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Abstract: The collision detection and estimation of external forces for robot manipulators are essential
to ensure compliance and safety in the interaction between the robot and the environment or humans.
The focus of this paper was to design a hybrid approach for collision detection between robots and
their environment, and further to estimate external forces acting on a robot manipulator without the
need for additional sensors. The current collision detection methods using observers are still suffering
from the problem of an unavoidable trade-off between the estimation sensitivity and the reduction of
the peaking value at the initial time. To satisfy both robustness and avoid peaking phenomenon at
the initial time, a composite observer was designed, consisting of both a momentum observer and
an extended state observer. The first observer provides high-precision tracking, while the second
one reduces the peak value at the start. Through their complementary roles, the composite observer
achieves improved performance in terms of sensitivity and reducing the peaking value. Simulation
results, conducted using a 2-degree-of-freedom (2-DOF) robot manipulator, attest to the efficacy of the
proposed approach.
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1. Introduction

In robotics applications, a robot manipulator typically operates in dynamic, unstructured
environments and also interacts physically with human operators, which threatens the safety of
humans and equipment. The need for improved collision detection methods in robotics, particularly in
applications involving human-robot interaction, stems from several crucial factors: safety, efficiency,
precision, and regulatory compliance. Increasing the admittance at the interaction interface between the
robot and the user (e.g., diminishing the effective inertia and damping applied to external forces) offers
several benefits, including enhanced safety by minimizing collision forces and facilitating collaborative
manipulation with humans [1]. Therefore, the first and most important requirement when designing
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a collaborative robotic cell is to ensure the safety of the human operator [2, 3]. Thus, fast and
reliable contact or collision detection is crucial to perform the required reaction. The regulatory
frameworks play a very important role in developing safe and efficient robot arm systems for real-
world applications. In [4], the objective was to provide a theoretical framework for designing safety-
related controllers in robotics systems. This framework ensures safety and efficiency in real-world
applications, including human-robot collaboration in industrial setups.

Current collision detection methods can be divided into two categories, model-based methods and
model-free methods. In model-free methods, there are also two subcategories, the first is based on
additional external sensors attached to the manipulator for detecting collisions and calculating the
magnitudes of impact forces, such as skin sensors [5–8], additional vision [9], and accelerometer
sensors [10, 11]. In [12], a collision detection method was developed specifically for high payload
applications. This approach utilized a force/torque sensor at the end effector and motor current
measurements to ensure redundancy. The technique integrated a bandpass filter with differentiation,
forming an effective foundation for collision detection by minimizing the effects of low-frequency
signals and high-frequency noise. Experimental validation confirmed the effectiveness of the results.
Therefore, the effectiveness of the method relies on the accuracy of the sensors used. However, this
technology could increase the manufacturing cost of the robots and complicate their structure. The
second subcategory is based on artificial intelligence techniques [13–19]. These techniques are based
on training the robot through appropriate excitation collisions to recognize real collisions during robot
operation, and this should include sensor data recorded during various collision scenarios. However,
obtaining a detection model and improving its detection accuracy requires a substantial amount of data,
which can be a hindrance to the practical application of these techniques.

Model-based methods rely on the robot’s dynamic model, therefore, they have been more successful
than model-free methods when considering both cost and practical application aspects. In traditional
model-based approaches [20,21], collision detection relies on an inverse dynamic model (IDM). This is
achieved by monitoring the residual signal, which quantifies the difference between the measured joint
torque and the estimated joint torque. This method necessitates the calculation of joint acceleration,
achieved by taking the derivative of the velocity signal, thereby introducing additional noise into the
measurement. In [22], an alternative approach was presented based on a velocity observer, where a
simplified observer was used to estimate the velocity signal and subsequently transformed this model
into a perturbation observer for determining the joint’s unknown external torque. The dynamics of
this observer necessitated the use of an inverse inertia matrix, leading to an increase in computational
cost. In [23], a disturbance Kalman filter (DKF) was proposed, which possessed disturbance immunity
but exhibits reduced sensitivity primarily because of limited model accuracy. In [24], an innovative
observer was designed, based on joint momentum dynamics, which operated independently of the
inverse inertia matrix. Of the recent mentioned methods, there is a general consensus that the
momentum observer-based approach stands out as the most accurate, dependable, and cost-effective.
However, it does produce an unwanted peak during the initial period, which may potentially trigger a
false contact detection alert. The GMO, or generalized momentum observer, functions as a first-order
filter, taking the collision as an input signal and producing a momentum residual as an output signal,
as depicted in [25]. Several studies have suggested enhancements to further refine the performance of
the momentum observer. Such as in [26], the sliding mode technique was combined with a momentum
observer to ensure the finite-time convergence of the estimated external force to the actual external
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force. In [27], the authors introduced a novel sliding mode momentum observer (NSOMO) designed
to eliminate the chattering phenomenon. This was achieved through the implementation of a new
reaching law. In [28], a collision detection algorithm was developed specifically for industrial robot
force/position hybrid control scenarios, addressing safety concerns. This algorithm incorporated a
collision detection model based on dynamics and utilized a continuous friction model to enhance
joint friction compensation, proving effective in experimental settings. In [29], the paper proposed
an adaptive collision threshold based on the robot’s speed and acceleration using a fuzzy logic system,
enhancing collision detection in robot manipulators. This method aimed to improve performance by
adjusting the threshold value dynamically, based on real-time variations in the robot’s dynamics.

1.1. Relevant work

To reduce the peak phenomenon associated with the momentum observer, an alternative dynamic
configuration was introduced [30], leveraging the extended state of the momentum observer as detailed
in [31]. This modification transformed it into a second-order filter with a defined bandwidth that
impacts both the sensitivity of force estimation and the occurrence of peak phenomena within the
observer. However, a limitation of this observer lies in its inability to strike a balance between
sensitivity and reducing peak values. In response to the challenge of an inherent trade-off between
collision sensitivity and peak value reduction in the initial time, a solution was proposed by [32]. The
authors designed a compromise approach that incorporated nonlinear functions into the state observer
design. This approach, known as the nonlinear generalized momentum observer (NGMO), achieved the
balance by providing the necessary bandwidth for collision detection observation. While enhancing the
extended momentum observer through the incorporation of nonlinear functions can lead to improved
performance, this approach comes with certain drawbacks. Most important, the selection of these
nonlinear functions is primarily empirical in nature, and it presents particular challenges when it comes
to proving the observer’s stability due to the inherent complexity of these nonlinear functions.

Motivated by the issues discussed previously, this paper presents a hybrid approach to address the
inherent trade-off between collision sensitivity and peak value reduction. Collaborative construction
of a composite observer involves two key components: the momentum observer and the extended state
observer. The extended state observer is initially employed with a suitable bandwidth to eliminate peak
phenomena during the initial phase. Once the peaks are successfully mitigated, the system switches to
the momentum observer with suitable gain to achieve high sensitivity in force estimation. These two
observers operate collaboratively, each providing distinct benefits to enhance both peak value reduction
and estimation sensitivity.

The paper is organized as follows. Section 2 briefly presents the robot dynamic model and
preliminaries. In Section 3, we introduce the proposed method, known as the composite momentum
observers, for the estimation of external forces. In Section 4, the obtained results are compared to the
state-of-the-art simulation. Finally, Section 5 summarizes the work.

2. Robot modelling

The behavior of an n-degree-of–freedom robot manipulator can be represented by the following
dynamic equation.
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M(q)q̈ +C(q, q̇)q̇ +G(q) = τ + τext (2.1)

where q, q̇ and q̈ ∈ Rn×1 are the vectors of the joint position, velocity, and acceleration, respectively.
M(q) ∈ Rn×n is the inertia matrix, which characterizes the distribution of masses and moments of
inertia within the robot system, C(q, q̇) ∈ Rn×n is the Coriolis, and centrifugal forces matrix that relates
the joint velocities and accelerations of the system to the forces and torques exerted on the system. It
takes into account the nonlinear effects resulting from the relative motion between different parts of
the robot. G(q) ∈ Rn×1 is the gravity vector, τ ∈ Rn×1 is the internal torque provided by the robot’s
actuators and, τext ∈ R

n×1 represent the external torque/force vector resulting from an environment or
human collision.

Lemma 1. [33] The matrix M(q) − 2C(q, q̇) is skew-symmetry, and so it follows that

Ṁ(q) = C(q, q̇) +CT (q, q̇) (2.2)

where CT is the matrix transpose of C.

3. Observer design

3.1. Generalized momentum observer

When a collision occurs, it results in a change in the momentum of the system. This change can
be estimated by the observer. The motivation behind the monitoring method, which relies on the
generalized momentum observer as presented in [34, 35], was driven by the goal of not the necessity
for inverting the robot’s inertia matrix. This approach aims to decouple estimation results and eliminate
the requirement for estimating joint accelerations. The generalized momentum of the robot is defined
as follows

p = M(q)q̇ (3.1)

The time derivative of (3.1) can be written as

ṗ = Ṁ(q)q̇ + M(q)q̈ (3.2)

Using (2.1) and (2.2), (3.2) can be expressed as follows

ṗ = τ + τext +CT (q, q̇)q̇ −G(q) (3.3)

To estimate the unknown quantity τext resulting from a collision, the momentum observer dynamics
are defined as follows  ˙̂p = τ +CT (q, q̇)q̇ −G(q) + r

ṙ = L( ṗ − ˙̂p)
(3.4)

where r ∈ Rn×1 is the residual vector, which represents external force estimation, p̂ is the estimate value
of momentum p, and L = diag{li} > 0 is a gain matrix of the observer.

The output of the momentum observer, denoted as r(t), can be described by the following equation

r(t) = L(p(t) −
∫ t

0
(τ + ĈT (q, q̇)q̇ − Ĝ(q) + r)dν + p(0)) (3.5)
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Using a Laplace transformation on both sides of (3.4) gives

sr(s) = L(τext − r(s)) (3.6)

thus
r(s)
τext
=

L
L + s

(3.7)

From (3.7), in the absence of a collision, the observer r converges to zero following the exponential
rule. However, when a collision occurs, r converges to τext. The collision algorithm is inherently first-
order, as it only involves a single adjustable parameter. Consequently, achieving a balance between
accuracy and speed becomes challenging. When the observer gain is increased, it results in significant
peak values, and a reduction in gain leads to a loss in estimation sensitivity.

3.2. Extended state momentum observer

As an innovative observer design, the extended state observer was initially introduced by [36].
The core concept behind this observer is the utilization of an augmented state vector for unknown
nonlinear function estimation. From (3.3), we construct the first-order state-space equation based on
the generalized momentum as follows

x1 = p

ẋ1 = τ + τext +CT (q, q̇)q̇ −G(q)
y = x1

(3.8)

If τext is considered an extended state of (3.8), the second-order state-space can be written as
x1 = p

ẋ1 = x2 + τ +CT (q, q̇)q̇ −G(q)
ẋ2 = φ(t)
y = x1

(3.9)

where x2 is the extended state, and ϕ(t) is an unknown bounded function such that ϕ(t) ≤ ϵ, (ϵ positive
value).
The extended state observer is designed according to (3.9) as

ż1 = z2 − β1e + τ + ĈT (q, q̇)q̇ − Ĝ(q)
ż2 = −β2e

e = z1 − y

(3.10)

where β1 and β2 are gain matrices of the observer, andz1 = p̂

z2 = τ̂ext
(3.11)

AIMS Electronics and Electrical Engineering Volume 8, Issue 2, 237–254.



242

From (3.10), we can derive the transfer function, in the Laplace domain, from the input signal and
momentum estimation as follows z1 =

z2+τ+ĈT (q,q̇)q̇−Ĝ(q)−β1 p
s+β1

z2 =
β2 sp−β2(τ+ĈT (q,q̇)q̇−Ĝ(q))

s2+β1 s+β2

(3.12)

Based on (3.12), the collision algorithm exhibits the characteristics of a critically damped second-order
system. It comprises two adjustable parameters that represent key features of the dynamic systemω0 =

√
β2

ζ = β1

2
√
β2

(3.13)

where ω0 is the bandwidth of the observer and ζ represents the damping ratio.
Using the parameters mentioned above in the extended state generalized momentum observer

(ESGMO), the estimation error can swiftly converge from an initial non-zero value to zero, all
without any oscillations. Furthermore, by appropriately tuning ω0, we can achieve superior transient
performance. However, it is important to note that in the case of an observer designed with a critically
damping ratio, the external force detection may unavoidably exhibit peak value in the initial time
(overshoots). Subsequently, to eliminate the overshoot, we have the option to augment the damping
ratio during the initial phase. It is worth noting that the system’s overshoot and accurate steady-state
exhibit contrasting demands when it comes to the damping ratio. It is therefore necessary to find a
compromise solution.

3.3. Composite observer strategy

A composite observer is based on the hybridization of the momentum observer and an extended state
observer involves combining their respective features and functionalities to create a single observer
that benefits from the strengths of both. In this study, our focus lies on the concept of switching
hybridization. This approach entails the utilization of a switching logic mechanism to seamlessly
transition between various observers in response to specific conditions, system states, or performance
metrics. The underlying goal of this strategy is to facilitate adaptation to dynamic conditions and
enhance estimation optimization.

The hybridization strategy that is described involves a two-phase approach using the EGSMO and
the first-order momentum observer. Here is a summary of this hybridization strategy:
Phase 1: Extended State Generalized Momentum Observer (ESGMO) for Peak Elimination
Initial Time: During the initial phase or specific transient conditions where peak phenomena are likely
to occur, the control system activates the ESGMO.
Peak Elimination: The primary role of the ESGMO in this phase is to eliminate or mitigate peak
phenomena in the system’s response. ESGMO excels in the estimation and can help smooth out the
control signal to prevent overshoots or oscillations.
Transient Phase: ESGMO operates during the transient phase, ensuring that the system reaches a stable
state without experiencing undesirable peaks in its response.
Phase 2: Generalized Momentum Observer (GMO) for Steady-State Accuracy
Switching to first-order momentum observer: Once the transient phase is complete, and the system has
stabilized, the control system switches from ESGMO to the First-Order GMO.
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Robot

TBS: Time-Based Switching 

Composite Observer 

-

-

-

Figure 1. Block diagram of the composite observer.

Accuracy in Steady State: The First-Order Momentum Observer is employed in the steady-state phase
to achieve accurate and precise control. It excels at providing stable and accurate control when the
system is operating in a consistent manner.
Based on (3.5) and (3.10), the output of the composite observer can be defined as

τ̂ext =

r1, t < Threshold

r2, t ⩾ Threshold
(3.14)

where

r1 = L(p(t) −
∫ t

0
(τ + ĈT (q, q̇)q̇ − Ĝ(q) + τ̂ext)dν

+ p(0))
(3.15)

and

r2 = β2(p(t) −
∫ t

0
(τ̂ext − β1(τ̂ext − p) + τ

+ ĈT (q, q̇)q̇ − Ĝ(q))dν + p(0))
(3.16)

In Figure 1, you can observe the block diagram representing the composite observer. During the initial
phase, the monitoring signal τ̂ext consists of the residual vector derived from the extended state observer
(ESO), denoted as z2. However, in the steady-state condition, τ̂ext is comprised of the residual vector
originating from the first-order momentum observer, which we label as r.
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Figure 2. A 2-DOF robot architecture.

3.4. Convergence error observer

Within the collision detection algorithm, it is imperative that the observation error remains bounded
under all circumstances. The proposed algorithm adopts the standard ESO structure from the active
disturbance rejection control (ADRC) scheme, thus ensuring its stability and convergence properties.
To delve into the error dynamics of ESO, we perform this analysis without any loss of generality.
The error of the observer can be obtained through (3.9) and (3.10) asė1 = e2 − β1e1

ė2 = −β2e1 − ϕ(t)
(3.17)

which can be rewritten as
Ė = AE + B(−ϕ(t)) (3.18)

where

A =
[
−β1 1
−β2 0

]
and B =

[
0
1

]
such that β1 and β2 are calculated using the pole placement method. The desired reference signals

are given as
qd1 = qd2 = sin(5t) (3.19)

Assumption 1. τext is bounded, and thus |τext| < δ, where δ is an unknown bounded value.

Assumption 2. ϕ(t) is an unknown bounded function |ϕ(t)| < ϵ , for a constant ϵ.

We consider V the Lyapunov function of the dynamic error (3.18) as following

V = ET S E (3.20)
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where S is a positive definite matrix, which satisfies

AT S + S A = −λI (3.21)

V̇ = ET (AT S + S A)E + 2ET S B(−ϕ(t)) (3.22)

Thus

V̇ ≤ −λ∥E∥2 + 2ϵλmax(S )∥E∥
≤ −∥E∥(λ∥E∥ − 2ϵλmax(S ))

(3.23)

where λ is positive and λmax is the maximum eigenvalue of S . Given that the above assumptions are
met, then E ultimately converges into the ∥E∥ ≤ 2ϵλmax(S )

λ
bounded ball.

4. Simulation results

In order to examine the proposed method of collision detection and external force estimation, a
2-DOF planar robot is considered (Figure 2). The dynamic model takes the form[

m11(q) m12(q)
m21(q) m22(q)

] [
q̈1

q̈1

]
+

[
c1(d, q̇)
c2(d, q̇)

]
+

[
g1(d)
g2(d)

]
=

[
τ1

τ2

]
+

[
τd1

τd2

]
(4.1)

where 

m11(q) = m1l2
c1 + m2(l2

1 + l2
c1) + 2m2l1lc2cos(q2) + I1 + I2

m12(q) = m21(q) = m2l2
c2 + m2l1lc2cos(q2) + I2

m22(q) = m2l2
c2 + I2

c1(q, q̇) = −2m2l1lc2q̇1q̇1sin(q2) − m2l1lc2q̇2
2sin(q2)

c2(q, q̇) = m2l1lc2q̇1
2sin(q2)

g1(q) = m1lc1gcos(q1) + m2g[lc2cos(q1 + q2) + l1cos(q1)]
g2(q) = m2glc2cos(q1 + q2)

(4.2)

and
m1 = 1 kg, m2 = 0.8 kg, l1 = 0.5 m, ł2 = 0.25 m, lc1 = 0.25 m, lc2 = 0.125 m, I1 = 1 kg.m2, I2 = 0.8
kg.m2 and g = 9.8 m/s2

We will adopt the computed torque control strategy, which, without imposing any loss of generality,
can effectively fulfill the fixed-point control demands of the robot manipulator. The composite
observer-based approach described above is employed for the estimation of external forces applied
on the manipulator, and a comparison between this observer and others is conducted.

The first case of simulation shows the limitations of the momentum observer and the extended
state observer such as the influence of the observer parameters on the estimation sensitivity and the
peak value, while the second case shows the performance of the composite observer and a comparison
between it and previous observers.
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Figure 3. External torque estimation using GMO.

4.1. Case 1

The observer gain influences the performance of the observer in several ways, and it can have a
significant impact on the residual of the observer. The residual is the difference between the actual
measurements and the estimate measurements by the observer. In this case, each observer is used to
illustrate the impact of its parameters on the residual value, and the external torques resulting from
collision are defined as

τext1 = τext2 =

0, t < 2
1, t ⩾ 2

(4.3)

From Figure 3, the gain of the generalized momentum observer L affects the convergence rate of the
observer. Higher gains can lead to faster convergence, meaning that the estimated states converge to
the actual states more quickly. However, excessively high gains may introduce an important peak.
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Figure 4. External torque estimation using ESGMO.

While the estimation of external torque using an extended state observer in Figure 4, from Eq (3.13),
it is evident that altering the damping ratio ζ inevitably results in a forced change in bandwidth
ω0. Detecting external forces by the observer with a critically damping ratio will inevitably lead to
overshoots. Increasing the damping ratio at the initial time allows us to eliminate the peak value.
However, it becomes evident that the system’s overshoot and steady-state error demand contrasting
damping ratio values. Therefore, a compromise solution becomes necessary.

4.2. Case 2

Commencing with the identified limitations of both the generalized momentum observer (GMO)
and extended state generalized momentum observer (ESGMO), we initiated the estimation process
by employing the extended observer in the initial phase, incorporating a significant damping ratio to
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Figure 5. Estimation of the external torque with three observers.

mitigate the occurrence of peak phenomena. Subsequently, as time progresses beyond the initial phase,
we transition to a generalized momentum observer, leveraging its assured gain to enhance tracking
accuracy. Table 1 describes the parameters setting of the composite observer.

We assume that the collision force can be translated as a square function:

τext1 = τext2 = sign(sin(5t)) (4.4)

The peak value of external torque varies among joints, as indicated by the estimated results, and this
discrepancy can be attributed to the mass of each respective joint. As illustrated in Figure 5, the torque
estimated using GMO, the peak value for the first joint is 9.47 and for the second joint is 3.32. This
variation is attributed to the respective masses of the robot’s joints, with the first and second joints
weighing 1 kg and 0.8 kg, respectively. Therefore, the dynamics of the observer’s gain, leading to the
occurrence of the peak phenomenon, are influenced by the mass of the joint.
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Figure 6. Estimation error of the external torque.

As discussed in the introduction, the goal of this study is to minimize the peak value while
preserving the sensitivity of collision estimation, as depicted in the figures. Both GMO and ESGMO
observers exhibit a noticeable peak, unlike the composite observer, which nearly eradicates the peak
entirely. The Figure 6 also illustrates that the composite observer exhibits a lower peak value compared
to GMO and ESGMO. This can be attributed to its damping ratio ζ in the initial time. When the torque
estimation error is non-zero, the composite observer strives to rapidly converge to zero, contingent on
the definition of an appropriate gain, denoted as L.

Figure 7 illustrates theL2-performance index. It is evident that the composite observer outperforms
others due to its tuning, enabling enhanced convergence rates. Furthermore, the mean absolute error
(MAE) and the mean square error (MSE) performance indexes are integral to our comparative analysis.
Table 2 clearly demonstrates that our proposed observer significantly enhances accuracy in comparison
to GMO and ESGMO methods.
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Figure 7. L2-performance index.

Table 1. Parameters setting of the composite observer.

ESGMO β1 =

(
40 0
0 40

)
, β2 =

(
100 0
0 150

)
Time transition 2s

GMO L =
(
30 0
0 30

)
Table 2. Comparison of observers’ performance (MAE & MSE).

1st joint 2nd joint
MAE MSE MAE MSE

GMO 0.36 0.17 2.08 0.27
ESGMO 0.28 0.23 0.47 0.29

Composite observer 0.11 0.10 0.09 0.09

5. Conclusions

Among the collision detection methods, there is a general consensus that the momentum dynamic-
based method is the most accurate, reliable, and cost-effective. In this paper, an alternative method
based on momentum dynamics was presented for collision detection and estimation of external
forces for robot manipulators. To improve detection accuracy and estimation performance, a hybrid
momentum observer was designed, which was composed of a first-order generalized momentum
observer and an extended state observer. The collision detection system worked in the initial time
using ESGMO with a suitable bandwidth to eliminate peak phenomena and avoid false alarm, and
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once the peak moment had passed, the collision detection system switched to the momentum observer
with appropriate gain to achieved high sensitivity in force estimation. Through their complementary
roles, the composite observer achieved improved performance in terms of sensitivity and reducing
the peaking value. This algorithm was used for the detection of collisions but should be enhanced
to trigger an appropriate reaction for the robot arms when the event occurs. The proposed method
can be applied to all types of manipulator arms, as we have utilized the model of an n-degree-of-
freedom robot manipulator. In this study, we tested this method on a 2-DOF arm to examine and
explain its effectiveness. Nonetheless, it is also applicable to other types of arms. In future work,
this approach will be incorporated on a real platform for industrial applications such as welding and
painting. Additionally, we plan to propose a 6-degree-of-freedom model and validate it experimentally.
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