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Abstract: Computer vision is witnessing a surge of interest in machines accurately recognizing and 

interpreting human emotions through facial expression analysis. However, variations in image 

properties such as brightness, contrast, and resolution make it harder for models to predict the 

underlying emotion accurately. Utilizing a robust architecture of a convolutional neural network 

(CNN), we designed an efficacious framework for facial emotion recognition that predicts emotions 

and assigns corresponding probabilities to each fundamental human emotion. Each image is 

processed with various pre-processing steps before inputting it to the CNN to enhance the visibility 

and clarity of facial features, enabling the CNN to learn more effectively from the data. As CNNs 

entail a large amount of data for training, we used a data augmentation technique that helps to 

enhance the model's generalization capabilities, enabling it to effectively handle previously unseen 

data. To train the model, we joined the datasets, namely JAFFE and KDEF. We allocated 90% of the 

data for training, reserving the remaining 10% for testing purposes. The results of the CCN 

framework demonstrated a peak accuracy of 78.1%, which was achieved with the joint dataset. This 

accuracy indicated the model's capability to recognize facial emotions with a promising level of 

performance. Additionally, we developed an application with a graphical user interface for real-time 

facial emotion classification. This application allows users to classify emotions from still images and 

live video feeds, making it practical and user-friendly. The real-time application further demonstrates 

the system's practicality and potential for various real-world applications involving facial emotion 

analysis. 
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1. Introduction  

Human facial expressions play a pivotal role in interpersonal communication, serving as a critical 

indicator of emotions, engagement, and involvement. With the rapid progress in artificial intelligence 

and machine learning, there is a growing interest in developing models capable of accurately 

recognizing and interpreting human emotions. Such advancements hold great potential for creating 

more natural and seamless interactions between humans and machines [1,2]. In this context, facial 

emotion detection systems have emerged as a promising area of research, aiming to endow machines 

with the ability to perceive and comprehend human emotions from facial cues. Facial emotion 

detection systems are comprised of two fundamental components: face detection and emotion 

recognition. The face detection module identifies and localizes human faces in images or videos, while 

the subsequent emotion recognition module analyzes the detected faces to determine the underlying 

emotions [3]. The integration of these components paves the way for machines to perceive and respond 

to human emotions, leading to a multitude of real-world applications. Recent advancements in 

computer vision have sparked extensive research in the area of face detection, utilizing large datasets 

and intricate models. Vaillant et al. [4] made groundbreaking strides in face detection by pioneering 

the use of neural networks, training a convolutional neural network, and employing a sliding window 

technique to locate faces in images. Likewise, in [5], a connected neural network approach was 

developed for face detection in images, making a notable contribution to the field. The progress in face 

detection has been further enhanced by the availability of publicly accessible benchmarks such as the 

Wilder Face-Face Detection Benchmark [6], PASCAL FACE [7], and Face Detection Database and 

Benchmark [8]. These benchmarks have played a crucial role in facilitating the development and 

evaluation of various face detection algorithms, further propelling advancements in this domain.  

In the current landscape, face detection algorithms fall into four major categories, each with its 

unique approach and characteristics: Cascade-Based Algorithms: Notable works like Viola and 

Jones [9] and Lienhart and Maydt [10] exemplify these algorithms, which operate through a cascading 

series of classifiers. Each stage refines the face detection process further, achieving enhanced accuracy 

and efficiency by combining multiple classifiers. Preprocessing includes variance normalization and 

integral image computation for efficient feature evaluation, while performance is assessed using 

detection rate, false positive rate, and ROC curves for accuracy evaluation. Part-Based Algorithms: 

Belhumeur et al. [11] and Yang et al. [12] are examples of part-based algorithms that break down the 

face detection task into individual facial components, such as eyes, nose, and mouth. By analyzing 

these parts separately and combining their detections, these algorithms effectively locate the entire 

face region. Preprocessing involves building a 3D basis from images captured under diverse lighting. 

Performance is evaluated by comparing recognition error rates across various lighting and facial 

expression conditions, using datasets from Harvard Robotics Lab and Yale Center for Computational 

Vision. Channel Feature-Based Algorithms: Wu et al. [13] and Yan and Kassim [14] represent channel 

feature-based algorithms that analyze specific color channels or feature maps to identify facial patterns 

and distinguish them from the background. Leveraging these distinctive features aids in accurate face 

detection. The preprocessing steps involve synthetic blurring of images with varied blur sizes and 

noise levels, as well as real photo acquisition with registration. Performance evaluation includes 

metrics such as Normalized Root Mean Square Error, convergence analysis, comparison with other 

methods, and visual inspection of reconstructed images and estimated Point Spread Functions. Neural 

Network-Based Algorithms: The use of neural networks for face detection, demonstrated in 
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Krizhevsky et al. [15] and Sermanet et al. [16], has gained great popularity due to their ability to learn 

complex representations from data. Preprocessing involves data augmentation, including image 

translations, reflections, and intensity alterations, alongside normalization and max-pooling. 

Performance is evaluated using error rates, compared with previous approaches on the ImageNet 

dataset. The diverse approaches in these four categories underscore the continuous advancements in 

face detection research, aiming to provide robust and efficient solutions for a wide range of 

applications. Each category has its strengths and limitations, and researchers continue to explore 

innovative approaches to improve the accuracy and efficiency of face detection systems.  

While the focus has mainly been on face investigation, considerable efforts have also been 

directed toward facial expression recognition. Researchers have devised systems based on Facial 

Action Coding [17‒19], and some have explored the use of Hidden Markov Model neural 

network-based models for facial emotion detection [20]. Facial emotion prediction, often considered 

the second stage following face detection, plays a pivotal role in understanding human emotions from 

visual cues. Recent advancements in this domain, as evidenced by papers such as Emotion 

Recognition Using a Transformer-based Architecture [21] and Learning Dynamic Affective Contexts 

for Facial Emotion Recognition [22], highlight the significance of this area. Additionally, Efficient 

Facial Emotion Recognition using Siamese Neural Networks [23] and Facial Expression Recognition 

using Spatiotemporal Attention Mechanism [24] underscore the ongoing research in improving the 

accuracy and efficiency of facial emotion prediction. However, a persistent research gap remains. 

Many approaches in these articles often incorporate unnecessary and misleading features, leading to 

confusion during training and reduced accuracy. These complexities pose practical challenges, 

especially in real-world applications, as they can result in substantial delays in transitioning face 

detection algorithms. Therefore, developing frameworks that effectively filter out irrelevant 

background information and focus solely on crucial facial features is crucial to achieving accurate face 

detection and practical deployment in diverse domains. Despite great progress in the field, driven by 

the availability of massive datasets, sophisticated models, and continuous benchmarking, there are 

hurdles to overcome. For example, these approaches often incorporate unnecessary and misleading 

features, leading to confusion during the training and reduced accuracy. Developing frameworks that 

effectively filter out irrelevant background information and focus solely on facial features, is crucial to 

achieve accurate face detection. Furthermore, a practical concern arises from the complexity of these 

models, resulting in substantial delays when transitioning face detection algorithms into real-world 

applications. Thus, it is vital to reduce the model complexity for practical deployment in diverse 

domains.  

To address the aforementioned challenges in face detection, we abstract our considered problem 

as designing a robust deep learning framework for predicting facial emotions, with a critical focus on 

accurately classifying seven fundamental facial expression classes: Happy, surprise, disgust, neutral, 

fear, sad, and anger. Our objective is to filter out unnecessary and misleading features to reduce the 

model's complexity and enable it for real-world application. We utilize a specialized CNN designed to 

prevent irrelevant features during training. The process involves face detection, estimating the facial 

area, and applying diverse pre-processing steps to enhance feature recognition. This optimizes CNN's 

understanding of facial expressions for accurate emotion prediction. The system assigns probability 

scores to emotion categories, classifying the image based on the highest score. The accuracy our 

proposed CNN model achieves through the rigorous training process on the challenging dataset is, 

78.1%, surpassing the performance of baseline models. This remarkable level of accuracy underscores 
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the effectiveness of the proposed system in accurately predicting facial emotions, thus validating its 

potential as a robust and reliable tool for emotion recognition tasks. Building upon the success of the 

model, we develop an application capable of detecting facial emotions in real-time video and still 

images. This application employs the trained model to provide accurate and reliable emotion 

recognition for various practical purposes. The article introduces several significant contributions 

related to face emotion prediction, which are summarized as follows: 

1. We propose an efficient system that leverages a CNN to predict facial emotions, which assigns 

probabilities to each emotion class so that the system can accurately identify each emotion in facial 

expressions. 

2. Understanding the importance of data in deep learning models, the proposed system adopts 

diverse pre-processing steps for each image. These steps aim to enhance prediction accuracy by 

allowing the neural network to recognize relevant features effectively. 

3. To put the proposed system into practical use, we design a graphical user interface (GUI) for 

real-time emotion classification. This application allows users to quickly acquire emotion predictions 

from broadcasted videos and static images. 

To ensure that readers grasp the comprehensive understanding, this article is organized as 

follows: Section 2 provides a detailed explanation of the proposed system for emotion recognition, 

highlighting the CNN architecture and how probabilities are assigned to different facial expression 

classes. Section 3 evaluates the performance of the proposed system. It presents the datasets used for 

training and testing and provides the results of the experiments, showcasing the accuracy achieved by 

the model. Section 4 presents the designed GUI for a real-time emotion classification application 

enabling users to interact with the system and obtain emotion predictions effortlessly. Section 5 

concludes the article by summarizing the contributions. 

2. Proposed framework 

Figure 1 illustrates the schematic illustration of the proposed framework for facial emotion 

prediction. The process is explained step by step as follows: Once the face is successfully detected, it is 

extracted from the rest of the image. This step is crucial as it isolates the region of interest, i.e., the face, 

for further analysis. After the face is extracted, it undergoes an extensive pre-processing phase. 

Pre-processing is a critical step in deep learning models as it prepares the input data for the neural 

network. Various pre-processing techniques are applied to the face image to enhance the neural 

network's ability to recognize essential features associated with emotions accurately. The 

pre-processed face image is then fed into the CNN. The CNN is designed to analyze facial features and 

learn patterns from the input data. It processes the face image through multiple layers of convolutions, 

pooling, and activations, effectively extracting relevant features to understand the emotional 

expression. The output of the CNN is a set of probabilities, each corresponding to one of the emotion 

classes, namely anger, disgust, fear, happy, sad, surprise, and neutral. These probabilities represent the 

model's confidence in predicting each emotion class based on the given input face image. Finally, the 

emotion class with the highest probability is determined, indicating the model's prediction for the 

emotion expressed by the face. The image is classified into the emotion class that the model believes it 

most likely represents. Further details on each stage are likely provided in subsequent sections of the 

article to give a comprehensive understanding of the system's working and performance.  
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2.1.  Face detection 

In our proposed framework for facial emotion prediction, face detection plays a pivotal role as the 

initial step. Various face detection algorithms have been developed, including Haar cascade, HOG +, 

SVM, and deep learning models. For our system, we have opted to utilize the algorithm proposed 

in [25] due to its capabilities of speed and real-time usage. This algorithm adeptly detects the locations 

of 68 (x, y) coordinates on the detected face. These coordinates represent key regions of interest on the 

face, as illustrated in Figure 2. The 68 points are strategically placed to indicate specific facial features. 

For instance, points 1-17 define the jawline, points 18-22 correspond to the left eyebrow, points 23-27 

to the right eyebrow, points 37-42 to the left eye region, points 43-48 to the right eye region, points 

28-36 to the nose region, points 49-60 to the outer lip area, and points 61-68 specify the inner lip 

structure. To train this face detection algorithm, a labeled training set of facial points on images is 

used. The (x, y) coordinates of these points are manually labeled to represent various regions of the 

face. The algorithm utilizes a regression tree model to predict facial landmark points based on the pixel 

intensities in the image. One notable aspect of this method is the absence of feature extraction, 

resulting in exceptional speed and real-time performance without compromising accuracy and quality. 

As facial emotions are primarily expressed through the eyes, nose, eyebrows, and select facial regions, 

regions above the midpoint of the forehead and ear regions are not required for our emotion prediction 

task. Consequently, the chosen face detection algorithm accurately identifies facial areas that are 

relevant to our specific interests. Figure 3 presents some examples of faces detected by our system, 

with the corresponding regions marked using the 68-point model. The choice of the 68-point model for 

facial region marking stems from its superior accuracy and detail, enhancing both detection precision 

and subsequent emotion prediction. This model's effectiveness lies in its ability to capture essential 

facial landmarks, resulting in improved recognition of subtle emotional cues. Additionally, its detailed 

approach increases efficiency by reducing false positives and computational demands. This 

Figure 1. Illustration of the proposed framework: a comprehensive 

schematic representation detailing the architecture and components. 
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accuracy-efficiency balance makes our method well-suited for real-time applications like facial 

emotion recognition. These results demonstrate the effectiveness and accuracy of the face detection 

algorithm in identifying the crucial facial regions essential for our subsequent facial emotion 

prediction process. In contrast, some eyebrows may have been marked inconsistently in Figure 3, 

where the accuracy of facial landmark detection is attributed to various factors such as image quality, 

pose variations, and the specific facial landmark detection algorithm employed. 

 

Figure 2. Facial landmark coordinates visualization. 

 

Figure 3. Detecting faces and estimating face areas. 

2.2.  Face extraction 

Following successful face detection in the input images, the subsequent crucial step involves 

extracting the detected face region from the original image while effectively eliminating the 
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surrounding background. This process involves isolating the facial area of interest, which is essential 

for accurate facial analysis and emotion recognition. By precisely extracting the detected face region, 

the system can focus solely on the facial components, such as the eyes, nose, mouth, and eyebrows, 

which are pivotal for facial emotion prediction. Eliminating the surrounding background ensures that 

only the relevant facial features are considered for further processing. This extraction step serves as a 

vital pre-processing technique, enhancing the efficiency and accuracy of facial emotion recognition 

algorithms. By isolating the facial region, the subsequent analysis can concentrate on the essential 

elements that convey emotional expressions, leading to more reliable and robust predictions of human 

emotions. This face extraction process is essential as it isolates the facial region, which is crucial for 

analyzing and predicting facial expressions accurately. To achieve face extraction, we begin by using 

the 68-point facial landmark detection results and selecting the first 27 points (points 1-27). These 27 

points cover the overall facial area that primarily deals with facial expressions. Subsequently, we 

employ a mathematical method called the convex hull to determine the smallest encompassing 

structure for the set of twenty-seven points. The convex hull algorithm efficiently determines the 

smallest possible boundary that encompasses all the given points. In our case, applying the convex hull 

to the 27 facial landmark points creates a boundary that tightly encloses the face region. This convex 

hull boundary effectively defines the outer limits of the face area, providing a precise and compact 

representation of the facial structure. This is depicted in Figure 4 (Left), where the convex hull is 

illustrated around points 0-27.  

 

Figure 4. Landmarks of 0-27 of the convex hull (left), and its mast (right). 

To create a mask facilitating the extraction of the face region, we fill the convex hull using a 

convex polygon, resulting in a mask that maintains the original image's dimensions. In this mask, the 

facial area is depicted by white pixels, while the background pixels remain black. This mask 

effectively aids in isolating the face area for further processing and analysis. Indeed, the mask serves as 

a crucial guide, delineating the regions of the original image that belong to the face area and 

distinguishing them from the irrelevant parts. Figure 4 (Right) provides a visual representation of the 

obtained mask after the convex filling process. With this mask, the face region can be easily isolated 

from the original image, streamlining the subsequent facial emotion recognition process. This 

extraction process involves considering only the white-pixel regions defined by the mask, which 

precisely correspond to the facial area, and discarding the black-pixel regions that represent the 

surrounding background. As a result, we obtain a clear and isolated facial region that is ideal for 

subsequent facial emotion recognition and analysis. The extracted face region obtained through this 

process serves as the input for the subsequent stages of our facial emotion prediction system, 

facilitating accurate and focused emotion analysis. 
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2.3.  Preprocessing  

After locating the mask for face extraction, it is applied to the original images to isolate the face 

area, as shown in Figure 5. This process involves using the mask as a filter, where the white-pixel 

regions of the mask correspond to the facial area, and the black-pixel regions represent the 

background. By applying the mask to the original images, we can effectively extract the face region 

while eliminating the surrounding background. The resulting images will contain only the facial 

features, making them ideal for further analysis and facial emotion recognition tasks. This step ensures 

that the subsequent processing focuses exclusively on the essential facial components, enabling 

accurate and robust predictions of human emotions. These extracted face images serve as the input 

data for the CNN in our facial emotion prediction system. To ensure the CNN model receives 

appropriate and well-prepared data, a series of pre-processing steps are applied to the extracted face 

images. These pre-processing steps play a crucial role in enhancing the model's ability to learn relevant 

features and make accurate predictions. The first pre-processing step involves histogram equalization 

on the cropped face images. Histogram equalization is used for intensity normalization and contrast 

enhancement, which helps in improving the visibility and clarity of facial features. Histogram 

equalization is applied as the first pre-processing step on the extracted face images. This technique 

serves to normalize intensity levels and enhance image contrast. By improving the visibility and clarity 

of facial features, histogram equalization prepares images for subsequent processing steps. 

 

Figure 5. Process of extracting facial regions. 

Next, the bilateral filter is utilized to further enhance the face images. The bilateral filter is adept 

at noise reduction while retaining the integrity of facial feature edges. This filter effectively reduces 

noise while preserving the edges of facial features. It achieves denoising without compromising 

crucial details by combining domain filtering and range filtering. By incorporating domain filtering 
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and range filtering, this filter achieves denoising without compromising essential details. Figure 6 

visually demonstrates how the bilateral filter effectively removes noise from the images while 

retaining high-frequency edges, ensuring that the important facial features are preserved. After 

applying the bilateral filter, a convolutional 2D filter with a specific kernel is used. The kernel ([-1, -1, 

-1], [-1, 9, -1], [-1, -1, -1]) is employed to enhance image details and sharpen the features. This filter 

kernel enhances image details and sharpens features. By further improving the image quality, this step 

contributes to more accurate feature recognition by the subsequent model. Following the 

pre-processing steps, all images are resized to a consistent size of 80 x 100 pixels. Standardizing the 

image size ensures uniformity in data input to the CNN model. Finally, the pre-processed images are 

organized into arrays for both training and testing purposes. These arrays are then fed into the CNN 

model, which utilizes this well-prepared data to learn and make predictions about facial emotions.  

 

Figure 6. Noise reduction and edge preservation using bilateral filtering. 

Through the application of these pre-processing steps, the input data presented to the CNN model 

undergoes optimization, ensuring a conducive environment for accurate and efficient learning. By 

enhancing the data's quality and reducing noise, the model can effectively discern meaningful patterns 

and features, leading to improved facial emotion recognition performance. The combination of face 

extraction, pre-processing, and CNN-based emotion prediction forms a powerful system capable of 

recognizing and classifying facial emotions with high accuracy. These augmentation, normalization, 

and feature extraction techniques collectively optimize the input data for the CNN model. By 

enhancing data quality, reducing noise, and preserving relevant features, the model becomes better 

equipped to recognize meaningful patterns and achieve improved performance in facial emotion 

recognition. The systematic application of these techniques results in a robust and accurate system for 

recognizing and classifying facial emotions. 

2.4.  CNN architecture 

The architecture we propose for facial emotion prediction involves a series of layers tailored to 

effectively learn and categorize emotions from input facial images. This CNN structure comprises 

specific components: Five convolutional layers, one max pooling layer, two average pooling layers, 

and three dense layers. This thoughtful arrangement optimizes feature extraction and classification, 

resulting in robust facial emotion recognition capabilities. For regularization, we incorporate a 20% 

dropout rate in the dense layers to counter overfitting and enhance generalization. The input layer 

accommodates images of dimensions 80 x 100, matching the size of the utilized face images. These 

images then undergo processing through the initial convolutional layer, composed of 64 filters with a 

(5, 5) kernel size and employing the ReLU activation function. Post this convolutional layer, the output 

size becomes (76, 96, 64). A subsequent max pooling layer, with a (5, 5) pooling size and (2, 2) strides, 
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further reduces dimensions to (36, 46, 64). The following sequence involves two consecutive 

convolutional layers, each equipped with 64 filters and a (3, 3) kernel size utilizing the ReLU 

activation function. 

 

Figure 7. The proposed CNN architecture. 

The second convolutional layer yields an output size of (32, 42, 64), contributing significantly to 

capturing relevant features from the input data and enhancing pattern recognition in facial expressions. 

Once through the average pooling layer with a (3, 3) pool size and (2, 2) strides, the output size 
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becomes (15, 20, 64). This output progresses through two more convolutional layers, each with 128 

filters and a (3, 3) kernel size using ReLU activation. The resultant output is (11, 16, 128). Another 

average pooling layer, mirroring the prior specifications, produces an output size of (5, 7, 128). This 

output is then flattened into a one-dimensional vector with a size of 4480, which is fed into three fully 

connected dense layers, each comprising 1024 filters. For added robustness and to counter overfitting, 

dropout with a 0.2 rate is applied to each dense layer. The final dense layer employs the SoftMax 

activation function, culminating in an output size of 7. These seven values correspond to probabilities 

of each emotion class (anger, disgust, fear, happy, sad, surprise, and neutral). The class with the 

highest probability signifies the model's prediction for the given facial expression, ensuring precise 

and dependable emotion recognition. The choice of the ReLU activation function in the convolutional 

layers over the sigmoid is based on its ability to mitigate the vanishing gradient problem, ensuring 

more effective learning. Additionally, ReLU promotes sparse representation, which has proven to be 

beneficial for deep learning tasks. This architecture, as described and depicted in Figure 7, constitutes 

the backbone of the proposed CNN model, enabling accurate and efficient facial emotion prediction. 

3. Evaluation 

Within the evaluation section, comprehensive insights are furnished regarding the dataset 

employed in the study, followed by a meticulous analysis of the performance exhibited by their 

proposed systems. 

3.1.  Dataset 

Within the scope of this article, a fusion of two separate datasets was executed [26,27]. The 

Japanese Female Facial Expression dataset [26] encompasses a compilation of 213 static grayscale 

female images featuring 10 distinct models, all presented at a resolution of 256 x 256 pixels. On the 

other hand, the Karolinska Directed Emotional Faces dataset comprises [27] 4900 grayscale images 

from 70 different models. The images in both datasets have a resolution of 572 x 762 pixels. All 

images were captured under consistent lighting conditions, and the models did not wear makeup, 

glasses, or earrings. Each model represented in both datasets underwent a comprehensive imaging 

process, capturing a diverse array of images from five distinct perspectives: From full right to half left, 

half right, entire left, and frontal. The positions of the mouth and eyes were consistently fixed on a grid 

for all images, ensuring standardized facial features' alignment. Subsequently, the images were 

cropped to a specified resolution, providing a consistent and uniform dataset. The age range of the 

models included in both datasets ranged from 20 to 30 years, ensuring a consistent age group for 

emotion analysis and prediction. The combined datasets encompass images representing seven distinct 

facial expressions: Anger, disgust, fear, happy, sad, surprise, and neutral. For the purpose of analysis 

and training in their facial emotion recognition system, we assigned numeric labels (0, 1, 2, 3, 4, 5, 6) 

to each of these expressions. This labeling scheme facilitates streamlined processing and classification 

of emotions within the proposed system. The JAFFE and KDEF datasets, while widely used, have 

limitations in terms of diversity in terms of age, ethnicity, gender, and cultural background. This lack 

of diversity may lead to biased or limited model performance when applied to broader, real-world 

scenarios involving a diverse range of individuals. Moreover, the limited size of these datasets can 

pose challenges in terms of generalization. Models trained on smaller datasets may struggle to 

generalize well to previously unseen variations in facial expressions, lighting conditions, and other 

environmental factors. By merging JAFFE and KDEF datasets, we aimed to overcome limitations and 
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create a diverse training dataset, enhancing the model's ability to generalize to unseen variations in 

facial expressions, lighting, and environments. This approach addressed dataset size challenges, 

enriched model training, and improved performance in real-world scenarios 

To create a comprehensive dataset, we merged both datasets, organizing the images based on 

their corresponding emotion labels. Following data pre-processing and augmentation techniques, the 

dataset underwent division into separate training and testing sets. We employed diverse data 

augmentation techniques, including rotation, brightness adjustment, geometric transformations, and 

noise injection, to enhance the model's robustness and generalization, improving its performance in 

facial emotion recognition tasks. Specifically, the testing data constitutes around 11% of the training 

data. With a total of 14,200 images, the training dataset serves as the foundation for the system's 

learning process, while the test dataset, containing 1,580 images, evaluates the model's performance 

and generalization capabilities. To ensure the dataset's quality and to prioritize facial expression 

recognition over face detection, images with undetected faces during the pre-processing stage were 

excluded. This approach focused on refining the model's ability to accurately recognize emotions from 

the detected facial regions. Additionally, we aimed to maintain a balanced dataset by ensuring that 

each emotion class had a similar number of samples. The distribution statistics of each emotion class in 

the final datasets are depicted in Figure 8, demonstrating the dataset's evenness and suitability for 

emotion recognition training. By combining and processing these datasets, we have created a robust 

and diverse dataset for training and evaluating their proposed systems. The balanced nature of the 

dataset ensures that the model can learn effectively from various facial expressions and generalize well 

to unseen data during testing. 

 

Figure 8. (a) Training and (b) Testing data split of the emotion dataset. 

3.2.  Results 

During the evaluation of the proposed system, we conducted a series of experiments to determine 

the optimal architecture and parameters for the CNN model. Following the initial hyperparameter 

tuning phase, the selected configuration involved a learning rate of 0.01 coupled with a batch size of 

100. Stochastic Gradient Descent was employed as the optimizer. The convergence criterion was 

defined as a scenario in which the model's accuracy remained stagnant for a continuous span of 20 to 

30 epochs. The initial phase of training involved utilizing a batch size of 100 and experimenting with 

different configurations of CNN layers, ranging from 1 to 8. The objective was to determine the 

optimal number of layers that would yield the highest accuracy for the facial emotion recognition 
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system. After thorough experimentation, we discovered that the highest accuracy was achieved with 

five CNN layers. Increasing the number of layers beyond this point resulted in longer execution times 

without significant accuracy improvements. The trend of accuracy with varying CNN layers is 

depicted in Figure 9. It's interesting to observe that the accuracy peaks at 70.2% with five layers in the 

model. This optimal configuration was extensively explored in subsequent experiments to enhance the 

system's performance.  

 

Figure 9. Accuracy vs. number of layers. 

After determining the optimal number of layers, we proceeded to adjust the number of training 

epochs within a range of 25 to 500 for fine-tuning the model. After determining the optimal number of 

layers, we proceeded to adjust the number of training epochs within a range of 25 to 500 for 

fine-tuning the model. Figure 10 displays the relationship between the number of epochs and the 

corresponding accuracy. As expected, the accuracy improved with increasing epochs. However, the 

rate of improvement slowed down considerably after 300 epochs. Considering the balance between 

accuracy and computational resources, we selected 300 epochs as the optimal choice. At this point, the 

model achieved an impressive accuracy of 78.1%, making it a competitive contender for comparison 

with other models in further evaluations.  

 

Figure 10. Accuracy vs. number of epochs. 

Table 1 displays the performance metrics for each emotion class, as well as the average values 

across all classes. These metrics provide a comprehensive evaluation of the proposed system's 

performance in recognizing various facial emotions. The model achieves an average precision of 0.78. 

This indicates that, on average, when the model predicts any emotion, it is correct approximately 78% 
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of the time. This suggests a relatively high level of accuracy in the model's overall predictions. The 

average recall score is 0.77. This means that, on average, the model successfully identifies and 

captures 77% of all instances of facial expressions across all emotion classes. The recall score reflects 

the model's ability to detect actual instances of emotions. The average F1-Score is 0.77, and the 

F1-Score is a balanced metric that considers both precision and recall. It measures overall accuracy by 

harmonizing the trade-off between false positives and false negatives. The average F1-Score of 0.77 

indicates a consistent and balanced performance across all emotion classes. These average metrics 

indicate that the proposed model performs well in recognizing and classifying facial emotions. The 

balanced values of precision, recall, and F1-Score reflect a robust and reliable performance in 

accurately predicting emotions while maintaining a reasonable trade-off between precision and recall. 

Overall, the model's average performance underscores its effectiveness in capturing and interpreting a 

diverse range of human emotions. 

Table 1. Performance metrics for all emotions. 

Emotion Precision Recall  F1-Score Support 

0 0.84 0.56 0.67 230 

1 0.82 0.86 0.84 225 

2 0.60 0.60 0.60 225 

3 0.90 0.88 0.89 225 

4 0.79 0.83 0.81 230 

5 0.87 0.84 0.85 220 

6 0.67 0.85 0.75 225 

Avg. 0.78 0.77 0.77 1580 

 

It is worth mentioning that there are several challenges affecting models' performance, including: 

(i) Changes in lighting conditions which drastically affect the appearance of facial features, making it 

difficult for a model to identify consistent patterns across different lighting scenarios; (ii) facial 

expressions can vary based on the pose of the face, such as head orientation; and (iii) different 

individuals express the same emotion in unique ways, and emotions themselves are complex, often 

blending multiple expressions. This variability poses a significant challenge to accurate recognition. 

The proposed framework of CNN has the ability to automatically learn hierarchical features from raw 

data. This includes the ability to capture invariant features across different lighting conditions. Also, 

the CNN is inherently equipped to capture spatial hierarchies in images, enabling the model to 

recognize facial expressions across various poses. This is facilitated by the convolutional and pooling 

layers, which create feature maps that can capture patterns in different spatial resolutions. Moreover, 

with the challenge of limited data and enhanced model generalization, data augmentation techniques 

are employed. By introducing variations in lighting, pose, and other factors during training, the model 

becomes more adaptable to real-world conditions. 

3.2.1. Comparative analysis 

Figure 11 presents a comparative analysis in terms of the accuracy (%) achieved by the proposed 

facial emotion recognition model with that of several standard networks, namely AlexNet, GoogleNet, 

ResNet, VGG, and a custom CNN. All models were trained in terms of accuracy, where VGG achieves 

68.7%, but it has limitations in facial emotion recognition compared to the proposed CNN model. 

AlexNet's 69.6% accuracy is lower, possibly due to its suitability for this complex task. ResNet 
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achieves 71.2% accuracy, outperformed by the CNN model, possibly due to distinct feature learning. 

GoogleNet's 74.1% accuracy is higher than AlexNet's but lower than the CNN models. The CNN 

model achieves a higher accuracy of 78.1% due to its tailored architecture, effectively recognizing 

and classifying facial emotion features, surpassing other established models like AlexNet, 

GoogleNet, ResNet, and VGG. This success is attributed to its robust CNN techniques and 

comprehensive training on diverse datasets, enabling nuanced pattern recognition across various 

facial expressions. The higher accuracy of the proposed model signifies its ability to recognize and 

classify facial emotions more accurately, making it a promising approach for real-world applications 

requiring facial emotion analysis. Despite the limitations of a small dataset, we successfully designed a 

system with good accuracy for facial emotion recognition. The proposed CNN model's performance 

highlights its potential for real-world applications, especially with more extensive datasets for training. 

The experiments and evaluation results validate the effectiveness and superiority of the proposed 

system in recognizing facial emotions compared to state-of-the-art models. 

 

Figure 11. Accuracy of different deep learning models. 

4. Designed GUI 

The trained CNN model impeccably integrates into a dynamic application, providing users with 

the flexibility to analyze both static images and live video streams for facial emotion recognition. 

Within the intuitive user interface, individuals have the freedom to select their preferred mode of 

operation, whether it be processing single images or analyzing real-time video footage. Upon receiving 

input, the application swiftly initiates pre-processing steps to enhance image quality and subsequently 

predicts facial emotions with remarkable accuracy. Leveraging cutting-edge techniques, the 

pre-processing and labeling stages are completed within a mere 20-30 milliseconds, ensuring seamless 

real-time performance across both image and video processing tasks. This streamlined process 

empowers users with efficient and accurate facial emotion analysis capabilities, making it an 

invaluable tool for various applications and scenarios. 
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Figure 12. GUI results for happy, angry, and disgusted facial expressions (Top, Middle, 

and Bottom, respectively). 

We face several challenges in real-time application development encompassed achieving 

real-time performance, designing a user-friendly interface, ensuring compatibility across diverse 

environments, maintaining accuracy and robustness, and optimizing for resource-constrained devices. 

These were addressed through techniques such as optimizing the computational efficiency of the 

CNN model, conducting UI usability testing, compatibility testing, rigorous training, and validation 
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procedures, and employing optimization techniques like model compression and quantization for 

resource-constrained devices. The designed GUI showcases both the unaltered image or frame 

extracted from the video and the cropped facial image employed for the recognition of facial 

emotions. Additionally, two labels are included in the interface: 1. Probabilities of All Labels: This 

label shows the probabilities assigned to each emotion label by the CNN model. For example, for a 

given facial expression, the model may assign probabilities for each emotion class, such as anger, 

disgust, fear, happy, sad, surprise, and neutral. 2. Predicted Emotion: This label shows the emotion 

predicted by the model based on the highest probability among all emotion classes. As an example, 

when the maximum probability is associated with the "happy" emotion class, the label will exhibit 

"happy" as the forecasted emotion. To enhance the accuracy of emotion recognition, the application 

employs a strategy of calculating the average probability of related emotions across all processed 

images. By aggregating the probabilities of different emotions over multiple images, the system aims 

to obtain a more robust and reliable prediction for each facial expression, leading to improved 

accuracy in emotion recognition. This approach helps select the proper label, thereby increasing the 

overall accuracy of the emotion prediction. In Figure 12 (Top), an example of a happy face is 

showcased, and the corresponding emotion label "happy" is prominently displayed on the top-right 

label. The misalignment in the user’s eyes in Figure 12 (Top) is attributed to the real-time processing 

lag of 20-30 milliseconds.” In Figure 12 (Middle), the image depicts an expression of anger, and the 

label "angry" is distinctly presented. In the lower section of Figure 12, the system identifies a facial 

expression conveying disgust, and the associated emotion label "disgust" is showcased on the left. 

Additionally, the application visually displays the probabilities for all three images at the bottom, 

providing valuable insights into the model's degree of confidence in its predictions for each distinct 

emotion class. The user-friendly interface allows users to easily interpret the results and gain a 

comprehensive understanding of the emotion recognition process. This user-friendly and real-time 

application is efficient in displaying the predicted emotions and associated probabilities, making it a 

valuable tool for facial emotion recognition in both still images and live video feeds. The clear and 

intuitive user interface enhances the overall user experience, allowing for effective and accurate 

analysis of human emotions in real-world scenarios. 

5. Conclusions 

In conclusion, we introduce a highly efficient and accurate system for facial emotion recognition, 

leveraging the power of CNN. The proposed system utilizes the power of deep learning to predict and 

assign probabilities to each facial emotion, enabling precise emotion classification. To ensure the best 

performance, the system applies diverse pre-processing steps to each image before feeding it into the 

CNN. These pre-processing steps play a crucial role in optimizing the neural network's ability to 

recognize essential features from the input data. The experimental results demonstrate the superiority 

of the proposed system over other models, indicating its effectiveness in facial emotion recognition 

tasks. The model's performance is further validated through the real-time application with the GUI, 

showcasing promising results and accuracy. We recognize the challenges posed using complex 

networks, as they can result in heavy models that perform poorly during live video processing. In 

response to this concern, the proposed system adopts a strategic approach that strikes a balance 

between accuracy and efficiency. The system ensures smooth and effective facial emotion prediction 

without overburdening the processing capabilities by prioritizing real-time performance while 

preserving robust emotion recognition capabilities. This equilibrium between accuracy and efficiency 
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enhances the practical applicability of the proposed system, making it a valuable tool for real-world 

emotion recognition tasks, particularly in dynamic environments where real-time processing is critical. 

Our research greatly advances facial emotion analysis by achieving a balance between efficiency and 

accuracy, enhancing robustness and generalization, providing benchmarking and comparative 

analysis, and suggesting future directions for multi-modal analysis, contextual understanding, novel 

architectures, and ethical considerations. These efforts promise valuable insights into understanding 

and analyzing human emotions, enriching human-computer interactions across domains. 

Author contributions 

Imad Ali: Conceptualization, Software, Validation, Investigation, Resources, Writing – review 

& editing, Methodology, Validation, Supervision; Faisal Ghaffar: Writing-original draft, Software, 

Validation, Formal analysis, Investigation, Project administration, Data curation, Visualization. All 

authors have read and approved the final version of the manuscript for publication. 

Use of AI tools declaration 

The authors declare that they have not used Artificial Intelligence (AI) tools in the creation of this 

article. 

Conflict of interest 

The authors declare no conflicts of interest in this paper. 

References 

1. Albornoz EM, Milone DH, Rufiner HL (2011) Spoken emotion recognition using hierarchical 

classifiers. Comput Speech Lang 25: 556‒570. https://doi.org/10.1016/j.csl.2010.10.001 

2. Erol BA, Majumdar A, Benavidez P, Rad P, Choo KKR, Jamshidi M (2019) Toward artificial 

emotional intelligence for cooperative social human-machine interaction. IEEE Transactions on 

Computational Social Systems 7: 234‒246. https://doi.org/10.1109/tcss.2019.2922593 

3. Cohn JF, Ambadar Z, Ekman P (2007) Observer-based measurement of facial expression with the 

Facial Action Coding System. The Handbook of Emotion Elicitation and Assessment 1: 203‒221. 

https://doi.org/10.1093/oso/9780195169157.003.0014 

4. Vaillant R, Monrocq C, Le Cun Y (1994) Original approach for the localization of objects in 

images. IEE Proceedings-Vision, Image and Signal Processing 141: 245‒250. 

https://doi.org/10.1049/ip-vis:19941301 

5. Rowley HA, Baluja S, Kanade T (1998) Neural network-based face detection. IEEE T Pattern 

Anal 20: 23‒38. https://doi.org/10.1109/34.655647 

6. Jain V, Learned-Miller E (2010) FDDB: A benchmark for face detection in unconstrained settings. 

Technical Report UMCS-2010-009, University of Massachusetts, Amherst. Available from: 

https://people.cs.umass.edu/~elm/papers/fddb.pdf  

7. Zhu X, Ramanan D (2012) Face detection, pose estimation, and landmark localization in the wild. 

IEEE Conference on Computer Vision and Pattern Recognition, 2879‒2886. 

https://doi.org/10.1109/cvpr.2012.6248014 

https://doi.org/10.1016/j.csl.2010.10.001
https://doi.org/10.1109/tcss.2019.2922593
https://doi.org/10.1093/oso/9780195169157.003.0014
https://doi.org/10.1049/ip-vis:19941301
https://doi.org/10.1109/34.655647
https://people.cs.umass.edu/~elm/papers/fddb.pdf
https://doi.org/10.1109/cvpr.2012.6248014


235 

AIMS Electronics and Electrical Engineering  Volume 8, Issue 2, 217–236. 

8. Yan J, Zhang X, Lei Z, Li SZ (2014) Face detection by structural models. Image Vision Comput 

32: 790‒799. https://doi.org/10.1109/fg.2013.6553703 

9. Viola P, Jones M (2001) Rapid object detection using a boosted cascade of simple features. 

Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern 

Recognition, 1‒9. https://doi.org/10.1109/cvpr.2001.990517 

10. Lienhart R, Maydt J (2002) An extended set of Haar-like features for rapid object detection. 

Proceedings of the IEEE International Conference on Image Processing, 1‒4. 

https://doi.org/10.1109/icip.2002.1038171 

11. Belhumeur PN, Hespanha JP, Kriegman DJ (1997) Eigenfaces vs. Fisherfaces: Recognition using 

class-specific linear projection. IEEE T Pattern Anal 19: 711‒720. 

https://doi.org/10.1109/34.598228 

12. Yang MH, Kriegman DJ, Ahuja N (2002) Detecting faces in images: A survey. IEEE T Pattern 

Anal 24: 34‒58. https://doi.org/10.1109/34.982883  

13. Wu J, Zhang C, Xue T, Freeman B, Tenenbaum J (2016) Learning a probabilistic latent space of 

object shapes via 3D generative-adversarial modeling. Advances in Neural Information Processing 

Systems, 82‒90. https://doi.org/10.1609/aaai.v32i1.12223  

14. Sroubek F, Milanfar P (2011) Robust multichannel blind deconvolution via fast alternating 

minimization. IEEE T Image Process 21: 1687‒1700. https://doi.org/10.1109/tip.2011.2175740 

15. Krizhevsky A, Sutskever I, Hinton GE (2012) ImageNet classification with deep convolutional 

neural networks. Advances in Neural Information Processing Systems, 1097‒1105. 

https://doi.org/10.1145/3065386 

16. Sermanet P, Eigen D, Zhang X, Mathieu M, Fergus R, LeCun Y (2013) Overfeat: Integrated 

recognition, localization, and detection using convolutional networks. arXiv preprint 

arXiv:1312.6229. https://doi.org/10.48550/arXiv.1312.6229  

17. Bartlett MS, Littlewort G, Frank M, Lainscsek C, Fasel I, Movellan J (2006) Fully automatic facial 

action recognition in spontaneous behavior. 7th International IEEE Conference on Automatic 

Face and Gesture Recognition, 223‒230. https://doi.org/10.1109/fgr.2006.55 

18. Pantic M, Rothkrantz LJ (2004) Facial action recognition for facial expression analysis from static 

face images. IEEE T Syst Man Cy B 34: 1449‒1461. https://doi.org/10.1109/tsmcb.2004.825931 

19. Tian YI, Kanade T, Cohn JF (2001) Recognizing action units for facial expression analysis. IEEE 

T Pattern Anal 23: 97‒115. https://doi.org/10.1109/cvpr.2000.855832  

20. Ng HW, Nguyen VD, Vonikakis V, Winkler S (2015) Deep learning for emotion recognition on 

small datasets using transfer learning. Proceedings of the 2015 ACM on International Conference 

on Multimodal Interaction, 443‒449. https://doi.org/10.1145/2818346.2830593 

21. Chaudhari A, Bhatt C, Krishna A, Travieso-González CM (2023) Facial emotion recognition with 

inter-modality-attention-transformer-based self-supervised learning. Electronics 12: 1‒15. 

https://doi.org/10.3390/electronics12020288  

22. Yang D, Huang S, Wang S, Liu Y, Zhai P, Su L, et al. (2022) Emotion recognition for multiple 

context awareness. Proceedings of the European Conference on Computer Vision, 144‒162. 

https://doi.org/10.1007/978-3-031-19836-6_9 

23. Song C, Ji S (2022) Face Recognition Method Based on Siamese Networks Under Non-Restricted 

Conditions. IEEE Access 10: 40432‒40444. https://doi.org/10.1109/access.2022.3167143  

24. Qu X, Zou Z, Su X, Zhou P, Wei W, Wen S, et al. (2021) Attend to where and when: Cascaded 

attention network for facial expression recognition. IEEE Transactions on Emerging Topics in 

https://doi.org/10.1109/fg.2013.6553703
https://doi.org/10.1109/cvpr.2001.990517
https://doi.org/10.1109/icip.2002.1038171
https://doi.org/10.1109/34.598228
https://doi.org/
https://doi.org/
https://doi.org/10.1609/aaai.v32i1.12223
https://doi.org/10.1109/tip.2011.2175740
https://doi.org/10.1145/3065386
https://doi.org/10.48550/arXiv.1312.6229
https://doi.org/10.1109/fgr.2006.55
https://doi.org/10.1109/tsmcb.2004.825931
https://doi.org/10.1109/cvpr.2000.855832
https://doi.org/10.1145/2818346.2830593
https://doi.org/10.3390/electronics12020288
https://doi.org/10.1007/978-3-031-19836-6_9
https://doi.org/10.1109/access.2022.3167143


236 

AIMS Electronics and Electrical Engineering  Volume 8, Issue 2, 217–236. 

Computational Intelligence 6: 580‒592. https://doi.org/10.1109/tetci.2021.3070713  

25. King DE (2009) Dlib-ml: A machine learning toolkit. The Journal of Machine Learning Research 

10: 1755‒1758. https://doi.org/10.1145/1577069.1755843  

26. Lyons MJ, Kamachi M, Gyoba J (1997) Japanese female facial expressions (JAFFE). Database of 

Digital Images. https://doi.org/10.5281/zenodo.3451524 

27. Goeleven E, De Raedt R, Leyman L, Verschuere B (2008) The Karolinska directed emotional 

faces: a validation study. Cognition and Emotion 22: 1094‒1118. 

https://doi.org/10.1080/02699930701626582  

 

© 2024 the Author(s), licensee AIMS Press. This is an open access 

article distributed under the terms of the Creative Commons 

Attribution License (https://creativecommons.org/licenses/by/4.0) 

https://doi.org/10.1109/tetci.2021.3070713
https://doi.org/10.1145/1577069.1755843
https://doi.org/10.5281/zenodo.3451524
https://doi.org/10.1080/02699930701626582

