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Abstract: This paper presents an integrated approach combining a sequential neural network (SNN)
with model predictive control (MPC) to enhance the performance of a permanent magnet
synchronous motor (PMSM). We address the challenges of traditional control methods that struggle
with the dynamics and nonlinear nature of PMSMs, offering a solution that leverages the predictive
capabilities of MPC and the adaptive learning potential of neural networks. Our SNN-MPC model is
contrasted with state-of-the-art genetic algorithm (GA) and ant colony optimization (ACO) methods
through a comprehensive simulation analysis. This analysis critically examines the dynamic
responses, including current, torque, and speed profiles, of the PMSM under proposed hybrid control
strategies. The heart of the work deals with the optimal switching states and subsequent voltage
injection to the inverter fed PMSM drive by a predefined minimization principle of a current
modulated objective function, where MPC constitutes an integral finite control set (IFCS)
mechanism for voltage vector selection and thereby selects the optimized integral gains Kq and K for
direct and quadrature axes, respectively, with the FCS gain Ky obtained from implemented
intelligent techniques. Based on the control criteria, the SNN-MPC scheme was established as the
preferred benchmark with optimized tuning values of Ky = 0.01, Ky = 0.006, and Kz = 0.13, as
compared to the gain values tuned from GA and ACO. The experimental setup utilized MATLAB
and a Python environment for robust and flexible simulation, ensuring an equitable basis for
comparison across all models.

Keywords: permanent magnet synchronous motor; model predictive control; genetic algorithm; ant
colony optimization; sequential neural network; voltage source inverter; finite control set; integral
finite control set
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Abbreviations: MPC: model predictive control; PCC: predictive current control; FCS: finite control
set; IFCS: integral finite control set; PMSM: permanent magnet synchronous motor; SVM: space
vector modulation; VSI: voltage source inverter; IGBT: insulated gate bipolar transistor; SNN:
sequential neural network; GA: genetic algorithm; ACO: ant colony optimization

List of Symbols

(iag,iq) Components of stator current in (d, q) reference frame
(Vd,Vq) Components of stator voltage in (d, q) reference frame
SaShSec Switching states of the inverter

R Winding resistance offered to stator

Lg,Lg Inductance of direct and quadrature axes

J Moment of inertia

B Friction viscous gain

P Number of poles

D5, Stator and electrical speed

Te, TL Electrical and load torque

V bc DC bus voltage

Van, Vin, Ven Phase voltages

D g Rotor flux

Lg(tiv1) ig(tiz1) Predicted values of current in d-q frame

iq' ig" Desired values of current in d-g frame

Ts Sampling Interval

(0] Rotor angle position

1. Introduction

Permanent magnet synchronous motors (PMSMs) represent a significant advancement in
electric motor technology [1,2], characterized by their use of permanent magnets embedded in or
attached to the rotor. This design contributes to their high efficiency, compact size, and superior
performance compared to traditional induction motors. PMSMs are widely utilized in various
applications, including electric vehicles [3], industrial automation, robotics, and renewable energy
systems, where high efficiency and precise control are paramount.

1.1. Background

The inherent advantages of PMSMs, such as their ability to operate at high speeds and their
dynamic response capabilities, make them an ideal choice for applications demanding high
performance and reliability. Controlling PMSMs presents unique challenges, primarily due to their
complex dynamics and the need for precise control of torque and speed under varying operational
conditions [4]. Achieving optimal performance [5] requires sophisticated control algorithms capable
of adapting to changes in load and ensuring efficient operation throughout the motor's speed range.
The complexity of PMSM control is further compounded by the nonlinear characteristics of the
motor and the interaction between the magnetic fields of the stator and the permanent magnets on the
rotor [6]. Traditional control algorithms, such as field-oriented control (FOC) and direct torque
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control (DTC) [7,8], have been the cornerstone of PMSM control strategies [9-14]. In addition to
this, inverter fed machine drive parameters can be regulated by duty cycle compensations [15,16]
and lead to an optimal management of machine operation.

However, the quest for improved performance has led to the exploration of predictive control
algorithms. These algorithms, including the genetic algorithm (GA) [17] and ant colony optimization
(ACO) [20], offer advantages in terms of their ability to predict future states of the motor and adjust
control actions accordingly. Predictive control algorithms aim to optimize the motor's performance
by considering future operational scenarios, thereby enhancing efficiency, reducing energy
consumption, and improving dynamic response. The sequential neural network model predictive
control (SNN-MPC) model represents a novel approach in the realm of PMSM control. By
integrating neural networks [17-19] with model predictive control [9-14], the SNN-MPC model
aims to leverage the predictive capabilities of neural networks to enhance the accuracy and efficiency
of control actions. This model stands out by its ability to adapt to changing conditions in real time,
offering a significant improvement over traditional algorithms in terms of performance optimization
and adaptability. The SNN-MPC model adapts quickly to changing motor conditions, providing
real-time control with minimal oscillations and energy consumption. It offers improved adaptability
and fault detection compared to GA and ACO. However, the framework requires significant
computational resources for training and execution, which may limit its practicality in
resource-constrained environments. Additionally, ongoing model tuning requires high-quality
training data that represents diverse motor dynamics. GA and ACO, while less adaptable, are simpler
and more efficient in computationally limited settings.

1.2. Literature review and research gap

In the evolving landscape of optimization techniques, particularly in the application to
permanent magnet synchronous motors (PMSMs), a diverse array of studies have demonstrated the
efficacy of integrating ant colony optimization (ACQO), particle swarm optimization (PSO), and
neural networks to enhance system performance and efficiency. Mao et al. [19] delved into the realm
of neural network-based model predictive control for PMSMs, unveiling a strategy that significantly
reduces overshoot by 5.87% and rise time by 0.036 s. Their model, which employs particle swarm
optimization (PSO) to train echo state networks (ESN), showcases an innovative approach to
stabilizing and accurately predicting motor speed, thereby optimizing predictive control and
enhancing robustness against parameter variations and load disturbances. This study not only
highlights the potential of neural networks in predictive control but also emphasizes the role of PSO
in refining the training process for improved system response and stability.

Further extending the exploration of hybrid optimization methods, Valdez et al. [20] introduced
a novel hybrid technique that amalgamates ACO and PSO, optimized for modular neural networks.
This method, aimed at classifying images of human faces, outperforms traditional optimization
techniques, underscoring the synergy between ACO and PSO in tackling complex optimization
problems. On a different note, Saeed and Sheikhyounis [21] applied a combination of PSO and
neural network techniques to enhance power quality in distribution systems, demonstrating a
significant reduction in total harmonic distortion and an improvement in system resilience to power
disturbances. Similarly, Chafi and Afrakhte’s [22] investigation into short-term electrical load
forecasting [23] using neural networks and PSO algorithm presents a compelling case for the
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accuracy and efficiency of these techniques in predicting electrical loads, thereby facilitating more
effective power grid management.

These studies collectively underscore the versatility and effectiveness of ACO, PSO, and neural
network-based optimization techniques [24-30] across various applications, from motor
control [31,32] to power quality improvement and load forecasting. By leveraging these methods,
researchers and practitioners can achieve substantial improvements in system performance,
efficiency, and accuracy, paving the way for innovative solutions in the field of optimization and
control systems.

1.3. Motivations

The review of the referred literature highlighted the strengths and weaknesses of various
algorithms applied to machine drives and provides valuable insights into their suitability for different
operational scenarios. The findings from this study underscore the potential of the SNN-MPC model
to revolutionize PMSM control, offering a promising avenue for future research and development.
The superior performance of the SNN-MPC model suggests that integrating neural networks with
predictive control algorithms can significantly enhance motor control dynamics. Future research
could focus on refining the SNN-MPC model, exploring other advanced control strategies, and
applying these findings to real-world PMSM systems to fully realize their potential benefits. The
evolution of PMSM control strategies continues to be a dynamic and exciting field, with the promise
of further advancements that will enhance the efficiency and performance of electric motors across a
wide range of applications.

1.4. Challenges

The challenges of the proposed sequential neural network based predictive controller can be
stated as follows:

1. Computational complexity: The integration of a sequential neural network with model
predictive control requires significant computational power due to the predictive modeling and
optimization involved.

2. Data requirements: Accurate training requires high-quality datasets covering diverse motor
conditions, which can be challenging to collect and preprocess.

3. Model tuning: Fine-tuning the predictive models to accommodate different load conditions
requires careful parameter adjustment and validation.

The proposed MPC model overcomes the challenges and the desired goal with its dynamic
modeling and flexible control architecture.

1.5. Contributions

The main contribution of this work is the integration of sequential neural networks (SNN) with
model predictive control (MPC) for improved control of permanent magnet synchronous motors
(PMSM). The SNN predicts motor behavior, while MPC optimizes real-time adjustments to torque
and speed. This hybrid approach ensures smoother and more accurate control compared to genetic
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algorithm (GA) and ant colony optimization (ACO) methods. Additionally, it enhances fault
detection by learning and recognizing patterns in motor behavior, reducing downtime and improving
reliability.

The comparative analysis of the SNN-MPC model against traditional GA and ACO methods has
been conducted using a detailed experimental setup that utilized MATLAB and Google Colab's
Python environment. This setup allowed for the simulation of PMSM control scenarios, providing a
platform for evaluating the performance of each control algorithm. The criteria for performance
evaluation included efficiency, response time, and the accuracy of the motor in achieving desired
states, such as specific speeds or torque levels and minimum current errors. The experimental
analysis revealed that the SNN-MPC model exhibited superior performance in several key areas
compared to the GA and ACO methods. Notably, the SNN-MPC model demonstrated enhanced
efficiency and faster response times, indicating its potential to significantly improve PMSM control.

1.6. Organization of the paper

The research article demonstrates the dynamic control aspects of various intelligent
computational techniques such as GA, ACO, and SNN-MPC models coordinated with predictive
attributes. The study and contributions of the paper portray the adaptive and superior predictive
control characteristics of the SNN model with respect to GA and ACO by encapsulating the current,
speed, and torque responses of the modelled PMSM drive.

This paper is organized as follows: Section 1 presents the introduction with background, review
of the literature, motivations, challenges, and contributions from the authors. Section 2 highlights the
dynamic modeling of the PMSM and simplified mathematical model of the three phase inverter
circuit. In addition to this, predictive control with FCS approach is also included for further
assessment. Section 3 depicts the system architectures of the proposed hybrid controllers, those
compounded with predictive and intelligent algorithms. These include GA, ACO, and SNN based
predictive controllers with an advanced integral action. Section 4 illustrates the dynamic
characteristics of current and torque and speed responses of the PMSM tuned from each of the
implemented control techniques with a comparison benchmark. The overall research outcomes and
determinations from the applied optimization algorithms are presented in Section 5 as concluding
revelations.

2. Proposed optimal control methodology
2.1. Model predictive control technique

The model predictive control (MPC) technique stands out for its precision and adaptability,
particularly when applied to the control of permanent magnet synchronous motors (PMSMs).

This technique hinges on the accurate prediction and adjustment of motor currents to achieve
optimal performance, leveraging the d-g-0 reference frame for current values. The process begins
with the specification of reference current values in the d-q frame, which are provided as external
inputs. These reference currents, detailed in the context of their time periods, serve as benchmarks
for the system's performance. The core of the MPC strategy involves a meticulous comparison
between the reference current values and the actual currents measured from the PMSM model. By
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utilizing the rotor angle position, the system can transform the reference values from the d-q frame
back into three-phase quantities, enabling a direct comparison. The MATLAB simulation block plays
a crucial role in this process, predicting the optimal switching states for the converter to minimize the
predefined cost function (J), i.e., the error between the reference and measured currents. This
predictive capability extends to forecasting the load current for upcoming sampling intervals, taking
into account the potential voltage vectors that could influence the system's behavior.

2.2. Dynamic modeling of PMSM drive

In the exploration of high-efficiency electric motors, the surface-mounted permanent magnet
synchronous motor (PMSM) emerges as a prime candidate due to its high power density capabilities.
This study models a PMSM, focusing on its behavior in generating sinusoidal back electromagnetic
force (EMF) in the absence of field current, deliberately omitting saturation effects on the rotor
frame for simplification, as referenced in the work by Wang et al. [1].

e = i (94 = (Reig) + (0. Ly iy)) (1)
‘;—"tq - i (9, = (Roiy) = (@p-Lg-ig) = (@e- Pmg)) 2

o= (- Go) - ) X
T, = 2P(ig- @mg + (La — Lq)igiy) (4)

g and i, are the measured currents in the d-axis and g-axis, expressed in amperes (A). v, and v,
are the measured voltages in the d-axis and g-axis, expressed in volts (V). w, and w, are the
angular speeds of the stator and rotor, expressed in rad/sec, and ¢,,, = flux linkage due to permanent
magnet (WDb).

The dynamic performance of the PMSM is captured through a set of differential equations that
describe the evolution of the d-axis and g-axis currents (Egs 1 and 2), the rotor's angular speed (Eq 3),
and the electromagnetic torque (Eq 4), under the assumption of sinusoidal back EMF and ignoring
field current saturation.

The model's foundation rests on the assumption of equal inductance in the d-axis and g-axis (L4
= Lg), a characteristic feature of surface-mounted PMSMs, which simplifies the electromagnetic
torque equation to Eq 5 when ig = 0. This simplification underscores the model's focus on the direct
control of torque through the manipulation of g-axis current, iy, and the rotor flux constant, @mg,
without the need for d-axis current manipulation. The parameters essential for simulating the
PMSM's behavior, including stator resistance, inductance, rotor flux constant, moment of inertia,
friction viscous gain, and the number of poles, are meticulously detailed in Table 1, providing a
comprehensive overview for replication and further study.

The electromagnetic torque can be expressed as below, with the condition of i;= 0 or surface

mounted PMSM with equal inductances, i.e., Ly = Ly,

T, = >P(ig. @mg) (5)
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Table 1. PMSM parameters [1].

Parameters Values Unit
Stator resistance (R) 2.98 Q
Inductance in d-axis (Lg) 0.007 H
Inductance in g-axis (L) 0.007 H
Flux linkage (@) 0.125 Wb
Moment of inertia (J) 0.01e-3 Kg'm?
Friction viscous gain (B) 11e-5 Nm's
Number of pole pairs (P) 2

2.3. Modelling of three phase voltage source inverter

We consider a 3-¢ inverter, which converts 300 V DC to 3-¢ AC, for an induction motor of
squirrel cage type, whose physical parameters are mentioned in Table 1. The inverter operation
having 180° mode of conduction presents a non-linear discrete time system with 7 voltage outputs &
8 configuration states. For simplicity and rounding off, in the modeling and mathematical calculation
for the simulation, we ignore the IGBT (Insulated Gate Bipolar Transistor) saturation voltage and
diode forward voltage drop. The schematic power circuit of voltage source inverter fed PMSM drive

is given below in Figure 1.

Figure 1. VSI fed PMSM drive.

The switching state for conversions is carried out with the reference of the gating signal, S,, S;,
and S, and represented as follows [1]:

S {1, if Switch, on and Switch, of f
a 0,if Switch, of f and Switch, on

S = {1, if Switch, on and Switchs of f
b 710, if Switch, of f and Switchs on
s = {1, if Switch; on and Switchg of f
¢ 0,if Switchs of f and Switchg on
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Figure 2 represents the simple mathematical model of the three-phase inverter circuit which
shows the output voltage generation by means of switching signal application. These switching states
are generated by the optimum operation of predictive algorithms. The details of controlled state
evaluation by the proposed controllers are described in the next section

Vdc

Sa VaN

Coovl = (2D

Sb VbN
G < 30
Sc VeN

Figure 2. Voltage output of VSI.
2.4. Calibration of MPC with finite control set (FCS)

The calibration of model predictive control (MPC) with a finite control set (FCS) was
undertaken to enhance the control of permanent magnet synchronous motors (PMSM), integrating
the predictive prowess of MPC with the discrete operational framework of FCS. This method
optimized the switching states of the power converter, aiming for precise and efficient motor
performance. In this approach, the control action was selected from a finite set of possible inverter
switching states, directly addressing the discrete nature of power converters and negating the need
for additional modulation processes. The calibration process entailed the development of a predictive
motor model that accurately reflected the motor's dynamics under various switching states and the
formulation of a cost function to quantify deviations from desired performance metrics. The MPC
algorithm evaluated each possible switching state's impact on future motor behavior, selecting the
one that minimized the cost function. This selection process, repeated at each control interval,
allowed for real-time adjustments to motor operation or load changes. The calibration of FCS-MPC
also involved tuning the prediction horizon and cost function weighting factors, balancing control
objectives with computational limitations, thereby ensuring the scheme's effective real-time
operation. The space vector modulation (SVM) scheme [17], a refined method, is used here to
regulate the output voltage by controlling the optimal switching states. This approach allowed for
precise control of the amplitude and phase of the inverter's output voltage, enabling efficient and
smooth operation of AC motors such as the PMSM.

The generation of switching states gives rise to eight voltage vectors, provided in Table 3, which
can be predicted by Equation (6) as follows [1,3,9]:

V= %Vdc (S, +as, +a®s,) (6)
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Table 2. Switching states with voltage vectors [17].

Sa Sy S, Voltage vector (V)
0 0 0 7g =0
1 0 0 — 2
vl = g Vd(;
1 1 0 o o where
V2 = 3 Vet ] 5 Vi .
= g3 = 14 V8 i
0 1 0 v_’——lv+j£v a=e 2+]2,W|tha
3 3 el g e phase displacement of 120 °
0 1 1 — 2 between any two phases in
Vy = —7 Vdc .
3 Equation (6)
0 0 1 . 1 . V3
Vs = =3 Vde — J 5 Vdc
1 0 1 L1 . V3
V6:§Vdc_J?Vdc
1 1 1 7 =0

The generalized equations for the predicted load current in the direct-quadrature (d-q) frame
using forward Euler approximations, which are methods for numerically integrating differential
equations, are defined in Eqgs (7) and (8), respectively [1,4,9].

dig(t) ~ (ti+1)—iqa(ty)

dt T, ()
diq(t) ~ iq (ti+1)_iq(ti)
dat T, ®)
fa(ti1) = fa(t) + 2 (0a(t) = Rig(t) +, )Lyl (6)) ©)
g (tien) = ig (&) + f—;(vq (t) = Rig(t) + @, (t)Laig(t)) — e (t) Pmg) (10)

Equations (7) and (8) approximated the rate of change of the direct axis current, iy, and the
quadrature axis current, iq, respectively. The subsequent equations, (9) and (10), provided the
predicted load currents for the next time interval, ti:1, by incorporating the voltage across the PMSM
input terminals.
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R.eference
value of
current

in d-g-0
frame

Measured current, speed, rotor position

Figure 3. Structure of FCS-MPC method in d-q coordinates.

Figure 5 depicts a control system for a permanent magnet synchronous motor (PMSM) where
the system began with the generation of a reference current value in the direct-quadrature (d-q) frame,
which was then fed into the field-oriented control (FOC) system (FCS) block. This block was
responsible for determining the appropriate control signals to achieve the desired motor performance
by aligning the stator and rotor fields. The output from the FCS block was directed to a voltage
source inverter (VSI), which converted the DC power into AC power with the necessary amplitude
and frequency to drive the PMSM. The performance of the motor was continuously monitored by
measuring the current, speed, and rotor position. These measurements were fed back into the FCS
block, creating a closed-loop control system that dynamically adjusted the reference values to meet
the desired performance criteria. This control methodology allowed for precise speed and torque
control of the PMSM, which was essential for applications requiring high efficiency and dynamic
response.

In this study a two-level, three-phase VSI is considered for application of predictive schemes.
As the overall modelling and computations are in the d-g-0O reference frame, the voltage vectors
generated need to be transformed to d-g-O coordinates from a-b-c coordinates by means of Park’s
transformation.

9, ,| cos8  cos(6 — 2?”) cos(8 + 2?”) Van
% ] ~ 3 21 21 Vin (11)
q —sinf —sin(0 ——) —sin(6 +—)| |y,

where 9, = voltage in d-axis, ¥, = voltage in g-axis, and 6 = rotor position angle. V,,, Vp,,
and V,, are the phase voltages of a-b-c with respect to neutral, respectively, and V4. = DC voltage
supplied to VSI.

The switching combinations and corresponding voltage vectors imposed in the FCS-MPC
technique are shown in Table 3.
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Table 3. Switching states with voltage vectors [17].

S, Sy S, Voltage vector (V) Van Vin Ven
0 0 0 V—O) Vdc Vdc Vdc
2 2 2
1 0 0 17—1) Vdc Vdc Vdc
2 2 2
1 1 0 17_2) Vdc Vdc Vdc
2 2 2

0 1 0 17—3) Vdc Vdc Vdc

2 2 2

0 1 1 17_4) Vdc Vdc Vdc

2 2 2

0 0 1 ‘U—S) Vdc Vdc Vdc

2 2 2

1 0 1 17—6) Vdc Vdc Vdc

2 2 2

1 1 1 1]—7) Vdc Vdc Vdc

2 2 2

1
S
where Vbn] = IS, — %I Ve
vl | 2]
lSC - EJ

In the FCS-MPC approach, there are seven sets of v, and v, values are presented based on

the rotor angular position and sampling time. In this control strategy, the objective function is
defined as the sum of the squares of the errors between the desired and predicted current values in
the d-q frame. The objective function (J) is

I={ig () —ig(tip)}*+ {ig" () =iy (tir1)} (12)

where i, (t;41) and i, (t;1) are the predicted values of current in the d-q frame, i "and i, are
the desired values of current in the d-q frame, respectively, and tjis the sampling instant. By
combining Eqgs (9) and (10), Equation (12) can be further modified as

2
Ji = (t; &) = ia(t) = 2 (va(®) = Rig(t) + w0 (t) Ly (ti))) + (i; (t) — g (t:) -

2
E@) = Rigle) - 0n(e)Lata(t) — 0 @eng)

(13)
where @, = rotor flux constant or flux linkage, and k is the index from O to 7.
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The control system utilized a receding horizon principle, which predicts the next step's values
based on the current feedback parameters such as the direct and quadrature currents ig(ti) and iq(t;),
the electrical angular velocity we, and the electrical angle 6, from the PMSM model. The objective
function was computed for each pair of vg—vy values using these feedback parameters from the
PMSM model, and the one that minimized this function was selected for the next control action.
Additionally, for programming convenience, the equations governing the system's dynamics were
also represented in matrix form as follows:

iq(tis1)

- iq (t;) va(t:) w t-O
iq (ti+1)] = (|+T5Am (ti)) [iq (ti)] + 1B, [vq (ti)] — [ e 12‘:mg Ts] (14)

where | is the identity matrix of dimension 2 %<2

—Rs We(ti)Lq
Lg
An(®) = iine (15)
Lq Lq
1
s
B, = o L (16)
Lq

Equation (14) expressed the predicted current values as a function of the voltages, current, and
inductances in the d-g frame, flux linkage, electrical velocity, and sampling time. Matrix An(tj) and
Bn are derived from Egs (9) and (10) and expressed in Egs (15) and (16), respectively. This
formulation provided a clear framework for developing the control algorithms that would operate the
PMSM efficiently, ensuring optimal performance in accordance with the control objectives.

From the optimal output feedback control framework in the FCS-MPC method, it can be

obtained that

vq (£)°P° g (&) [iat)

lv t )Optl (l (¢ )l [ (&) ) (17
where Ky Is the gain of the optimal voltage matrix.

3. Proposed predictive controller for integration with intelligent computational algorithms

The FCS-MPC system has one major disadvantage of a unit time delay when a closed loop
value is approximated. So, the FCS-MPC system contains some steady stable error due to the closed
loop action [2,11,12]. The best method to eliminate steady state error is integral action on an
outer-loop controller. Since the system states are continuous in nature, sampling the response of the
system by the FCS-MPC method creates a poor inter-sample response. This can be avoided by taking
an integral term of error between desired and predicted values in the cost function. The algorithm
used here operates on reference values and measured values in the d-q frame. Speed and rotor
angular position are also used for providing switching states to the inverter. Except the steady state
error, the integral action also improves the rejecting quality of low frequency disturbance. Hence, the
mathematical definition of the optimal voltages obtained from the integral finite control set (IFCS)
predictive controller in the discrete time control system can be modified as follows:
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K *
yopt d_l J (tl) —1 t;
[ngilgoztl — Kfcs 1—1? (ld* ld( )) ldgzg (18)
q (L 1_qq_1 (ig (&) — lq(ti))

where Kq and K are the values of integral block parameters used for current error at both the d-axis
and g-axis, respectively, 0<K; <1, and 0<K, <1. represents functionality of an

-1

integrator.

The structure of IFCS-MPC is depicted below in Figure 4. In the proposed IFCS predictive
controller, the inner loop presents the FCS control, and the outer loop demonstrates the integral
action of the controller.

va(t;) ;
i
——— jr—
Ki. PMSM
— iq
- g ()™

Figure 4. Structure of IFCS-MPC method.

The objective function, J, is calculated for seven pairs of candidate variables for
vq and v, voltages. The objective function is calculated for k =0, 1, 2, 6.

]1(’: Zz - Ud(ti)opt)Z + ZZ_ZZ (vq (ti)K - vq (ti)opt)z (19)

where Tg = sampling interval, and Ly, L, are d-axis and g-axis inductance, respectively.

The matrix representation of newly defined equation of d-q currents that shows the integral
action of MPC is presented in Eq (20).

iq(tiy1)

iq (tip1)

] (I +T,A, (t) — T,B Kfcs)[Ldgj + T, By Kpes edg” [e(t)wmg ] (20)

where | is the identity matrix of (2 x 2),

—R; We(ti)Lq
— Lq Lq
Am (tl) T =we(t)La —Rs (21)
Lq Lq

AIMS Electronics and Electrical Engineering \Volume 8, Issue 2, 265-291.



278

=~ 0
B, = . 1 (22)
Lq

®Pmg = Flux magnitude in webers,
ey and eq’ are integral errors of d-axis and g-axis, respectively.

The applied intelligent predictive computational techniques are scheduled by the optimized
criteria defined in Eqs (18) and (19) to diagnose their superiorities in terms of optimized gains,
current, torque, and speed responses of the modeled PMSM.

3.1. Sequential neural network on PMSM

The sequential neural network (SNN) on a permanent magnet synchronous motor (PMSM)
represents a sophisticated approach in motor control technology. Leveraging the sequential
processing capabilities of neural networks, the SNN architecture is designed to sequentially process
input data, such as motor currents and rotor positions, to dynamically control the PMSM. By learning
from the temporal patterns of the motor's behavior, the SNN can make informed predictions and
adjustments to the control signals, ensuring optimal motor performance.

Input Layer — —— | Sequential | Feature | | System | n‘ Adaptive |
57 S e “| Layer Extraction | | Model Layer | \ Layer
Reference S A [ATEEE e Lo TEEET
Current in d-q frame Pre-process
SJLUELT Internal dynamics of actual motor
o Predictive Control : ; £
3 PMSM performace
Modelling
® L J L)
Measure
3 | Feedback Cost [ |
Current , Speed, +—— == 5oz [+
e | Loop ‘ Function
Rotor position TSR \ SRR
MSE

Figure 5. Proposed sequential network for PMSM.

Figure 6 structure outlines the design of a sequential neural network (SNN) tailored for
controlling a permanent magnet synchronous motor (PMSM). Commencing with the input layer
block, the network receives the reference current in the d-g-0 frame and potentially other motor
parameters. Next, the pre-processing block prepares the input data for further analysis, akin to signal
conditioning. Subsequently, the feature extraction block processes the data to discern pivotal
characteristics essential for motor control.

The PMSM dynamics block functions as a virtual model of the motor, capturing its intrinsic
dynamic behavior. An adaptive parameter tuning block is responsible for refining the network's
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parameters in real time, ensuring the model's accuracy as operating conditions change. The control
decision block then determines the optimal control actions required. The cost function evaluation
block measures the performance of these actions against a predefined cost function, typically
involving the minimization of error between desired and actual motor performance. The output layer
block generates the final control signals to the motor's inverter. Finally, a feedback loop block,
crucial during the training phase, allows the network to learn from the system's actual performance
and continuously adjust its predictions, embodying a dynamic learning capability essential for
real-world applications. The sequential search parameters for the proposed neural network are
selected as follows.

I. Search range: [-1, 1] for both iz and iq

Il. Resolution: 100x100 grid points

I11. Iterations: Implicit in the resolution, totaling 1000

The proposed method emphasizes computational efficiency through optimized predictive
algorithms and intelligent data processing. The computational complexity, due to the sequential
neural network processing, is mitigated by model optimization and reducing unnecessary data paths.
The runtime remains practical for real-world applications due to the model's efficient MPC
integration and the SNN's predictive learning. We discuss computational complexity in detail, noting
that the optimized model provides practical predictive accuracy while maintaining acceptable
runtimes.

3.2. Genetic algorithm for PMSM

The application of a genetic algorithm (GA) to a permanent magnet synchronous motor (PMSM)
involves using this evolutionary computational technique to optimize the motor's performance
parameters. In this context, a GA starts by randomly initializing a population of potential solutions,
each representing a set of PMSM control parameters. These individuals are then evaluated for their
fitness, which reflects how well they meet the predefined performance criteria, such as efficiency,
torque ripple, or speed control.

The GA iteratively improves the population through genetic operations—selection, crossover,
and mutation—based on the fitness values. Over successive generations, the GA converges towards
optimal solutions, satisfying termination conditions such as a maximum number of iterations or a
satisfactory fitness level. The result is a set of optimized control parameters that enhance the
PMSM's operation, potentially leading to improvements in energy consumption, dynamic response,
and overall system robustness.

The flowchart in Figure 6 illustrates a genetic algorithm (GA) process used for optimization
tasks. The process starts with the random initialization of a population of potential solutions, denoted
as population N. Each individual solution within this population is evaluated for its fitness, indicated
by the function Ef(x), which determines how well it solves the optimization problem or fits the
desired criteria. Subsequently, a cost evaluation is performed for each solution based on the same
fitness values, which could be indicative of an additional evaluation metric or a penalty function
integrated into the optimization process.
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Figure 6. Flowchart of GA for PMSM.

As the algorithm proceeds, it continually checks against a termination condition, typically
defined by a maximum number of generations, Gnax. If this condition is not met, the algorithm is not
satisfied, and it goes on to form a new population. This new generation of solutions is created using
genetic operators such as selection (with a probability Sp%) and crossover (with a probability Pc).
These operators are fundamental to GA, as they combine and modify solutions in search of improved
fitness and cost evaluations. The loop continues until the termination condition is satisfied, at which
point the process ends, hopefully having identified a near-optimal solution to the problem at hand.

3.3. Ant colony optimization for PMSM

Ant colony optimization (ACO) applied to a permanent magnet synchronous motor (PMSM)
leverages the bio-inspired algorithm to find optimal pathways for parameter adjustment and control
in the motor's management system. The ACO mimics the foraging behavior of ants to solve complex
optimization problems. In the context of PMSM, a colony of artificial ants systematically searches
through the multi-dimensional space of motor parameters, such as voltage levels, current profiles,
and timing of phase commutations. These ants lay down pheromones on paths that yield better motor
performance, with the pheromone intensity guiding subsequent searches towards these promising
areas. Over time, the artificial ants converge on a set of solutions that optimize PMSM operation for
criteria like minimizing energy consumption, maximizing efficiency, or achieving precise speed and
torque control. This approach is particularly beneficial for PMSMs due to their nonlinear
characteristics and the complex interplay of their control variables. Through ACO, engineers can
derive control strategies that enhance the PMSM's functionality in various applications, from electric
vehicles to industrial automation systems.
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Figure 7. Flowchart of ACO for PMSM.

The flowchart shown in Figure 7 illustrates the steps of an ant colony optimization (ACO)
algorithm adapted for optimizing control parameters in a permanent magnet synchronous motor
(PMSM). The process begins with the initialization of a number of ants, each representing a potential
solution. These ants explore the solution space by evaluating the fitness values of their positions with
respect to the control problem, akin to assessing how well a set of PMSM parameters performs a
given task. Based on the fitness evaluation, the ants then update the pheromone levels on their paths,
effectively communicating the quality of their solutions to guide subsequent search efforts.

The algorithm iterates over this process, continuously updating pheromones and steering the
colony towards more promising areas of the solution space. The iteration continues until a
termination condition, typically a predefined number of cycles or a satisfactory level of solution
quality, is met. If the condition is not met, a new generation of solutions is formed, influenced by the
accumulated pheromones. Once the termination criterion is satisfied, indicating that an optimal or
near-optimal solution has likely been found, the process ends. This approach enables a collective,
pheromone-guided search strategy that is effective for finding optimal control strategies in complex
systems like PMSMs. The parameters selected for the optimization process of GA and ACO are
mentioned in Table 4.

Table 4. Parameter constraints used for GA and ACO.

GA Parameters ACO Parameters

Population size = 500 Number of Ants = 500

Generations = 100 Iterations = 1000

Crossover probability (cxpb) = 0.5 Pheromone evaporation rate = 0.5 per iteration
Mutation probability (mutb) = 0.2 Pheromone deposit rate: conceptual rate = 0.1

Mutation: Gaussian, mu, p = 0, sigma, o = 0.2, indpb = 0.1 Search space: [-1,1] for both iy and iq

Selection: Tournament, toursize = 3
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4. Results and analysis

Investigating advanced control algorithms for a three-phase induction motor, we introduced a
novel control model named SNN-MPC, a sequential neural network model predictive control
algorithm, which was meticulously developed and tested. Subsequently, this innovative approach
was subjected to a comparative analysis alongside two other established algorithms: genetic
algorithm (GA) and ant colony optimization (ACO). The comparative study was rigorously designed
to assess the dynamic responses of the induction motor, with a keen focus on the currents, torque,
and angular speed, under the governance of these predictive control schemes. Each algorithm was
applied to the motor's inverter circuit, and simulations were conducted to ensure a robust evaluation
of their performances.

The simulation parameters were standardized across all models to ensure a fair comparison,
maintaining a total simulation time of 0.2 seconds with a sampling interval of 10 microseconds. The
SNN-MPC model's performance metrics were benchmarked against those achieved by the GA and
ACO methods, which represent the current state-of-the-art in predictive control algorithms. This
comparative analysis is critical to determining the efficacy of the SNN-MPC model in enhancing
motor control dynamics. The forthcoming results and discussions aim to illuminate the strengths and
potential areas of improvement for each algorithm, providing a comprehensive overview without
deviation from the original simulation terms set forth in the experimental setup.

4.1. Experimental setup

In the experimental setup for the comparative analysis of control algorithms on a three-phase
induction motor, both MATLAB and Google Colab's Python environment were utilized as the
primary computational tools. MATLAB, known for its robust toolbox for simulation and
model-based design, was employed for its advanced capabilities in handling and modeling complex
control systems like SNN-MPC, GA, and ACO algorithms. Complementing this, Google Colab
offered a versatile Python environment with powerful libraries for machine learning and numerical
computation, enabling the implementation and testing of the proposed sequential neural network
model predictive control (SNN-MPC) algorithm. The integration of these two platforms provided a
comprehensive approach to the simulation tasks, allowing for extensive data analysis and algorithm
optimization. In the context of the PMSM dynamics analysis step input reference currents in the d-q
frame and also a step signal of input load torque have been applied to the modeled machine drive.
These signals insist to continue through the predicted output trajectories.

4.2. Experimental results
4.2.1. Optimized gain parameters (Kg, Kq, Krcs)

The fine-tuning of the controller parameters, specifically the direct-axis gain (Kg), the
quadrature gain (Kg), and the feedback control gain (Kts), for the PMSM is crucial to achieve a
precise and stable control of the motor's speed and torque. Kq was adjusted to optimize the system's
response to changes in error rate, enhancing the motor's dynamic behavior. Kq, on the other hand,
was fine-tuned to regulate the quadrature-axis current component, directly influencing torque
production.
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Table 5. Optimized gain parameters

Tuning Technique Ky Kq Kres
SNN 0.01 0.006 0.13

GA 0.09 0.0056 0.19356

ACO 0.098 0.007824 0.18236

The table outlines the optimized gain parameters’ values obtained from different tuning
techniques applied to control systems, specifically using the sequential neural network (SNN),
genetic algorithm (GA), and ant colony optimization (ACO) methods. For the SNN, the tuning
resulted in a d-axis gain (Kq) of 0.01, a quadrature gain (Kg) of 0.006, and a feedback gain of inner
loop in the IFCS architecture (Kys) of 0.13, indicating a balanced approach to responsiveness and
stability.

The GA technique, known for its ability to navigate complex optimization landscapes, yielded
slightly higher gains: Kq at 0.09, K at 0.0056, and K at 0.19356, suggesting a strategy leaning more
towards aggressive control to minimize error and optimize performance. Lastly, the ACO method,
which simulates the foraging behavior of ants to find optimal solutions, determined Kq4 to be 0.098,
Kq to be 0.007824, and Ky to be 0.18236. These values reflect a fine-tuned balance, likely aiming to
enhance system dynamics while maintaining robustness against disturbances. Each set of parameters
reflects the inherent characteristics and optimization strategies of the respective tuning technique,
demonstrating the diverse approaches to achieving desired control objectives in complex systems.

4.2.2. Current dynamic analysis

The reference current in the d-q frame for system dynamics analysis is depicted in Figure 8.
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Figure 8. Applied reference currents in d-g frame.

The plots provided in Figure 9 represent the dynamic current responses of a three-phase
induction motor under the control of three different optimization algorithms: ant colony optimization
(ACO), genetic algorithm (GA), and sequential neural network (SNN) control strategies. In these
graphs, the direct-axis current (id) and quadrature-axis current (iq) are plotted over time, giving
insights into the performance characteristics of each control method applied to the motor.
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For the ACO algorithm, the quadrature current exhibits a steady-state behavior with minimal
fluctuation around the 1.0 ampere mark, while the direct axis current shows a negative spike before
stabilizing close to zero, indicating a reactive control action due to a change in load or reference
input. The GA plot shows both id and ig currents presenting with higher variability and a sudden
drop, followed by a quick recovery, which might suggest a transient response to a perturbation in the
system or a shift in control targets. Both currents then stabilize, with iq maintaining a slightly
positive value and id trending towards a steady negative value, likely indicative of the algorithm's
strategy to balance torque production against magnetic flux regulation.

The SNN strategy graph reveals a more consistent and less volatile profile for both iqg and id
currents, with ig hovering just above 1.0 amperes and id remaining close to zero throughout the
simulation period. This could be interpreted as a more conservative control approach, prioritizing
stability and smooth response over aggressive adjustments. Overall, the graphs display the distinctive
impacts of each control algorithm on motor currents, reflecting their inherent operational strategies
and tuning philosophies. The ACO and GA plots show more aggressive responses to system changes,
potentially providing faster adaptability at the cost of higher transient fluctuations. In contrast, the
SNN strategy's plot suggests a focus on maintaining steady-state operation with minimal
disturbances, potentially at the cost of slower responsiveness to abrupt system changes. Each control
method's suitability would therefore depend on the specific performance criteria and application
requirements for the motor control system.

4.2.3. Predicted torque trajectories

The provided plots in Figure 10 illustrate the torque response of a permanent magnet
synchronous motor (PMSM) over a simulated time span of 0.2 seconds, controlled by three different
optimization techniques: ant colony optimization (ACO), genetic algorithm (GA), and sequential
neural network (SNN) strategy. Each plot captures the motor's torque as a function of time, shedding
light on the effectiveness of the respective control algorithm in managing the PMSM's performance.
Figure 10(a) depicts the reference load torque applied to the modeled drive. A step signal (Figure
10(a)) is applied to the PMSM, and the predicted torque outputs are acquired as the electrical torque
with respect to the enforced intelligent optimization proficiencies.

In all three scenarios, the torque appears to maintain a relatively steady state initially, hovering
around 1 Nm, which suggests a well-balanced system under nominal operating conditions. However,
a sharp decline in torque is observed in the latter part of the simulation, indicating a sudden reduction
in load or a change in the command signal. The motor's reaction to this change is critical to
understanding each control strategy's robustness and adaptability. The ACO-controlled motor shows
a stable response before and after the torque dip, implying that the ACO algorithm quickly adapts to
changes, stabilizing the motor with minimal oscillation. The GA approach reveals a similar pattern,
with the torque returning to a stable state post-disturbance, suggesting the GA's effectiveness in
managing the PMSM's dynamics. Lastly, the SNN strategy demonstrates a consistent torque profile,
with the system returning to a steady state after the initial disturbance. This consistent response may
indicate that the SNN strategy is tuned for a balance between responsiveness and stability, ensuring
the motor operates smoothly throughout varying conditions.
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Figure 10. Torque responses of applied optimization algorithms.
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4.2.4. Speed and rotor angle characteristics

The speed responses and rotor angle trajectories extracted from each of the scheduled prediction

algorithms have been illustrated in Figure 11.

160
— ACO
140 GA
SNN
120
@ 100
ie)
©
S 801
Q
(0]
& 60 -
40 A
20
0 T T T T T T T
0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175

Time (Seconds)

(a) Speed responses

0.200

Rotor Angle (Radians)

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175
Time (Seconds)

(b) Rotor angle trajectories

0.200

Figure 11. Angular speed and rotor angle characteristics of ACO, GA, and SNN algorithm.

Figure 11(a) illustrates the rotor speed of the PMSM over the same simulation period. Here
again, the GA, SNN, and ACO algorithms present very similar profiles, indicating that each method
is equally effective in regulating the motor's speed. The speed increases rapidly at first, indicating an
acceleration phase, and then levels off, showing that the motor reaches a stable operating speed. This
uniformity in the performances of GA, SNN, and ACO reflects their robustness in controlling the
motor's speed, which is vital for applications where consistent rotational velocity is necessary. The
lack of significant divergence between the control strategies in this aspect suggests that any of them

could be suitable for tasks where steady-state speed regulation is paramount.

AIMS Electronics and Electrical Engineering \Volume 8, Issue 2, 265-291.



288

The plot in Figure 11(b) showcases the rotor angle performance of a permanent magnet
synchronous motor (PMSM) when controlled by three different optimization algorithms: genetic
algorithm (GA), sequential neural network (SNN), and ant colony optimization (ACO). The lines for
GA, SNN, and ACO are closely overlapped, indicating a high degree of similarity in the rotor angle
tracking capability of each algorithm throughout the time span of the simulation. The angle decreases
almost linearly with time, suggesting a steady rotational speed. The tight convergence of the three
lines implies that all algorithms achieve a similar level of performance in maintaining the desired
rotor angle trajectory, which is critical for precise motor control in applications requiring
synchronization and positioning accuracy.

5. Conclusions

The SNN-MPC model showcased promising results, indicating a significant enhancement in
PMSM drive performance. The d-q axis current characteristics, torque and speed responses, and rotor
angle trajectories forecasted from the portrayed optimal control methods, SNN, GA, and ACO,
rejuvenate the enforcement of SNN-MPC scheme in modern day machine drive systems. The
comparative analysis with GA and ACO algorithms revealed the model's proficiency in managing the
motor's dynamic behavior with greater accuracy and efficiency. The seamless integration of
SNN-MPC in diverse computational environments underscores its adaptability and the potential for
real-world applications. Future work will focus on refining the model for even better performance
and exploring its applicability to a wider range of motor control scenarios, pushing the boundaries of
what is achievable in PMSM drive technology.
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