned for a balance between responsiveness and stability, ensuring 

the motor operates smoothly throughout varying conditions. 
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(a) Applied load torque 

 

(b) SNN algorithm 

 

(c) Genetic algorithm 

 

(d) ACO algorithm 

Figure 10. Torque responses of applied optimization algorithms. 
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4.2.4. Speed and rotor angle characteristics 

The speed responses and rotor angle trajectories extracted from each of the scheduled prediction 

algorithms have been illustrated in Figure 11. 

 

 

(a) Speed responses 

 

(b) Rotor angle trajectories 

Figure 11. Angular speed and rotor angle characteristics of ACO, GA, and SNN algorithm. 

Figure 11(a) illustrates the rotor speed of the PMSM over the same simulation period. Here 

again, the GA, SNN, and ACO algorithms present very similar profiles, indicating that each method 

is equally effective in regulating the motor's speed. The speed increases rapidly at first, indicating an 

acceleration phase, and then levels off, showing that the motor reaches a stable operating speed. This 

uniformity in the performances of GA, SNN, and ACO reflects their robustness in controlling the 

motor's speed, which is vital for applications where consistent rotational velocity is necessary. The 

lack of significant divergence between the control strategies in this aspect suggests that any of them 

could be suitable for tasks where steady-state speed regulation is paramount. 
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The plot in Figure 11(b) showcases the rotor angle performance of a permanent magnet 

synchronous motor (PMSM) when controlled by three different optimization algorithms: genetic 

algorithm (GA), sequential neural network (SNN), and ant colony optimization (ACO). The lines for 

GA, SNN, and ACO are closely overlapped, indicating a high degree of similarity in the rotor angle 

tracking capability of each algorithm throughout the time span of the simulation. The angle decreases 

almost linearly with time, suggesting a steady rotational speed. The tight convergence of the three 

lines implies that all algorithms achieve a similar level of performance in maintaining the desired 

rotor angle trajectory, which is critical for precise motor control in applications requiring 

synchronization and positioning accuracy. 

5. Conclusions 

The SNN-MPC model showcased promising results, indicating a significant enhancement in 

PMSM drive performance. The d-q axis current characteristics, torque and speed responses, and rotor 

angle trajectories forecasted from the portrayed optimal control methods, SNN, GA, and ACO, 

rejuvenate the enforcement of SNN-MPC scheme in modern day machine drive systems. The 

comparative analysis with GA and ACO algorithms revealed the model's proficiency in managing the 

motor's dynamic behavior with greater accuracy and efficiency. The seamless integration of 

SNN-MPC in diverse computational environments underscores its adaptability and the potential for 

real-world applications. Future work will focus on refining the model for even better performance 

and exploring its applicability to a wider range of motor control scenarios, pushing the boundaries of 

what is achievable in PMSM drive technology. 
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