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Abstract: A novel approach defined by the artificial neural network (ANN) model trained by the 

improved Gauss-Newton in conjunction with a simulated annealing technique is used to control a 

step-up converter. To elucidate the superiority of this innovative method and to show its high 

precision and speed in achieving the right value of the Maximum Power Point (MPP), a set of three 

comparative Maximum Power Point Tracker (MPPT) methods (Perturbation and observation, ANN 

and ANN associated with perturbation and observation) are exanimated judiciously. The behavior of 

these methods is observed and tested for a fixed temperature and irradiance. As a result, the proposed 

approach quickly tracks the right MPP = 18.59 W in just 0.04382 s. On the other hand, the 

outstanding ability of the suggested method is demonstrated by varying the irradiance values 

(200 W/m², 300 W/m², 700 W/m², 1000 W/m², 800 W/m² and 400 W/m²) and by varying the 

temperature values (15°C, 35°C, 45°C and 5°C). Therefore, the ANN trained by Gauss-Newton in 

conjunction with simulated annealing shows a high robustness and achieves the correct value of MPP 

for each value of irradiance with an efficiency 99.54% and for each value of temperature with an 

efficiency 99.98%; the three other methods sometimes struggle to achieve the right MPP for certain 

irradiance values and often remains stuck in its surroundings. 

Keywords: solar power system; MPPT methods; step-up converter; perturbation and observation; 

artificial neural network; artificial neural network trained by Gauss-Newton in conjunction with 
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1. Introduction 

There has been significant progress in conducting research in the photovoltaic (PV) field over 

the last decade [1‒4]. PV energy is generated by the conversion of sunlight and temperature. The 

particular interest in PV energy has driven researchers to enhance and optimize the efficiency of 

energy conversion within PV systems [5‒8]. The autonomous functioning of a PV system in optimal 

conditions requires the optimization of several physical parameters related to the PV generator 

used [9‒11]. Therefore, introducing an electronic converter between the PV generator and the load is 

essential. A step-up converter is suitable to achieve the goal of the studied work [12‒14]. Indeed, as 

defined by the duty cycle, the factor characterizing the step-up device should be controlled by a 

specific technique of the PV power maximization [15,16]. 

In the literature, the numerous documented power maximization techniques are classified into 

three categories namely: Classical iterative methods, revolutionary methods based on artificial 

intelligence and hybrid methods [17‒20]. The first class is mainly based on processing instantaneous 

values of power, currents and voltages, such as Perturb & Observe (P&O) and Incremental 

Conductance (INC). The second class includes techniques based on artificial intelligence, such as 

Artificial Neural Networks (ANN) and Fuzzy Logic (FL). On the other hand, the third class includes 

the techniques defined by the combination of two or more maximum power point tracker (MPPT) 

methods, namely the following: The hybrid two-stage adaptive method, the novel Lyapunov-based 

rapid and ripple-free method, and the adjustable variable step based MRAC method. In [21], the 

P&O method was observed with an oscillatory convergence around the maximum power point 

(MPP), thus causing instability and a margin of error in the found power value. These oscillations are 

explained by the difference between two instantaneous power values. Loukriz et al. [22] presented 

the INC method, known by its damped oscillation due to the small convergence step generated by the 

ratio of the instantaneous variation of current to the instantaneous variation of voltage. On the other 

hand, Goel et al. [23] displayed the ability of the ANN tool to rapidly and intelligently predict the 

value of the duty cycle to control the used converter. Moreover, [24] describes the converter control 

strategy as a set of linguistic rules that allow the value to reach the desired MPP quickly with a better 

performance. The hybrid, two-stage, adaptive MPPT method proposed by [25] is formed by two 

stages: The first stage presents a control block to find the reference voltage for each MPP; and the 

second stage is an adaptive model reference controller block that determines concise values of the 

duty cycle to hold on stable the found MPP. This strategy shows high performances under varying 

irradiances and temperatures. Manna et al. [26] suggested a Lyapunov-based robust model reference 

adaptive controller to quickly find the MPP for rapid variations in irradiance, temperature and output 

load. Singh et al. [27] experimented with an efficient technique for different weather scenarios 

defined by an adjustable P&O variable step. 

In a detailed study, we separately applied P&O and ANN as an MPPT method to control a boost 

converter and closely observed their efficiencies and performances. We found that P&O is accurate, 

unstable, and sensitive to initial values while ANN is less accurate, stable, and did not require initial 

values. We combined these two techniques with the aim to start the convergence by ANN trained by 

the Levenberg-Marquardt (LM) method to approach the optimum of the duty cycle and then hand it 

over to P&O to continue the convergence. Therefore, the obtained method is sensitive to the 

irradiance changes considerably affecting the precision. These results can be explained by the high 

sensitivity of P&O toward the changing climatic conditions [28]. 

While trying to take advantage of the intelligent prediction quality of ANN and its low 

sensitivity towards initial values, we thought of improving its training process to enhance its low 
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precision. In principle, the LM is the most used method to ensure the learning of ANNs. In the 

literature, the convergence of gradient descent methods, such as LM and Gauss-Newton (GN) tends 

towards a local minimum knowing that the shape of the error function to be optimized can have 

either a single global minimum or several local minimums [29]. This can explain the low precision 

observed when searching for MPP by an ANN trained by LM. On the other hand, in [30], we 

proposed an LM combined with simulated annealing (SA) for the parameter identification of the 

single diode model of the solar cell and we obtained the most accurate results compared to those 

reported in the literature. The interest behind the use of SA is interpreted by the existence of several 

local minima in the shape of the error function according to the damping factor, thus characterizing 

the equation of the LM method. In the present paper, for the first time, we proposed to combine the 

conventional GN method with the heuristic technique SA (GNSA) to guarantee global convergence 

during the optimization process treated in the training of ANN. Indeed, GNSA is proposed to ensure 

the training of the ANN network by adjusting the characteristic weights and bias wij, wjm, bij and bjm 

to predict the correct value of the duty cycle corresponding to a defined value of temperature and 

irradiance. 

The three techniques (i.e., P&O, ANN and ANN-P&O) were studied to establish a comparative 

study and highlight the effectiveness of the proposed ANN trained by the GNSA (ANN-GNSA) 

approach. After an in-depth study under variable irradiance and temperature, it is observed that the 

proposed ANN-GNSA method demonstrates a significant efficiency, a good accuracy during the 

search for the MPP and a high robustness towards the meteorological condition’s variation. 

The main contributions of this work are presented as follows: 

 For the first time, this paper proposed the novel ANN-GNSA approach to precisely track the right 

MPP into a PV system based on a step-up converter with a high speed of convergence under 

variable irradiance and temperature values. 

 The idea behind the proposition of the improved GNSA to train the ANN network is explained by 

its descent directions quality guided by the globally convergent SA method to adjust correctly the 

weights and the bias of the hidden and the output layer of ANN tool at each iteration. 

 A fair comparison is carried out between the outcomes of the proposed method and those 

obtained by the P&O, ANN and ANN-P&O approaches to demonstrate the high performances of 

ANN-GNSA in terms of its outstanding accuracy and the speed of convergence toward the 

desired MPP. 

 First, the ANN-GNSA is studied at fixed meteorological conditions (G = 1000 W/m² and T = 

25°C), where it reaches the right MPP = 18.59 W during a convergence time of 0.04832 s. 

 The proposed method controls the step-up converter under variable irradiances G = [200 W/m², 

300 W/m², 700 W/m², 1000 W/m², 800 W/m², 400 W/m²], with an efficiency of 99.54% and 

under variable temperatures T = [15°C, 35°C, 45°C, 5°C] with an efficiency of 99.98%. The 

tracking of MPP in the both cases is ensured with a high speed compared to P&O, ANN and 

ANN-P&O. 

2. Materials and methods: Solar power system 

The functioning within a direct connection between a PV generator (GPV) and a load is carried out 

according to a non-optimal power. Certainly, the power transmitted by a GPV to the output might not 

align with the maximum power [31]. 
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Figure 1. Illustration of a photovoltaic system. 

For this purpose, it is essential to utilize an impedance adaptation stage in direct-direct mode 

(DC-DC) in order to optimize the power at the output of the GPV. In this context, a step-up (Boost) 

chopper-type static electronic converter presents the most appropriate device for this work. A suitable 

MPPT settling the duty cycle of the boost device to its optimal values presents the appropriate 

solution to maximize the power and enable the optimal operation of the PV system. 

2.1. Photovoltaic module modeling 

A PV module is a collection of solar cells generating continuous electrical energy. The mode of 

connection of the cells, either in series or in parallel, is carried out according to the energy 

requirement of the PV voltage or the PV current [32]. 

The equivalent circuit of a PV module based on a single diode is simply the same circuit of the 

PV cell but scaled by Ns. The latter presents the count of solar cells linked in series. The 

multiplication by Ns is applied for series resistance (Rs), parallel resistance (Rsh) and the diode's 

ideality factor (n) [33]. 

 

 

 

 

 

Figure 2. The electrical model of PV module with one diode. 

Iph is the photocurrent, Is denotes the diode’s saturation current, IPV indicates the PV current and 

VPV presents the PV voltage. 

The mathematical equation deduced from the electrical characterization of the PV module, 
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formulating Rs, Rsh, Iph, Is and n parameters as a function of IPV and VPV is presented by Eq 1 [34]. 

   IPV = Iph − Is  exp 

V PV
N s

 + Rs IPV

nVth
 − 1 −  

V PV
N s

 + Rs IPV

Rsh
            (1) 

where Vth is the thermal voltage calculated using (A. T)/q, A presents the Boltzmann constant equal 

to 1.3806503 × 10
-23 

J/°K, q denotes the charge of the electron equal to 1.60217646 × 10
-19

 C and T 

is the temperature of the cell measured in Kelvin. 

The expression of the five intrinsic parameters of the PV module in terms of climatic factors is 

crucial to establish a faithful representative model. Eqs (2) and (3) allow the modelling of a GPV, 

and show the relation with the irradiance (G) and the temperature (T) [35,36]: 

𝐼𝑃𝑉 =  𝐼𝑃𝑉 ,𝑛 + 𝐾𝑖Δ𝑇 
𝐺

𝐺𝑛
                                        (2) 

𝐼𝑠 =
𝐼𝑠𝑐 ,𝑛 +𝐾𝑖Δ𝑇

𝑒𝑥𝑝  
𝑞 𝑉𝑜𝑐 ,𝑛 +𝐾𝑖Δ𝑇 

𝑛𝑉𝑡ℎ
 −1

                                         (3) 

where ΔT denotes the variation between the given T and Tn which is the nominal value of T, Voc,n is 

the nominal value of the open circuit voltage, Gn presents the nominal value of the irradiation, IPV, n 

indicates the nominal value of the photovoltaic current, Ki is the coefficient of the current and Isc, n  

presents the short circuit current of the solar cell. 

2.2. Electronic boost converter 

In this study, a boost type static electronic converter was used to increase the energy coming 

from the module intended to supply the output load. Figure 3 illustrates an electrical circuit of the 

boost converter based on an inductance L, an input capacitance Cint, an output capacitance Cout, a 

diode D, and a Mosfet K controlled by the duty cycle at its trigger [37].  

 

 

 

 

Figure 3.  The electrical circuit of the boost converter. 

VPV is the generated voltage by the PV module, Vs is the voltage at the output load and ipv is the input 

current. 

The duty cycle D is calculated as follows: 
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is the voltage at the output of the PV module. 

The inductance L is found by Eq 5 using ripple current inductors ΔiL [38]: 

 

ssL

PVsPV

Vfi
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                       (5) 

where fs is the switching frequency of the step-up device. 

The value of the input capacitance can be found by the following equation [38]: 

ss

s

Vf
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(max)
                        (6) 

3. MPPT control 

3.1. Principal of MPPT technique 

To guide the module towards its operating MPP, the power optimization process requires a 

specific mechanism called the "maximum power point tracker" (MPPT) settling an adaptation stage 

[39‒41]. 

 

Figure 4. Position of MPP in the IPV(VPV) curve. 

To achieve this, the implementation of a specific MPPT method is crucial. The most prevalent 

power maximization methods reported in the literature include the following: 

• The conventional perturbation & observation (P&O) method, 

• The classical artificial neural network (ANN) method, 

• The ANN in conjunction with the P&O method. 

These methods have been studied to underscore the performance of the novel ANN-GNSA 

methods. 

3.2. Perturbation & Observation method  

As its name indicates, the P&O method applies perturbations at the VPV voltage and observes 

the sign of the instantaneous power variation in order to decide the convergence direction [21]. 

 



386 

AIMS Electronics and Electrical Engineering  Volume 7, Issue 4, 380–405. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Presentation of P&O algorithm. 

The perturbation is ensured by applying either positive or negative adjustments, depending on 

the convergence orientation towards the MPP point. This process first begins by incrementing the 

voltage by adding a positive step. This increment addition operation is adopted if the adjusted value 

of the generated power is always positive. Once this variation turns negative, the voltage is either 

decreased or increased by either a negative step or by a positive step, respectively, depending on the 

position of the functioning point, placed either on the left or on the right of the MPP, respectively. 

3.3. Artificial Neural Network  

Due to its black box characteristic, this tool allows us to model problems without any prior 

knowledge of the physical or theoretical functioning of a system. The ANN helps to establish a 

significant liaison between its inputs and outputs. This connection is ensured by updating the 

characteristic parameters, named ―weights‖ (wij and wjm) and ―bias‖ (bij, bjm), thus marking its 

internal structure formed by layers of neurons [23]. 

The neural network operates as a MPPT command to automatically generate the exact duty 

cycle according to the temperature (T) and the irradiance (G) values given at the input. The 

effectiveness of an ANN highly depends on the success of the learning process as well as on the 

optimal number of hidden neurons, which was fixed at six neurons in this study. The learning process 

is generally ensured by the LM method whose training principle is based on the backpropagation 

technique. Typically, the inputs of the ANN network are T and G, and the output is simply 
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represented by the duty cycle D, which is intended to control the activation of the chopper Mosfet. 

The proposed ANN network aimed to find the PPM point, which is illustrated as follows: 

 

 

 

 

 

 

Figure 6. The suggested ANN architecture. 

where i refers to the index of the output layer, j pertains to the index of the hidden layer, m denotes 

the index of the input layer, wij signifies the weight linking the hidden neurons to the output, 

wjm represents the weight linking the input neurons to the hidden ones, bij indicates the bias of the 

output neurons and bjm denotes the bias of the hidden neurons. 

The generation of the exact value of the duty cycle strongly depends on the learning accuracy of 

the network and the optimal number of the hidden neurons. The training process mainly requires an 

experimental database presenting the examples (T, G), as well as the corresponding values of the 

duty cycle D. The database D = f (G, T) used in this paper includes 600 examples sweeping a large 

margin of T and G, thus allowing the network to be able to predict the exact value of D regardless of 

the value of T and G. 

The training process is divided into two stages: the learning stage and the testing stage. During 

the learning stage, almost 500 examples are provided to the network during the convergence of the 

classical LM algorithm. During this phase, the network intelligently learns how to predict the value 

of the D factor according to T and G, which are given as inputs. The prediction capacity and 

efficiency of the network are demonstrated during the test phase using 100 examples of data D = f (G, 

T), which are completely different from the examples already processed during the learning stage. 

 

 

 

 

 

 

Figure 7. The learning process of the ANN by the optimization of MSSE. 
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The studied objective function ―mean of sum squared errors (MSSE)‖ is defined as follows [42]: 

𝑀𝑆𝑆𝐸 =
1

𝑁
     𝐷𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑  𝑖, 𝑟 − 𝐷𝑡𝑎𝑟𝑔𝑒𝑡  𝑖, 𝑟  

2
 𝑁𝑠

𝑖=1  𝑁
𝑟=1      (7) 

where N is the number of examples, Ns is the number of output neurons, r denotes the index of the 

used target data, I indicates the index of the used output, Dpredicted presents the output value computed 

by the network and Dtarget is the target value of the output. 

3.4. ANN in conjunction with P&O  

The principle of this approach consists of starting the execution of the algorithm with the ANN 

model. The predicted value of D, which is close to the optimal one, is taken by the P&O method as 

an initial value to continue its convergence and judiciously seek the exact value of D corresponding 

to the MPP [43].  

After correctly training the ANN network with approximately 600 examples of D = f (T, G) 

during the two phases (i.e., learning and testing in the optimization process and identification of the 

correct values of the weights and the bias), the ANN tool provides the well-determined wij, wjm, bij 

and bjm, which are able to predict the correct value of the duty D for any value of T and G.  

The ANN executed first in the ANN-P&O algorithm is merely presented as a feedforward 

equation Eq 8 based on the well-identified wij, wjm, bij and bjm, thus resulting from the training 

process [44]. 

𝐷 = 𝐹𝑠   𝑤𝑖𝑗 𝐹
𝑐   𝑤𝑗𝑚 𝑥𝑚 + 𝑏𝑗𝑚  𝑁𝑐

𝑗=1  + 𝑏𝑖𝑗  
𝑁𝑠
𝑖=1          (8) 

I denotes the index of the output neurons, j presents the index of the hidden neurons, m is the index 

of the input neurons, yi indicates the output of the network, xm is the inputs of the network [T, G], 

F
s
 is the activation function of the output neurons, F

c
 is the activation function of the hidden neurons 

and Nc is the number of hidden neurons. 

3.5. Proposed method: ANN trained by GNSA  

3.5.1. Gauss-Newton method associated with the heuristic Simulated Annealing (GNSA) 

The GN method is a conventional iterative technique aimed to ensure a parameter identification 

using descent directions dn. In this paper, GN is used to train the ANN network through the 

adjustment of the weights and the biases wij, wjm, bij and bjm at each iteration n during the 

optimization process of the MSSE error function, according to the following expressions cited 

in [45]: 

𝜃𝑛+1 = 𝜃𝑛 + 𝛼 𝑑𝑛                         (9) 

𝑑𝑛 = −
𝐽 ′ 𝜖

𝐽 ′ 𝐽
          (10) 

where dn is the descent direction at an iteration n, J is a matrix formed by four Jacobeans or the first 

four derivatives functions of Eq 8, J’ presents the transpose of the Jacobean, 𝛼 indicates either the 

step size factor or the length of descent direction, 𝜖  denotes the generated error between the 

computed Eq 8 and the experimental Dtarget, θ is the vector of the fours weights and biases to be 

adjusted [wij, wjm, bij , bjm] and n is the number of iterations. 
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Figure 8. Presentation of ANN-P&O. 
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The convergence of the GNSA algorithm requires declares the initial value of θ and the 

expression of either the four first derivatives or the Jacobeans ―J” of Eq 8 at the start of its code. The 

latter presents D(θ). Each Jacobean among the four ones is obtained by deriving D(θ) according to a 

parameter from the four (wij, wjm, bij, bjm) parameters, such as: J = 

[ 𝛿𝐷 𝛿𝑤𝑖𝑗 𝛿𝐷 𝛿𝑤𝑗𝑚 𝛿𝐷 𝛿𝑏𝑖𝑗 𝛿𝐷 𝛿𝑏𝑗𝑚 ]. During its execution, at an iteration n, GNSA 

determines the optimal value of αn by the SA technique and multiplies this value to the calculated 

value of the descent direction dn (Eq 10). The resulting value is added to the previously found value 

of θn to generate the adjusted value θn+1 to be processed during the next iteration. Just after, the 

iteration of n increments and this principle of GNSA functioning loops until finding the good value 

of θ, corresponding to the minimum error of MSSE. 

The SA approach was chosen after a further study of the behavior of MSSE according to large 

marge of α values at each iteration n of GNSA convergence during the training of the ANN. From 

this, the MSSE is observed with many local minima. To reach the global minimum, the SA is 

executed at each run of GN to find the most precise α value that leads to a good identification of the 

weights and the biases wij, wjm, bij and bjm. This combination between the GN and SA techniques 

defined by GNSA is used in this research as a new neural network training approach presented by the 

enhanced ANN-GNSA method. 

3.5.2. The flowchart of ANN-GNSA 

The training process of the ANN by the novel optimization GNSA technique is illustrated in the 

following flowchart and then explained in detail step by step. 

Step 1: - Give the experimental samples of the inputs (T, G) and the output D, 

      - iteration n = 1, 

             - Simultaneously start the two stages of learning and the test, 

Step 2: - Learn the ANN model by the improved GNSA method using the characteristic equations Eq. 

9 and Eq. 10 to adjust the four parameters θ = [wij, wjm, bij, bjm], 

             -The learning phase is carried out using its own experimental data of D and (T, G), fixed at 

500 examples, 

Step 3: - Compute the MSSElearning criterion at an iteration n based on 100 examples of test. 

Step 4: - Give the adjusted weights θn at an iteration n, 

Step 5: - Compute the feedforward equation Eq 8 based on the learning examples and by using the 

adjusted weights θn at a fixed iteration n, 

             - Compute the feedforward equation Eq 8 based on the 100 examples of the test data and by 

using the adjusted weights θn obtained at the same iteration n, 

Step 6: - Compute the H(n) = MSSEtest   criterion, 

Step 7: - If H(n) < H(n - 1) 

 Reset a counter variable ―c = 0‖, 

 Increment the iteration n = n + 1, 

 Loop to step 2. 

  - Otherwise, increment the counter variable c = c + 1 

Step 8:  - If c different to 6 

 Loop to step 2, 

     - Otherwise, if c equal to 6 
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 Stop the training process, 

Step 9: Give the optimal and the well-adjusted value of the θ parameter. 
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Figure 9. Flowchart of the proposed ANN-GNSA. 

4. Results and discussions 

To emphasize the efficiency of the new method, three techniques (P&O, ANN and ANN-P&O) 
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4.1. Simulated modeling of the photovoltaic system under Simulink 

The used PV module is Solarex MSX-20L. It is comprised of 36 cells attached in series and 

characterized by the parameter’s values shown in Table 1. On the other hand, the overall parameters 

values characterizing the structure of the step-up converter is shown in Table 2. 

Table 1. The settings of Solarex MSX-20L module. 

Parameters Values 

Maximum power Pmax 20 W 

Current at maximum power IMPP 1.17 A 

Voltage at maximum power VMPP 17.1 V 

Short-circuit current Icc 1.27 A 

Open-circuit voltage Vcc 20.8 V 

Table 2. Calculated parameters of the boost converter. 

Parameters Values 

Input capacitor Cin 771.6 µF 

Inductance L 189.8 µH 

Switching frequency f 30 kHz 

Output capacitor Cout 57.16 µF 

 

The control of a PV system is given by the ―MPPT‖ subsystem which contains the code of the 

algorithm being processed (P&O, ANN, ANN-P&O or ANN-GNSA). The load connected to the 

output is a 30 Ω resistor. 

 

Figure 10. Illustration under Simulink of a photovoltaic system based on MPPT. 

Equations (1), (2) and (3) have been implemented as blocks in the ―Solarex module‖ subsystem 

to emulate the PV module, as shown in Figure 11. 
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Figure 11. Schema under Simulink of PV module Solarex MSX-20L. 

The graphical presentation of the boost converter is shown in the model illustrated in Figure 4. 

The corresponding model is presented by the hereby illustration. 



394 

AIMS Electronics and Electrical Engineering  Volume 7, Issue 4, 380–405. 

 

Figure 12. Schema under Simulink of boost converter. 

4.2. Training process of the ANN-GNSA by D= f (G, T) data set 

A fixed value of the pair (G, T) corresponds to a given value of the response IPV(VPV). In this 

study, several responses measured experimentally for 600 different values of the pair (G, T) of the 

Solarex module were taken into consideration. Figures 13 and 14 show some experimental curves of 

IPV(VPV) for the variables G and T. 

     

Figure 13. Three IPV(VPV) characteristic under variable irradiance. 

 

Figure 14. Three IPV(VPV) characteristic under variable temperature. 



395 

AIMS Electronics and Electrical Engineering  Volume 7, Issue 4, 380–405. 

In order to extract all 600 values of D to be called out during the training of ANN at its output, 

we proposed to execute a P&O algorithm to generate the corresponding value of D for a precise 

curve of PPV (VPV). PPV is obtained by multiplying the VPV and the IPV. The P&O algorithm used is 

performed 600 times for 600 different PPV (VPV) curves obtained for 600 different values of T and G. 

The examples considered during the training process are formed by (G, T) and D.  

Five hundred examples of D = f (G, T) are used during the learning of ANN-GNSA and 100 

examples D = f (G, T) are employed during the test of its effectiveness.  

The number of hidden neurons have been judiciously studied by observing MSSEtest for 

different number of hidden neurons, where 15 is the optimal number at which the obtained MSSEtest 

is the lowest one, as shown in Figure 15. 

 

Figure 15. Study of the number of hidden neurons. 

The learning process of ANN-GNSA is based on the minimization of the objective function 

MSSElearning. Figure 16 shows a decreasing curve until the iteration 270. The learning stop is decided 

at iteration 223 instead of 270 to avoid over-learning caused by the memorization of the network of 

the set of examples D = f (G, T), which leads to an erroneous prediction of the values of D at the 

output. 

A good decision of the learning stop is made based on the convergence of ANN-GNSA during 

the test phase. Indeed, when the MSSEtest curve successively increases six times during a decrease of 

MSSElearning, the learning of the ANN should stop (Figure 17). 

 

Figure 16. Convergence of MSSElearning. 
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Figure 17. Convergence of MSSEtest. 

The values of D found by ANN-GNSA are shown in Figure 18. An illustration of the target 

values and the predicted values of D in the same figure shows the compatibility amongst the two, 

which proves the effectiveness of ANN-GNSA. 

 

Figure 18. Different samples of duty cycle D according to number of examples. 

4.3. Study of the generated PV power controlled by the proposed ANN-GNSA technique 

4.3.1. For climatic conditions: G = 1000 W/m² and T = 25°C 

To shed light on the exact maximum power value reached by each MPPT method (P&O, ANN, 

ANN-P&O or ANN-GNSA), the PPV have been presented according to time in Figure 19. The real 

target maximum power PPV corresponding to G = 1000 W/m² and T = 25°C is set at 18.59 W. As it is 

clearly seen, the ANN-GNSA method runs into an MPP equal to 18.59 W during 0.04382 s as 

compared to 18.55 W at 0.06667 s for the ANN-P&O, 18.28 W at 0.08008 s for the ANN and a 

range of power [18.31 W – 18.57 W] during [0.05808 s – 0.09156 s] for the P&O. Therefore, the 

proposed MPPT technique is the fastest and the most precise to track the right MPP value. 
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Figure 19. Evolution of the PV power according to time of P&O, ANN, ANN-P&O and 

of the proposed ANN-GNSA technique. 

The generated value of the control factor D of the step-up converter varies depending on the 

used MPPT method. Indeed, Figure 20 shows that the values of D given by the P&O are changeable, 

thus leading to oscillations at the PPV curve (Figure 19). D is fixed at 0.3103 for the ANN and at 0.28 

for the ANN-GNSA, where the second one is best explained by the achieved power PPV = 18.59 W, 

which is considered the desired value. On the other hand, the ANN-P&O starts from the value of D = 

0.3103 generated by the ANN and converges to a value of D = 0.2863 close to that provided by the 

ANN-GNSA. From these observations, we deduce that the value of D = 0.28 is the most optimal 

value for G = 1000 W/m² and T = 25°C. 

 

Figure 20. Evolution of the duty cycle D according to time of P&O, ANN, ANN-P&O 

and of the proposed ANN-GNSA technique. 

In Figure 21, the evolutions of PPV(VPV) obtained by the four studied MPPT methods were also 

taken into consideration. In the latter a vertical offset of 0.5 W is established between the four curves 

to shed light on the tracking accuracy provided by the improved ANN-GNSA method. 
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Figure 21. Evolution of the PV power according to PV voltage of P&O, ANN, ANN-

P&O and of the proposed ANN-GNSA technique. 

4.3.2. For variable values of G and T = 25°C 

 

Figure 22. Evolution of the PV power according to time under variable irradiance of 

P&O, ANN, ANN-P&O and of the proposed ANN-GNSA technique. 

The P&O, ANN and ANN-P&O methods can’t correctly achieve the right MPPs, as is the case 

of G = 300 W/m² and G = 400 W/m². On other hand, the ANN method is less efficient at tracking the 

desired MPPs; it remains stuck in its neighborhood, especially in the case of G = 200 W/m², G = 

300 W/m², G = 1000 W/m² and G = 400 W/m². However, the ANN-P&O and the proposed ANN-

GNSA are more efficient in reaching the correct MPP values. 
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Figure 23. Evolution of the PV power according to voltage under variable irradiance of 

P&O, ANN, ANN-P&O and of the proposed technique ANN-GNSA. 

To evaluate the performance of the P&O, ANN, ANN-P&O and ANN-GNSA techniques to 

reach to optimal value of MPP, we are based on the convergence time to be concluded from Figure 

22 and on the tracking efficiency η to be calculated from the obtained maximum PPV (MPP) of each 

MPPT method through the following expression [46]: 

𝜂 =
𝑃𝑃𝑉  𝑚𝑒𝑎𝑛

𝑃𝑃𝑉  𝑚𝑎𝑥  
          (11) 

where PPVmean is the mean PV power delivered by the photovoltaic module, and PPVmax is either the 

maximum PV power or the MPP. 

Table 3 shows the optimal power MPP to achieve at each irradiance, as well as the maximum 

power generated by each method among the four methods. The quality of the tracking of MPP by 

each technique is illustrated by the calculated efficiency values and by the reached convergence time 

(tc). 

Table 3. The efficiencies and the tracking times obtained by the P&O, ANN, ANN-P&O 

and by the proposed ANN-GNSA method for variable irradiance 

The P&O, ANN and ANN-P&O approaches take the longest time to reach the MPPs with a 

significant gap compared to their target values. The proposed ANN-GNSA is faster and tracks the 

    

 

G(W/m²) 

Target 

MPP 

(W) 

 

P&O ANN ANN-P&O ANN-GNSA 

Obtained 

MPP 

(W) 

tc(s) Obtained

MPP 

(W) 

tc(s) Obtained 

MPP 

(W) 

tc(s) Obtained 

MPP 

(W) 

tc(s) 

200 1.858 1.586 0.1095 - 0.1152 0.4517 0.0239 1.553 0.1766 1.613 0.1 

300 4.026 3.437 0.5772 - 0.5831 2.243 0.5659 3.371 0.6028 4.026 0.5887 

700 12.72 12.68 1.045 - 1.047 12.7 1.038 12.72 1.105 12.72 1.04 

1000 18.59 18.55 1.541 - 1.549 18.28 1.547 18.55 1.66 18.59 1.517 

800 14.69 14.61 2.025 - 2.039 14.63 2.032 14.67 2.082 14.67 2.005 

400 6.676 5.9 2.598 - 2.604 5.766 2.606 6.076 2.624 6.676 2.594 

 

η (%)  96.93  92.34  97.28  99.54  



400 

AIMS Electronics and Electrical Engineering  Volume 7, Issue 4, 380–405. 

MPP with high efficiency. The convergence time margins for the P&O are [0.1095 s - 0.1152 s], 

[0.5772 s - 0.5831 s], [1.045 s - 1.047 s], [1.541 s - 1.549 s], [2.025 s - 2.039 s] and [2.598 s - 

2.604 s]. For the ANN method, the convergence times are 0.0239 s, 0.5659 s, 1.038 s, 1.547 s, 

2.032 s and 2.606 s and for the ANN-P&O method, the convergence times are 0.1766 s, 0.6028 s, 

1.105 s, 1.66 s, 2.082 s and 2.624 s. The speed of tracking the MPP by the proposed ANN-GNSA 

method is considered faster than the other three techniques for G set at (1000 W/m², 800 W/m² and 

400 W/m²), as it is shown by the convergence times: 1.517 s, 2.005 s, 2.594 s. For a G defined at 

(200 W/m², 300 W/m² and 700 W/m²), the ANN is observed faster than the ANN-GNSA, though less 

precise in the reached MPP values. The MPP search efficiencies are as follows: 96.93% for the P&O, 

92.34% for the ANN, 97.28% for the ANN-P&O and 99.54% for the proposed approach. From these 

all outcomes, the ANN-GNSA demonstrates its outstanding and its superiority to track the optimal 

MPP with a high efficiency during less convergence time. 

4.3.3. For variable values of T and G = 1000 W/m² 

 

Figure 24. Evolution of the PV power according to voltage under variable temperature of 

P&O, ANN, ANN-P&O and of the proposed technique ANN-GNSA. 

Table 4. The efficiencies and the tracking times obtained by the P&O, ANN, ANN-P&O 

and by the proposed ANN-GNSA method for variable temperature 

 

From Figure 24 and Table 4, the ANN-GNSA outperforms the other comparative methods in 

    

 

T(°C) 

 

Target 

MPP 

(W) 

P&O ANN ANN-P&O ANN-GNSA 

Obtained 

MPP 

(W) 

tc(s) Obtained

MPP 

(W) 

tc(s) Obtained 

MPP 

(W) 

tc(s) Obtained 

MPP 

(W) 

tc(s) 

15 19.39 19.32 0.2589 17.890 0.2657 19.16 0.2266 19.37 0.2096 

35 17.77 17.77 0.8724 17.61 0.8741 17.61 0.8849 17.77 0.8198 

45 17.35 17.32 1.559 16.84 1.608 17.31 1.558 17.35 1.549 

5 20.19 20.2 2.329 19.36 2.404 20.02 2.418 20.2 2.301 

 

η (%)  99.87  95.98  99.19  99.98  



401 

AIMS Electronics and Electrical Engineering  Volume 7, Issue 4, 380–405. 

terms of the convergence times and the efficiency. Indeed, the proposed method has an efficiency of 

99.98% as compared to 99.87% for the P&O, 95.98% for the ANN and 99.16% for the ANN-P&O. 

Moreover, the ANN-GNSA demonstrates its high speed in tracking the MPP for different 

temperature values: For T = 15°C the tc = 0.2096 s, for T = 35°C the tc = 0.8198 s, for T = 45°C the 

tc 1.549 s and for T = 5°C the tc = 2.301 s.  

5. Conclusions 

A novel and enhanced method, named the ANN trained by GNSA, is proposed in this paper to 

control a step-up converter within a PV system under varying irradiances and temperatures. The 

ANN-GNSA is evolved to ensure the fast and accurate tracking of the MPP, under variable irradiance 

and temperature values, without oscillations. Some MPPT methods such as the P&O, ANN and 

ANN-P&O are used to shed light on the performances of the proposed controller. For a fixed G = 

1000 W/m² and T = 25°C, the ANN-GNSA has the smallest tracking time (0.04382 s) compared to 

other MPPT methods [0.05808 s – 0.09156 s] for the P&O, 0.08008 s for the ANN and 0.06667 s for 

the ANN-P&O. Under a variable irradiance, the obtained efficiency is 99.54% compared to 96.93% 

for the P&O, 92.34% for the ANN and 97.28% for the ANN-P&O; on other side, the variable 

temperature is equal to 99.98% as compared to 99.87% for the P&O, 95.98% for the ANN and 

99.19% for the ANN-P&O. By varying the irradiance in the margin [200 W/m², 300 W/m², 

700 W/m², 1000 W/m², 800 W/m², 400 W/m²], the proposed MPPT controller converges faster 

toward the MPP with convergence times of 0.1 s, 0.5887 s, 1.04 s, 1.517 s, 2.005 s and 2.594 s, 

respectively. A similar behavior is observed by varying the temperature in the margin [15°C, 35°C, 

45°C, 5°C]; the convergence times are 0.2096 s, 0.8198 s, 1.549 s and 2.301 s, respectively. From 

these outcomes, the enhanced ANN-GNSA is considered a promising MPPT technique due to its 

outstanding performance under variable irradiances and temperatures. 

In a future study, we will lead a comparative study of the behavior and the tracking time of the 

ANN-GNSA implemented on FPGA, Arduino and on a microcontroller. 
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