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Abstract: Powerline communication is gaining momentum with the rise of the smart grid, the 

Internet of Things as part of the 4th industrial revolution and associated applications such as 

transportation and energy efficiency. Coupling and channel characterization are essential parts of a 

power-line communication system. Therefore, understanding these components allows performance 

evaluation and prediction of the system. This paper presents an entire review of couplers and channel 

characterization modeling techniques used in narrow and broadband power-line communication 

systems. Types and applications of different couplers are presented; a review of different power-line 

communication channel modeling techniques and the fundamentals allows a clear understanding of 

factors influencing or affecting the signal propagation through the channel. The purpose of this 

review is to guide researchers and system designers looking for literature resources on couplers and 

channel characterization for power-line communication applications. 
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1. Introduction 

The concept of power-line communication (PLC) consists of using electrical power cables or 

lines to transmit communication signals. Major George Squier of the US Army first implemented it 
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in the 1910s. He transmitted an analog voice signal over a pair of power-lines. The signals were used 

by utilities in the operation of the distribution networks. In the 1930s, PLC technology was mature, 

allowing the transmission of telephonic signals over power lines [1]. A communication system for 

grid operation became more indispensable as the power network grew. Utilities have been using 

various communication systems, including PLC. The latter proved to be efficient and economical, as 

it uses preexisting power lines, decreasing its deployment cost. Nowadays, applications for 

power-line communication systems have widened with the emergence of the smart grid concept, 

where there is a need for constant communication for real-time monitoring and operation in energy 

management and network security [2]. 

Moreover, PLC systems are used in smart homes for broadband, voice and video 

communications [3–5]. They have applications in avionics, where power lines are used for data 

transmission, thus reducing the cable footprint on an aircraft [6]. Similar methods are introduced in 

the electrical vehicle industry [7,8]. 

A device called the coupler injects the communication signal into the electric power line or 

cables. Note that the power lines might be Direct Current (DC) or Alternating Current (AC) lines. 

The coupler blocks the main DC voltage from the grid and passes the communication signal for DC 

lines. In practice, the PLC transceiver signals are coupled to the power lines through the coupling 

device, which also has the task of filtering out power signals in the case of AC power lines and other 

noise.  

PLC systems are classified according to their operating frequencies: Narrowband or Broadband. 

The narrow-band refers to the operating range of 5 kHz - 500 kHz, while the broadband ranges from 

1.7 MHz to 30 MHz. Currently, various researchers are looking into increasing the frequency up to 

500 MHz, increasing the data transfer rate and consequently widening the applications linked to high 

data transmission [9]. The ongoing research on PLC technology also focuses on coding, modulation, 

coupling and channel characterization. Coupling and channel components are key aspects of PLC 

systems. This study focuses on the literature on the past, present and future trends of coupling and 

channel characterization. The aim of this paper is to serve as a guide to researchers and PLC system 

designers by providing to them literature resources on coupler and channel characterization for 

power-line communication applications. 

2. Coupling 

The coupling is an essential part of power line communication; thus, there is a need to 

understand and improve it for a brighter future for PLC. The future of PLC depends mainly on how 

the Coupling Unit (CU) is designed, interfaced and coupled with a Power Grid and how it performs 

under a very noisy environment. There are six criteria by which PLC couplers can be classified: (1) 

The physical connection, (2) Voltage level, (3) Voltage type, (4) propagation mode, (5) frequency 

band and (6) number of connections. Figure 1 shows different types of PLC in each category. 

However, in this study, we will focus on the physical connection. It deals mostly with the 

communication signal integration, injection and extraction into and from the power line. Therefore, 

according to the physical configuration to connect to the line, there are four coupling methods: 

antenna, resistive, inductive and capacitive.  
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Figure 1. Classification of power-line communication couplers. 

2.1. Antenna coupling 

The antenna coupling method was first used in power line communication. It consisted of 

running a parallel wire or antenna alongside the power line to induce or extract the communication 

signals in the line. The antenna coupling method for power line communication was preferred in high 

voltage transmission lines due to its safety, because it does not have direct contact with the electrical 

power line. It uses air as dielectric insulation with low chances of progressive deterioration, as might 

be the case with air dielectric-based capacitors. The antenna coupling method has the advantage of 

having wires out in the open, easily accessible for inspection and maintenance. However, the 

Antenna coupling system is disadvantaged by the required extra stringing of wires at the substation 

that might require reinforcing the supporting structure or towers. According to [10], this 

disadvantage was why the antenna coupling was superseded by the capacitor coupling method, not 

the efficiency, as usually thought. Figure 2 shows the equivalent circuit model of an antenna coupler. 

Figure 2. Antenna coupler model. 

The antenna coupling method is again getting the attention of researchers focusing on PLC 

wireless systems [11,12]. [13] presents the straight power line antenna model, an analytical and 

numerical approach for solving the Pocklington integro-differential equation of induced current 

distribution by an antenna into an overhead line situated over a finite conducting ground. In [14], an 

investigation was made on interference effects on PLC communication where the building wiring 

system is used as an antenna. [15] presented a patented method for integrating a Wi-Fi antenna into a 

low-voltage (LV) distribution system wiring. The method was called an Integrated Long-Wire Dipole 
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Antenna (ILDA). Authors in [16] presented a contactless power line communication system. The 

presented system uses a cable as an antenna for coupling to the power line that carries and radiates 

2.45 GHz Wi-Fi signals over a distance. The system with antenna coupling proved to perform well 

for a maximum range of 40 m.  

2.2. Capacitor coupling 

The capacitor coupling method is a sequel to the antenna coupling method due to its 

compactness and easy installation in a substation; the capacitive coupling method offers high power 

transfer among other PLC coupling methods or techniques [17]. In this method, the communication 

system or circuit is directly connected to the power line through the capacitor, as shown in Figure 3. 

Note that two types of coupling capacitors are used in PLC applications: transformer and 

transformerless capacitor coupling [18,19]. The transformer capacitive coupler is advantageous in 

galvanic isolation and protection against the surge that might affect the communication equipment or 

transceiver. This type of coupling is expensive due to the added cost of a transformer. It is usually 

used for AC circuits, but they are also found in DC systems [20,21]. 

In contrast, though economical, the transformerless capacitive coupling method does not offer 

galvanic communication circuit isolation from the power mains [22,23], thus making it less safe for 

the transceivers and the users of the communication equipment. To overcome the galvanic isolation 

issue of PLC transformerless capacitive coupling, [24] presented an opto-capacitive PLC coupling 

method, which offers full galvanic isolation to communication equipment from the power line. 

Figure 3. PLC capacitive coupling configuration: (a) Coupling through a transformer and 

(b) Coupling without a transformer. 

The capacitor coupling method is primarily used in PLC high voltage applications for 

communication signal integration into the power lines [25]. [26] specified the essential 

characteristics of coupling capacitors in PLC, ratings and capacitor tests such as high voltage 

impulse withstand to determine the insulation capacity, thermal stability, etc. Table 1 provides an 

approximate list of currently available coupling capacitors for different voltage levels. 

In [27], the feasibility of using a capacitor current-based coupling technique for PLC signal 

reception in the form of current is presented. Compared to classic PLC, the presented technique 

improves the PLC signal reception in the AC-DC converters during the charging period of the 

smoothing capacitor. However, it has a drawback in that the capacitor charging duration is short and 

dynamic; it depends on the capacitance of the filter and the load current. This affects the coupling 

performance. This drawback is addressed in [28], where the authors proposed a time diversity 

concept for couplers. The concept consists of an automatic switch between the PLC capacitor 

current-based coupling and the normal PLC voltage-based coupling. 
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Table 1. Commonly used coupling capacitors [25]. 

 

PLC Capacitive coupling with Single Input Single Output for application in High Voltage 

transmission lines is discussed in [29]. The PLC coupler is designed for narrow and broadband PLC 

and is connected between the line and the ground. Note that two line-to-ground coupling schemes are 

used in narrow-band single and two-frequency resonant circuits. Figure 4 shows the implementations 

of both schemes.  

Figure 4. Capacitive coupling configuration for High Voltage lines: (a) narrow-band 

single frequency coupling configuration and (b) two-frequency narrow-band coupling 

configuration. 

PLC coupling integrating capacitor and optoelectronics caught the attention of some researchers. 

In [29], a detailed model of PLC over a Medium Voltage network is developed and validated by an 

on-field test; capacitive coupling is used to interface the communication circuit to the power circuit 

on both sides of the line. A capacitive coupling for PLC is used in [30], where a new low-cost 

medium-voltage PLC coupler for a smart grid is presented.  

The proposed coupling method makes use of the existing capacitor of the voltage detector 

installed in the medium voltage switchboard for PLC signal injection or extraction to and from the 

line. The design and characterization of the capacitor coupler based on a voltage detector for 

application in smart energy systems are presented in [31]. The capacitive coupling method is also 

Voltage class (kV) Coupling range (μF) Voltage class (kV) Coupling range (μF) 

34 0.004-0.010 161 0.012-0.014 

46 0.004-0.015 230 0.0009-0.010 

69 0.003-0.015 287 0.0006-0.007 

92 0.002-0.020 345 0.0005-0.006 

115 0.019-0.020 500 0.0014-0.005 

138 0.014-0.016 765 0.0023-0.005 
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used in [32]. In [30], a capacitor is used in the coupling diversity for the PLC interface to a 

networked Light Emitting Diode lighting system in a smart building context. A broadband 

opto-capacitive-based PLC coupler method is presented in [31]. The proposed method combines a 

capacitor and an opto-coupler to increase the safety of users and improve communication signal 

extraction.  

2.3. Inductor coupling  

Another method of physically coupling PLC circuits to mains is through inductors. The 

inductive coupler can be installed in series or shunt-in with the mains. Figure 5 shows both 

configurations of inductor coupling, and the shunt inductor coupling provides complete electrical 

isolation between the PLC circuits and the electrical power line or cables.  

The inductive couplers work on the electromagnetic induction principle. The communication 

signal flowing through the electrical power line or cable is induced in the secondary coil of the 

coupler, in the case of serial inductive coupling, which is connected to the rest of the PLC circuits or 

transceiver for communication signal treatment. This process for serial inductive coupling is likened 

to the potential transformer method. In the case of shunt inductive coupling, a similar principle of 

electromagnetic field induction holds as in a current transformer. In the latter case, the installation 

does not require power service interruptions, as there is no electrical contact between the main power 

line and the coupler. The latter is just clamped around the power lines [32]. Figure 5 shows the 

configuration of PLC serial and shunt inductive couplers T1 and T2. They consist of magnetic coils 

wound around a magnetic material and the inductor output terminals connected to a PLC circuit. The 

inductive coupler might suffer from saturation in MV networks due to high current [33]. Various 

research studies have been done on mitigating the magnetic saturation that might affect the quality of 

the coupling [34–37]. 

Figure 5. PLC inductive coupling configurations: (a) series inductive coupling and (b) 

shunt inductive coupling. 

A high magnetic coupling coefficient is required from a shunt inductive coupler, also known as 

a non-invasive coupler, to have minimum signal injection loss and signal return loss. These are 

usually related to the properties of the magnetic material of the coupler current transformer like 

linearity, the maximum primary current transmissible and the phase error [37–41]. A clamp inductive 

coupling model for PLC application in medium voltage distribution is presented in [42]. An 

efficiency analysis based on the structure type of the coupler and the cable structure was performed; 

a mathematical model of the coupling associated with the Rogowski coil was developed, including 

the loose-coupling transformer model and the mutual inductance. The calculation and simulation 

results showed the effects of various coupler parameters on signal transfer. The model proved to be a 
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good analysis tool for applying PLC in the intelligent distribution network. The performance of 

Rogowski coils-based inductive couplers for PLC in lithium battery traction was addressed in [43]. 

The authors proposed using a Rogowski-based inductive coupler for PLC in battery management due 

to its non-saturating effects, simplicity and light weight. The results show that using a Rogowski 

coils-based PLC coupler is a practical method in the lithium-ion battery packs management 

application of PLC. 

Various research studies have focused on inductive coupling, as it is considered the best method 

of coupling for PLC due to the simplicity of installation and improved safety for users provided by 

the galvanic isolation between the line and the coupler circuits. [35] presented the characteristics of a 

nanocrystalline-based inductive coupler for contactless PLC application in an electric vehicle. The 

results showed that using a miniaturized nanocrystalline coupler reduces the amount of electrical 

wiring and, therefore, the overall weight of the electric vehicle. In [44], a nanocrystalline-based 

inductive coupler is used in an electric vehicle's experimental high voltage PLC application. The 

results show that high voltage power-line communication reduces wiring cable weight and allows a 

data transmission rate of 35 Mbps, enabling a successful real-time video transmission from the 

engine room to the trunk. [45] presented a feasibility study on using power-line communication to 

regulate an inductive power transfer in modern electronic systems and appliances; the inductive 

coupling method was used for data transmission over the lines. The performance improvement 

possibility of a coupled power line transfer (WPT)- power line communication system is investigated 

in [46]. The results show that a higher, wider band for communication is achieved. [47] presented a 

comparative evaluation of the effects of capacitive and inductive PLC couplers on the quality of 

bi-directional video transmission using broadband over PLC in mining.  

2.4. Resistive coupling 

The resistive coupling method is suitable for low-voltage narrow-band PLC system applications. 

Figure 6 shows a resistive coupling circuit as proposed in [48]. It consists of resistors configured as 

the voltage divider, a buffer, filtering and an amplification unit. The voltage divider reduces the 

incoming mains voltage signal to an acceptable level for the bandpass filter. The latter extracts the 

communication signal in the frequency range of interest, and it is fed into the amplifier. The 

amplified signal is processed by the analog to digital converter and subjected to further processing by 

the PLC transceiver. The resistive coupling is cheap and easy to implement, but it does not offer a 

galvanic isolation.  

Figure 6. Resistive PLC coupler configuration diagram. 

3. Channel modeling and characterization 

Understanding the transmission medium or channel through which the signal travels is crucial 
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for any communication system designer, thus the importance of channel modeling and 

characterization in the PLC system implementation. It provide the channel impact on the transmitted 

communication signal, allowing system performance prediction [49–52]. The channel modeling falls 

into the following categories: statistical, deterministic, parametric and field-based measurement 

modeling [53].  

PLC channel characteristics and effects on the transmitted signal are described based on the 

transmission line model, as shown in Figure 7. Consider a power line from point 𝑎 to point b, 

currying currents 𝐼(𝑎, 𝑡) and 𝐼(𝑏, 𝑡), at voltage levels 𝑉(𝑎, 𝑡) and 𝑉(𝑏, 𝑡). The parameters of the 

line are resistance per unit length R in (Ω m ), per unit length inductance L in (H
m ), per unit length 

capacitances C in (F
m ) and per unit length conductance G in (Ω

−1

m ). The line effect on the 

transmitted signal is obtained from the high frequency equation (1) of the transmission line [54]. 

Figure 7. Transmission line model. 

 
−

 𝑣 𝑏,𝑡 −𝑣(𝑎,𝑡)

∆𝑥
= 𝑅𝑖 𝑎, 𝑡 + 𝐿

𝜕𝑖

𝜕𝑡

−
 𝑖 𝑏,𝑡 −𝑣(𝑎,𝑡)

∆𝑥
= 𝐺𝑣 𝑎, 𝑡 + 𝐶

𝜕𝑣

𝜕𝑡

                                 (1)  

 

Knowing that 𝑣 𝑎, 𝑡 = 𝑅𝑒[𝑉 𝑎, 𝑡 ] and 𝑖 𝑎, 𝑡 = 𝑅𝑒[𝐼(𝑎, 𝑡)], equation 1 results in the following.  

 

−
𝑑𝑉

𝑑𝑎
=  𝑅 + 𝑗𝜔𝐿  𝐼(𝑎) 

−
𝑑𝐼

𝑑𝑎
=  𝐺 + 𝑗𝜔𝐶  𝑉(𝑎) 

 

 

 𝑑2𝑉 𝑎 

𝑑𝑎 2
=  𝑅 + 𝑗𝜔𝐿  𝐺 + 𝑗𝜔𝐶 𝑉 𝑎 = 𝛾2 𝑉(𝑎)

 𝑑2𝐼 𝑎 

𝑑𝑎 2 =  𝑅 + 𝑗𝜔𝐿  𝐺 + 𝑗𝜔𝐶 𝐼 𝑎 = 𝛾2 𝐼(𝑎)

                                   (2)  

 

𝛾 = the coefficient of propagation, and it is calculated using equation 3:  

 

𝛾 =   (𝑅 + 𝑗𝜔)(𝐺 + 𝑗𝜔𝐶) = 𝛼 + 𝑗𝛽                                  (3) 

 

where α is the attenuation portion, and β is the propagation portion.  

 

Then,  
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𝑉𝑂 =  𝑉𝑂
+𝑒−𝛾𝑎 + 𝑉𝑂

−𝑒𝛾𝑎    and  𝐼𝑂 =  𝐼𝑂
+𝑒−𝛾𝑎 + 𝐼𝑂

−𝑒𝛾𝑎 .                          (4) 

 

From the above equations, the line characteristic impedance is calculated as in [55]. 

𝑍𝐿 =  
𝑉𝑂

𝐼𝑂
=   

(𝑅+𝐽𝜔𝐿 )

𝐺+𝑗𝜔𝐶 )
                                     (5) 

The line per unit characteristic impedance parameters are given by the following formulas [56]. 

𝑅 =
1

𝜋 𝑟
  

𝜋𝑓𝜇

𝜎
                                             (6)  

𝐿 =
𝜇

𝜋 
 cosh−1(

𝐷

2𝑟
)                                      (7) 

𝐶 =
𝜇𝜀

cosh −1(
𝐷

2𝑟
) 
                                         (8) 

𝐺 =
𝜇𝜎

cosh −1(
𝐷

2𝑟
) 

                                          (9) 

The above equations show that the signal attenuation is a function of the line's characteristics, 

such as the frequency and the length of the transmission line or the channel and the configuration. 

Note that the impedance of the line changes as the loads are connected or disconnected [57,58]. This 

creates a mismatch in impedance and reflections along the line branches [59–61]. Thus, it is more 

challenging to develop a characteristic channel model for PLC in low and medium-voltage networks 

than in high voltage, where point-to-point networks are usually found. The channel modeling allows 

the evaluation of PLC channel transmission capacity and the system performance [62]. Many 

researchers have developed various PLC channel model methods and transfer functions for different 

applications and environments [63–66]. 

[67] presented the use of power line communication technology for data exchange over a DC 

bus in a spacecraft. An analysis of a channel characterization and an electromagnetic compatibility 

evaluation of a PLC link for low-speed interconnection with sensors were performed. The modal 

analysis method is used for channel performance estimation. Asimulation of coupling for onboard 

PLC for a spacecraft power bus, using Simulation Program with Integrated Circuit Emphasis (SPICE) 

simulator,is presented in [68]. In the latter, a DC bus channel characterization was performed for 

transmission performance evaluation. Note that simulation and emulators are cost-effective methods 

for channel model validation. In [69], an easily configurable, practical and circuit area-efficient low 

voltage broadband PLC channel simulator is presented. It is implemented and validated on the FPGA 

platform. In [70], a channel emulator for broadband, multiple input multiple output PLC is shown. 

The emulator is FPGA based, allowing very reliable and reproducible testing results for PLC 

channels, modem and couplers. The results of the physical validation of the emulator are presented in 

[71]. A narrow band PLC channel emulator for smart grid application is presented in [72]. It allows 

overcoming the difficulties of the verification process of a PLC system. 

Ultra-Wide Band transmission (UWB) channel characterization and simulation are presented 

in [73]; the paper investigates the concept of indoor application of UWB PLC transmission. The 

results show that a high data transmission rate is feasible in the range of 50‒500 MHz. However, 

early study results in [74] suggested a wider frequency band of 50–800 MHz for high data rate 

transmission over the power-line as a feasible range. In that study, the characterization of household 

power-line for UWB communication and experimental channel testing emphasized radiation, signal 
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attenuation and dispersion. 

Various research studies have also focused on broadband channel characterization for different 

PLC applications. [75] presented a method for developing a model for the transfer function of a 

power line communication network. The derived model uses the reflection and transmission factors 

and considers all connected loads and the line distance. A comprehensive study on channel modeling 

of broadband communication over low voltage networks is presented in [76]. The ABCD two-port 

model of the low voltage distribution network is described, and the related transfer function is 

derived. A channel characterization of broadband power-line communication based on transmission 

line theory is presented in [77]. The channel characteristics are derived using transmission line theory, 

reflection theory and radiation loss of a long line, and the transfer function for a theoretical two-wire 

PLC is developed. In [78], skin effect and proximity effects impact low voltage power-line 

broadband communication channel parameters. An approach for attenuation evaluation for a 

multipath model for broadband power-line communication is presented in [79], and the channel 

transfer is developed based on the proposed approach. Characterization and modeling of various 

power-line communication channels are presented in [80]. The authors also proposed an approach for 

channel modeling for broadband power line communication in low voltage radial network topology. 

The broadband PLC on the customer side and its interaction with the network caught the attention of 

the researchers. Thus, in [81], the authors investigated the impact of a fundamental characteristic of a 

power distribution network on the client premises on broadband PLC. The results showed that the 

model for average attenuation fails to represent the character of a broadband PLC system; rather, a 

multipath model proposed by the authors is much more suitable for Broadband Power Line 

communication channel characterization on the customer side. 

PLC application in houses is growing with energy efficiency, house automation and the internet 

of things [82]. Thus, the research on indoor PLC is gaining attention, as the channel characterization 

for indoors is complex due to the dynamic nature of its impedance and the topology of the 

network [83]. An analysis of broadband communication over the indoor PLC channel is presented in 

[84]. The authors developed an ABCD-based matrix to evaluate the channel transfer functionand to 

investigate the impact of network topology variation and the system's performance. The paper 

provides a detailed analysis of the impact of the channel capacity regarding the channel size and its 

overall impedance. In [85], channel modeling and estimation for indoor power-line communication 

are presented. The authors used Zadeh's series expansion to model the power-line channels, and 

various channel parameter estimation methods are presented. In [86], a lattice approach for 

high-speed indoor PLC channel modeling is presented. The method regards the power line network 

as a lattice structure, and the proposed model is validated against the experimental measurements. 

Broadband PLC channel performance for different topologies is presented in [87]. Different 

topologies of indoor network models are developed, and transfer functions for power-line channels 

are derived. A MatLab environment is used for simulation.  

Among the PLC deployment options or environments is outdoor deployment. It is deployed 

over a short-range network in rural, urban and suburban areas and isolated in small distribution 

networks [88]. A characterization of NB-PLC for automatic metering in a smart grid in an urban 

environment is presented in [89]. The paper also evaluates the performance of the NB-PLC in 

wireless technologies for the frequency ranges of 9‒500 kHz and 865‒870 MHz 

An analysis of outdoor power line communication is presented in [90]. The authors made 

outdoor measurements on the distribution network to obtain the channel characteristics. The results 
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converge with the statistical model theory, and the delay spread of the channel is evaluated. [91] 

presented a noise characterization and modeling of the PLC line. In the study, various noises in the 

network are characterized, and types of noise, their sources and their potential impacts on the 

channel are identified. White noise, colored noise and impulse noise are identified in the PLC 

channel, allowing design of adequate mitigation measures. A narrow-band noise characterization and 

channel capacity of the network in France are presented in [92]. Various sites are used for 

experimental measurements of low voltage NB-PLC channel frequency and estimation of theoretical 

channel capacity.  

Knowledge of the channel's noise characteristics is essential in PLC system design. The noise 

model and estimation are part of the channel characterization, allowing the performance evaluation. 

Many researchers have focused on noise in the context of PLC. This paper presents some of the work 

found in the literature. In [93], the characterization of time variation of power-line frequency 

response is presented simultaneously with impulsive noise. The authors established a correlation 

between the impulsive noise and variation in channel frequency response by using a statistical 

analysis of variation. The impulse noise mitigation method in the power-line channel is presented 

in [94]; the technique uses a subcarrier coding of the OFDM–MFSK scheme. It uses the permutation 

code in multiplexing and processing, which improves the bit error rate performance. [95] presented a 

capacity analysis of an NB-PLC system with background and impulsive noise. Gaussian noise and 

the Laplace distribution method characterize the background and impulsive noise. The Gaussian 

method is also used in [96] for capacity analysis of narrow-band PLC channels operating in the range 

of 3 kHZ – 500 kHZ in the presence of impulsive noise. In [97] an analysis of channel characteristics 

of impedance, noise and signal attenuation in power-line communication is presented, and a 

comparative analysis of two existing power-line channel models is conducted. 

Overhead lines are used mainly in electric power transmission and distribution networks. 

Although primarily dominated by overhead lines, the distribution networks have a fair share of 

cables. PLC is gaining the attention of researchers for its application in Low voltage distribution 

networks in the context of smart grids [98]. An approach to study and simulate signal transmission 

characteristics over low voltage is presented in [99]. Two wire-based model and the chain parameters 

matrices methods are used for transfer function derivation. An analysis of channel behavior in 

response to network parameter variation is presented. The results show a correlation between the 

transfer function and the network configuration. In [100], a PLC channel characterization is 

presented for a distribution network based on measurement. Mathematical models of the spectral 

density of the power for the two types of noise, the background and the impulsive, are developed. 

In [101], a Markov chain method is proposed to model a PLC channel in a low voltage network. [102] 

presented an approach for modeling a low voltage broadband PLC channel using graph theory. PLC 

channel modeling for a three-phase distribution line for an intelligent system is presented in [103]. 

The model uses three phases and has the advantage of considering the source and load admittance 

matrices, and the model is validated by measurement. [104] presented an investigation on the impact 

of characterization of power loads on statistical modeling of an indoor power network. The 

bandwidth range of interest is 100 kHz – 50 MHz, and the results show a marginal load 

characterization effect on the accuracy of a statistical model channel in the frequency range above 

20 MHz. In [105], the statistical modeling of hybrid PLC-wireless channel characteristics is 

discussed. The authors provide an excellent statistical model that facilitates a full apprehension of the 

hybrid PLC-wireless channel. 
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In addition to the channel characterization, modulation is one of the key aspects in the 

development and application of PLC. The PLC signals are subjected to hostile dynamic channel 

conditions not found in other communication channels, thus the need for an appropriate selection of 

the modulation scheme. [106] highlighted some aspects to consider in selecting a modulation scheme: 

susceptibility to various noises, the time-varying nature and frequency selectivity of PLC channels 

and the limitation of the transmitted power over PLC due to electromagnetic compatibility. The 

modulation methods usually used in PLC are single carrier, spreading spectrum and Orthogonal 

Frequency Division Multiplexing (OFDM) [107,108]. The single carrier modulations are simple to 

implement and are adopted in narrowband. However, they are not appropriate for broadband. The 

spreading spectrum modulation method was initially developed for military applications to resist 

intentional frequency interference. This characteristic is used in PLC applications to prevent 

frequency fading caused by multipath effects [109]. The OFDM method is used for high speed 

broadband PLC, as it has a great spectral efficiency [110]. Compared with other modulation methods 

used in PLC, OFDM presents the highest transmission rates and is the most suitable modulation 

method for PLC applications [111]. ITU-T-G.9903 regulates the OFDM modulation method in the 

CENELEC band standard. [112] presented various PLC standards and their relevant modulation 

methods. 

4. Conclusions 

A review of power-line communication research focusing on couplers and channel 

characterization has been presented. The coupling is essential to the power-line communication 

system and the transmission channel. Understanding the channel or medium through which the signal 

travels is critical to any communication system designer. It allows the estimation and the prediction 

of the performance of the transmission and reception operations and the quality of the signal, thus 

allowing the development and improvement of methods. 

In this paper, the classification of the coupling methods is presented. It is based on various 

criteria such as voltage nature, voltage level, propagation mode and physical connection of the 

coupler. Various research studies on the couplers have been presented, including prosand consand 

each type's current and future applications.  

Channel characterization theory is provided to explain factors and parameters that affect the 

communication signal over the power line. Past, current and future trends in the field have been 

presented. Different methods and techniques used for mathematical models for channel 

characterization in narrow and broadband frequency ranges have been presented. The current 

challenges to be addressed by future research are highlighted.  
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