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Abstract: This article aims to examine the |Sy;| parameter of a multiband Coplanar Waveguide
(CPW)-fed antenna. The proposed square-shaped antenna-1 (Ant.1) and antenna-2 (Ant. 2) are
primarily composed of three ground terminal stubs: Terminal-1 (T1), Terminal-2 (T2), and
Terminal-3 (T3), all of which have an inverted L-shaped radiating patch. The proposed antennas’
resonance frequencies (f) can be adjusted by the electrical dimension and length of the stub
resonators, the dielectric constant (g,) of substrate materials, and their appropriate thicknesses. It will
have an impact on their return loss (|S11]), Impedance Bandwidth (IBW), radiation pattern, and
antenna performance in terms of frequency characteristics, as demonstrated in this article. The
proposed structure based on Flame-Retardant fiber glass epoxy (FR4) substrate covered a wideband
frequency range from 1.5 to 3.2 GHz, (IBW = 1.7 GHz) and from 3.4 to 3.65 GHz (IBW =
0.25 GHz). The total IBW is 1.95 GHz, at S;; < —10 dB with three resonance frequencies of values fr
= 1.75, f, = 2.65, and f3 =3.50 GHz) for triple-band applications. The results are compared with the
research work reported earlier. The proposed Ant.1 ensured, dual and triple band applications
whereas the proposed Ant. 2 ensured dual, triple and quad bands applications with reasonable
antennas’ sizes similar to the earlier reported works. Furthermore, the impacts of various substrate
materials as well as different lengths of multi-stub resonators on the operating bands and resonance
frequency are thoroughly explored and analyzed for these antennas.
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1. Introduction

Owing to the significant prominence in current research on awareness of compact multi-band
devices, design methods have been reliant on efficiently modifying and optimizing the antenna shape
and its overall geometry. The antennas having small structure, planar geometry, lightweight, low cost,
and particularly offering two or more frequency bands coverage are extremely needed for wireless
applications. The multiband antennas with excellent radiation characteristics and large impedance
bandwidth with desired radian pattern are required for advanced communication systems [1]. The
best antenna that meets these requirements, is an antenna fed by a coplanar waveguide, since it
provides low leakage of radiation and less dependence of characteristics impedance on substrate
material and height. It is so because its patch, feed and ground are lying in the same plane which
ascertains its easy integration with all other microwave devices.

In recent wireless communication systems, a multiband antenna has been playing a very
important role in Radio Frequency (RF) service requirements. Personal Communications Service
(PCS, 1.8/1.9 GHz), Digital Cellular System (DCS, 1.8 GHz), Global System for Mobile
Communications (GSM, 1.8/1.9 GHz), International Mobile Telecommunication (IMT,
2.0/2.3/2.8/3.8/4.6 GHz), Universal Mobile Telecommunications System (UMTS, 2.1 GHz),
Worldwide Interoperability for Microwave Access (WIMAX, 2.5/3.5/5.5 GHz), and Wireless Local
Area Network (WLAN, 2.4/5.2/5.8 GHz) have been widely applied in mobile devices, such as
handheld computers and intelligent phones [2—4]. The unique open-ended slots are used in a compact
Asymmetric Coplanar Strip (ACS)-fed printed monopole antenna for WLAN and WiMAX
applications. The slots are implanted in the ACS-fed monopole to bring two notched bands, as
addressed in [2]. A CPW-fed triple-band planar monopole antenna is reported in [3]. Printed antenna
structure over the rectangular substrate by cutting two rectangular corners of optimized size. The
radiator of this antenna is very compact on which two Inverted-L-Shaped slots are etched to achieve
three radiating elements to set three resonating modes for triple-band operation as addressed in [3]. A
broadband asymmetric dual-loop antenna is reported [4] for wireless communication applications.
This antenna consists of two asymmetric radiated loops and an asymmetric feeding structure, making
it easy to offer combined effects of multiband, widened bandwidth with omni-directivity [4].

A compact triple-band microstrip slot antenna is suggested for multiband characteristics which
are addressed in [5]. This antenna consists of a microstrip feed line, a substrate, and a ground plane
on which some simple slots are etched. The rectangular and trapezoid slots can achieve dual
frequencies and provide a broadband operation at high frequencies. The additional resonant mode is
excited with the use of a pair of symmetrical horizontal strips embedded in the rectangular slot [5]. A
planar geometry triple-band CPW-fed antenna is developed for wireless applications. The wide IBW
performance of the antenna is ensured, by using different shapes of tuning stubs and modified ground
plane structures, as reported in [6,7]. A rectangular multiband planar antenna with defected ground
structure is demonstrated. T-shaped slits are introduced on either side of the radiating patch which
offers a dual-band with better IBW. Further, a zig-zag shaped slit is inserted, due to which the
antenna resonates at an additional third band, as described in [8]. The CPW-fed patch antenna
designs are proposed for triple and quad-band applications with various shapes of structures. Slot
loading methods are used to reduce the size of a patch antenna and to produce multiband operation in
a stated frequency range, which is reported in [9-12].

Substrate material and slot techniques are used for size reduction and impedance matching,
which is laminated on different dielectric materials for multiple communication systems as explained
in [13-16]. The performance assessment of CPW-fed antenna using various substrate materials and
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its thickness are introduced in [17-19]. A parametric study on three different high dielectric substrate
materials for multiband and large impedance bandwidth characteristics is investigated in [20]. A
novel method has been developed to reduce the size of the antenna without affecting other
constraints of geometry. This is conceivable of different types of dielectric substrate material [20-23].
The performance of the antenna mainly depends on the properties of dielectric materials used in the
antenna design and fabrication. The study of microwave materials and their dielectric properties at
microwave frequencies is a precondition to selecting appropriate materials for numerous microwave
applications [21]. The thicker substrate carries more efficiency and wider IBW with lower dielectric
constant but large antenna size. Hence high dielectric constant substrate technique to allow overall
appropriately small antenna size has been analyzed for RF and microwave applications [22,23].

In this article, compact square-shaped planer antennas (Ant.1 and Ant.2) have been proposed
and designed for RF communication systems that can support multiband applications. Three ground
terminal stubs, T1, T2, and T3, and an inverted L-shaped radiating stub are etched on a
square-shaped patch for the proposed antennas. The suggested CPW-fed antenna's |S;1| parameters
have been evaluated. To accomplish the required performance characteristics for multiband
operations, it is built utilizing four distinct dielectric materials with g, of 2.2, 3.2, 4.3, and 9.8.

The proposed Ant.1 is laminated on Alumina (¢, = 9.8) to set two resonating modes for
dual-band operation at f;; = 1.9 GHz and f., = 2.8 GHz frequencies. Its wide bandwidth of 0.55 GHz
at —15 dB (1.70-2.25 GHz) and 0.60 GHz at —20 dB (2.50-3.10 GHz) covers the GSM 1800/1900
(1.710-1.805 GHz and 1.850-1.990 GHz) and 2.8 GHz IMT (2.700-2.900 GHz) bands completely.

The proposed Ant.2 is based on FR4 (¢ = 4.3) and Rogers (g = 2.2) to cover three and four
operating bands, respectively. Based on FR4 substrate Ant.2 (Q) resonates at f; = 1.75 GHz, f,=
2.65 GHz, and f3 = 3.50 GHz frequencies, covering three different bandwidths of 0.25 GHz at
—-15dB, 0.40 GHz at —20 dB, and 0.25 GHz at —10 dB, which can fulfil PCS 1.8/1.9 GHz
(1.750-1.870 GHz and 1.880-1.990 GHz), and WIMAX 2.5/3.5 GHz (2.500-2.690 GHz and
3.400-3.690 GHz) bands.

The influences of substrate materials and lengths of multi-stub resonator on the operating bands
and resonance frequencies have also been investigated in proposed Ant.2 (Q) based on Rogers
substrate. The antenna resonates at 1.4/1.9/3.2/3.8° GHz and covers four separate impedance
bandwidths of 0.25 GHz at —10 dB (1.35-1.60 GHz), 0.50 GHz at —12 dB (1.70-2.20 GHz), 0.75
GHz at —15 dB (2.75-3.50 GHz), and 0.55 GHz at —15 dB (3.60-4.15 GHz), which may satisfy IMT
service (f;= 1.4 GHz, FDD LTE band), GSM 1800/1900 (1.710-1.805 GHz and 1.850-1.990 GHz),
Radio Location Service (f. = 3.1 GHz) and IMT (f. = 3.8 GHz, 3.400-4.200 GHz) bands.

Computer Simulation Technology (CST) implements the design and simulation results. The
antenna design is performed using CST, the electromagnetic simulation software inside the
microwave studio utilizing the Finite Integration Technique (FIT) in transient mode. The rest of the
article is organized as follows. The antenna shape and substrate material are discussed in detail in
section 2. The proposed antennas’ design topology and improved |S;;| parameters are discussed in
section 3. The parametric studies being an important parameter are presented in section 4 for both the
proposed antennas, and the article is concluded in section 5.

2. Antenna geometry and substrate materials

Figure 1 depicts the shape of the base antenna [17,18] and suggested CPW-fed square patch
antennas, with geometrical characteristics listed in Table 1. The proposed Ant.1, Ant.2 (T), and Ant.2
(Q) are all designed on a FR4 substrate with a 0.76 mm thickness, & = 4.3, loss tangent (tans) of

AIMS Electronics and Electrical Engineering \Volume 6, Issue 3, 198-222.



201

0.017, and overall dimensions of 50 (L) x50 (W) mm?. An inverted L-shaped radiator stub and
ground planes with a thickness of 0.08 mm have been implanted on the upper layer of the substrate
for all these antennas. To set the 50 Q impedance, the CPW-fed line of the base antenna and
proposed antenna is 4.2 mm wide (Wg) and has a gap distance (Gap) of 0.3 mm between the
feed-line and the ground plane. The radiating patch has made up of an inverted L-shaped stub with a
Wrg = 4.2 mm and lengths of Lx and Ly of 10.5 mm in both directions.

The resonance frequencies of an antenna are determined by the substrate's dielectric constant,
thickness, and area of radiating stubs [13,14]. An antenna has been built to improve performance by
selecting the appropriate substrate material and thickness [17-19]. There are a few technologies that
can be used to increase the bandwidth of a CPW-fed antenna without changing its geometry.

‘GND Terminal-T,

—

GND Terminal-T,
«————————

(b)

Figure 1. Front view geometry: (a) base antenna, (b) proposed Ant.1, and (c) proposed Ant.2.

Table 1. Optimized geometrical units of the base and proposed antennas.

Schematic Configuration of Proposed Antennas (Units: mm)
Antennas Ground Terminal-1 (T1) Ground Terminal-2 (T2) Ground Terminal-3 (T3) Antenna
Lx(T1) | Ly(T1) | t(T1) Lx(T2)| Ly(T2) | t(T2) | Lx(T3) | Ly(T3)| t(T3) Response
Base Ant. [17] 24.0 18 0.4 24.0 14 0.4 NA NA NA Single-band
Base Ant. [18] 215 14.7 4.2 215 147 4.2 NA NA NA Single-band
Proposed Ant.1 20.5 19 0.5 205 15 0.5 05 NA 0.5 Dual-band
Proposed Ant.2 (T) 20.5 19 0.5 20.5 15 0.5 07 8 0.5 Triple-band
Proposed Ant.2 (Q) 20.5 19 0.5 20.5 15 0.5 07 16 0.5 | Triple/Quad band

Lx: Length in x-direction: Ly: Length in y-direction: Lx(T1): Length of terminal-1 in x-direction; Lx(T2): Length of terminal-2 in
x-direction; Lx(T3): Length of terminal-3 in x-direction; Ly(T1): Length of terminal-1 in y-direction; Ly(T2): Length of terminal-2
in y-direction; Ly(T3): Length of terminal-3 in y-direction; t(T1): Width thickness of terminal-1; t(T2): Width thickness of
terminal-2; t(T3): Width thickness of terminal-3; (T): Triple-band; (Q): Quad-band; NA: Not Applicable

The soft substrate offers low value of dissipation factor as compared to hard substrate, so the
prior is preferred for the design of microstrip patch antenna. However, owing to its poor dimensional
stability, soft substrate-based antenna, relatively offers limitation at higher frequency ends. Its
dielectric constant variation further, limits the upper usable frequency range. They are available as a
single layer of metallization supporting micro-strip construction and some have thick metal backing,
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which assists in mechanical stability and heat removal. Soft substrates are available for microwave
applications up to a few GHz and have fine fiber weaves [20-22]. There are a few examples of soft
substrates that can be used at frequencies well above 10 GHz and are listed in Table 2.

The application of different soft substrates material having a dielectric constant ranging from
2.2 < g < 12 provides higher bandwidth. If the substrate material of a CPW-fed patch antenna is
changed, the overall antenna performance is affected. The selection of proper substrate material plays
a vital role in antenna design [17]. Several researchers used g > 2.2 for specific purposes such as
higher IBW, more gain, etc. The proposed Ant.1 and Ant.2 are made from four different substrate
materials with dielectric constants of 2.2 (Rogers), 3.2 (Arlon), 4.3 (FR4 Epoxy), and 9.8 (Alumina).
As shown in Table 7, the substrate thicknesses of 1.11 mm, 0.95 mm, 0.76 mm, 0.51 mm, and 0.40
mm are examined for each substrate material.

Table 2. Properties of typical microwave substrate materials.

Property Rogers Arlon FR4 Alumina  Condition/Range
Dielectric Constant (g;) 2.2 32 4.3 9.8 1to 10 GHz
Dissipation Factor (tand) 0.0004 0.0038 0.017 0.0020 10 GHz
Thermal Coefficient of g, (ppm/K) =125 -110 -80 —43 =55 to +125<C
Thermal Conductivity (W/m.K) 0.26 0.235 0.45 0.76 80 to 100C
Specific Heat (J/g.K) 0.96 0.90 0.95 0.72
Volume Resistivity (MQ-cm) 2x107 1.2x10°  8x10"  2x10°
Surface Resistivity (MQ) 3x107 45x10"  2x10° 4x10’

Break down voltage (kV) >60 >45 >32 >18
Moisture Absorption (%) 0.02 0.06 0.25 0.16

3. Optimization of ground terminals for |S;;| parameter

In this section, the |Sy| parameters of the base and proposed antennas with various
configurations were simulated and the results are analyzed. Figure 2 shows the optimal |Sy|
parameter for the base antennas at a single resonance frequency [17,18]. Figure 2 shows the |Sy]
parameter resonating at f,= 2.8 GHz for the reference antenna [17] and f; = 2.4 GHz for the
reference Type-Il antenna [18] for single-band application. The authors S. K. Singh et al. have
addressed a CPW fed antenna which uses the resonator stub of the variable length and provides a
wider IBW of 1.7 GHz (1.4-3.1 GHz) at —10 dB [17].

The proposed Ant.1 has resonance frequencies of f; = 2.1 GHz and f,,= 2.8 GHz at Lx(T3) =
5 mm, as well as wide IBW 0.35 GHz (1.9-2.25 GHz) at —18 dB and 0.55 GHz (2.5-3.05 GHz) at
—20 dB for dual-band applications, as shown in Figure 3. The effect of changing the geometrical unit,
such as increasing the resonator path length of Lx(T3) from I mm to 7 mm {1 < Lx(T3) <7} of the
ground terminal (T3) leads to a modest shift in the resonance frequencies towards the low-frequency
band seen in Figure 3.

Figure 4 depicts the S parameter of Ant.2 useable in triple-band applications with a constant
stub length Lx(T3) = 7 mm and a variable stub length Ly(T3) ranging from 8 to 20 mm. The
predicted resonance frequencies of Ant. 2 for Ly(T3) = 8 mm are f; = 1.25 GHz, f,= 1.8 GHz, and
fis = 2.8 GHz, which fall in the low-frequency ranges. The resonance frequencies of the proposed Ant.
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2 at Ly (T3) = 16 mm are f1 = 1.65 GHz, f,= 2.6 GHz, and f,3= 3.5 GHz, all of which are in the
high-frequency ranges. The bandwidths are 0.25 GHz (f1 = 1.65 GHz, 1.60-1.85 GHz) at —14 dB,
0.75 GHz (f, = 2.6 GHz, 2.10-2.85 GHz) at —15 dB, and 0.30 GHz (f;3 = 3.5 GHz, 3.35-3.65 GHz) at
—10 dB for triple-band applications. The optimal |S1;| parameter of proposed antennas, as well as the
base antenna, is demonstrated in Figures 2, 3, and 4. The findings revealed a wide range of IBW for
antennas with different resonance frequencies.
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Figure 2. |S;1| variation of base antenna for the single-band application.
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Figure 3. |Sy;| variation of proposed Ant.1 for dual-band applications.
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Figure 4. |Sy;| variation of proposed Ant.2 for triple-band applications.
3.1. Design procedure of the proposed antenna-1

The four different geometrical configurations of the antenna composed of Step-1, Step-2, Step-3,
and Step-4 are shown in Figure 5(a—d), respectively with multi-stubs loaded ground terminal
resonator [24,25]. These proposed antennas contain an inverted L-shaped radiating stub, and three
asymmetrical ground terminal stubs resonator T1, T2, and T3 on the XY-plane of the FR4 substrate
as shown in Figure 1(b) and Figure 1(c). In step-1, the terminal length of the resonator in the
x-direction is Lx(T3) and the width thickness is 0.5 mm {tw(T3)} of ground terminal-3, which has
been optimized with resonant path length Lssz {Lx(T3)}, as shown in Figure 5(a). The structure of
step-2 uses resonant path length Li; {Lx(T1) + Ly(T1) + Lx(T3)} with fixed width thickness tw(T1)
of 0.5 mm as shown in Figure 5(b). In step-3 the antenna is simulated with resonant path length L,
{Lx(T2) + Ly(T2) + Lx(T3)} as shown in Figure 5(c). The design evolution step-4 of proposed Ant.1
having three ground terminal stubs are set to the total length of the resonator Lz, {LXx(T1) + Ly(T1) +
Lx(T2) + Ly(T2) + Lx(T3)} as shown in Figure 5(d). The various geometrical design parameter units
{1 mm < Lx(T3) < 7mm} of the proposed Ant.1 are optimized using the CST as tabulated in Table 1
and illustrated in Figure 3 for dual notch-band frequency applications. Thus, the design approach for
the excitation of resonance frequencies is due to the length of individual stub resonators.

cElClC]

(a) Step-1 (b) Step-2 (c) Step-3 (d) Step-4

Figure 5. Step by step evolution of proposed Ant.1 with multi-stubs loaded resonator; (a)
Step-1: Single ground terminal antenna (T3), (b) Step-2: Double ground terminal antenna
(T1 and T3), (c) Step-3: Double ground terminal antenna (T, and T3), and (d) Step-4:
Proposed Ant.1 with Triple ground terminal (T4, T, and T3).
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3.2. Design procedure of the proposed antenna-2

Figure 6 shows the different lengths of the stub resonator for the design evolution of the
proposed Ant. 2 with four geometrical configurations of ground terminal-3. The resonator path
length of terminal-3 stub in y-direction {Ly(T3)} is varied from 8 mm < Ly(T3) < 20 mm for the
excitation of multi resonance mode [24,25]. Its different geometrical units are tabulated in Table 1,
and structures are illustrated in Figure 6(a—d).

el

(a) Step-1 (b) Step-2 (c) Step-3 (d) Step-4

Figure 6. Step by step evolution of proposed Ant.2; (a) Step-1: Ly(T3) = 8 mm, (b)
Step-2: Ly(T3) = 12 mm, (c) Step-3: Ly(T3) = 16 mm, and (d) Step-4: Ly(T3) = 20 mm.

The |S11| parameters of the proposed Ant. 2 are optimized at Ly(T3) = 8 mm, 12 mm, 16 mm,
and 20 mm. The proposed Ant. 2 has three ground terminal stubs which are used to set the total
resonant path length Lss {LX(T1) + Ly(T1) + LX(T2) + Ly(T2) + Lx(T3) + Ly(T3)} intended for their
three resonant frequencies (f;) which are shown in Figure 4 for triple-band applications. Thus, a
parametric study has been carried out with FR4 substrate to get the optimal |Sy;1| parameter for the
proposed Ant.1 and Ant. 2 which is theoretically justified in section 4.

4. Parametric study of the proposed antennas

The parametric study is important for achieving appropriate impedance matching of the antenna
and design parameters. The length of ground terminal stub resonators is widely considered during the
design of the antenna to achieve the number of resonance frequencies and bands of CPW-fed antenna.
Resonance frequencies and bands can be controlled by changing the length of ground terminal stubs
as per the requirement of users [8,12,24]. The total length of ground terminal stub (Lgts) resonators
Las, Li1, Loo, Las, and Lyg are used to determine the number of resonance frequencies (fn) by using
equation (1).

er -

C
2 LG5/ Greff (1)

where N is the number of resonating frequencies, Lgts is the resonator path length, e is the effective
dielectric constant, and c is the speed of light.

4.1. Effect of ground terminal stub lengths on |S;1| parameter

The proposed Ant.1 and proposed Ant.2 have square-shaped geometry of the same size as an
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inverted L-shaped radiating stub and the same substrate dimension of 50 mm (W) <50 mm (L). The
parametric study based on the asymmetrical ground terminals T1, T2, and T3 structures are shown in
Figure 5 and Figure 6 for Ant.1 and Ant.2, respectively.

4.1.1. Length variation of L33

The effects of the resonant path length (Ls3) on the return loss |Si1| of proposed Ant.1 (Step 1)
are shown in Figure 7. The fundamental resonance frequency (f1) can be calculated using equation
(2). As the length L33 increases, the magnitude of the |S;1| parameter changes from —25 to —19 dB.

C
2 L33\/ Ereff (2)

The length of stub Lsz {Lx(T3)} changes from 4 mm < Lx(T3) < 8 mm, the resonance
frequency (fr1) is 2.8 GHz approximately to the entire range from 4 mm to 8 mm for the single-band
operation. The variation of the |Sy;| parameter of the Ant.1 for step-1 is illustrated in Figure 7.

frl =

S-Parameter [Magnitude in dB]

The design evolution step-1 of propased Ant 1 with various ground terminal-3
length, Lx(T3) and fixed thickness, t(T3)= 0.4 mm.
The substrare matenal is FR4 Epoxy, and its thickness (t)= 0.76 mm.

T LS

-20 """""""" """"""""""""""""""" s =— Lx(T3)=4 mm """"""""""
; ; . Lx(T3)= 5 mm|
— L %(T3)= 6 mm
— 1 x(T3)=7 mm
-30 t t t +
1.75 2 2.5 3 3.5 3.75

Frequency / GHz

Figure 7. |Sy1| of proposed Ant.1 with Step-1; 4 mm < Lx(T3) < 8 mm.
4.1.2. Length variation of Ly;

The effects of the resonant path length (L;1) on the return loss |S11| of the proposed Ant.1 (Step2)
are shown in Figure 8. The total length of Ly; {Lx(T1) + Ly(T1) + Lx(T3)} is varied with the help of
ground terminal-1 {Lx(T1)}. Lx(T1) changed from 18.50 mm < Lx(T1) <22.50 mm. The resonance
frequencies (f;1, 2) are estimated by equation (3).

C
2 Lllﬁ Ereff (3)

The stability of magnitude of |Sy;| increases as the length Lx (T1) is increased. The two
resonance frequencies are found for dual-band application f;; = 1.8 GHz and f, = 2.75 GHz for the
first and second bands. The resonance frequency f., of the second band has a higher magnitude (|S11|)
as compared to the f1 resonance frequency of the first band. The variation of the return loss of the
Step-2 antenna is shown in Figure 8, the length of the ground terminal-1 stub optimized at Lx(T1) =
18.50 mm, 19.50 mm, 20.50 mm, 21.50 mm, and 22.50 mm, with fixed Ly(T1) and Lx(T3)
geometrical parameters.

fri2=
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The design evolution step-2 of proposed Ant.1 with various ground termina length: Lx(T1) is
varies from 18 50 mm to 22 50 mm, Ly(T1)= 19 mm and fixed thickness, t{T1)= 0.5 mm.

\ Lx(T3)=7 mm and t{T3)= 0.4 mm.

L N The substrare material is FR4 Epoxy, and its thickness (t)= 0.76 mm.

-20 4 “ : : - "' _________________________________________
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-40 t t t
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Figure 8. |Sy1| of proposed Ant.1 with Step-2; 18.50 mm < Lx(T1) <22.50 mm.
4.1.3. Length variation of L,

The length of the ground terminal-2 {Lx(T2)} stub is varied to analyze the characteristics of
proposed Ant.1 (Step 3). The total length of Ly, = {Lx(T2) + Ly(T2) + Lx(T3)} is used to enhance the
|S11| by using equation (4). The |Sy| characteristics with the ground stub Lx(T2) variation (18.50 mm
< Lx(T2) <22.50 mm) are shown in Figure 9.

C
fuz 2L22\/£ @)
The magnitude of |Sy;| increases as the stub length of the ground terminal Lx(T2) is raised from
19.50 mm to 20.50 mm, according to the analysis. Further, an increase in Lx(T2) to 21.50 mm, causes
a decrease in the magnitude of |Sy|. The significant change in resonant frequencies fi1 and fy,, also
occur for both the first and second bands. The result proves that Lx(T2) = 22.50 mm produces wide
IBW with a maximum magnitude of |Sy|.

S-Parameter [Magnitude in dB]

The design evolution step-3 of proposed Ant.1 with various ground termina length. Lx(T2) is
L varies from 18.50 mm to 22.50 mm, Ly(T2)= 15.25 mm and fixed thickness, t(T2)= 0.5 mm.
Lx(T3)= 7 mm and t{T3)= 0.2 mm.

The substrare material is FR4 Epoxy, and its thickness (fj= 0.76 mm.

-10 \_ % e L e et SRRt
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Figure 9. |Sy| of proposed Ant.1 with Step-3; 18.50 mm < Lx(T2) <22.50 mm.
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4.1.4. Length variation of L34

The optimal length of the Lx(T3) stub with two other ground terminals T1 and T2 can be used
for the best |Sy1| characteristics of the proposed Ant. 1 (step 4). The variation in the length of ground
T3 {1 mm < Lx(T3) <7 mm} stub with the total length of L3, {LX(T1) + Ly(T1) + Lx(T2) + Ly(T2) +
Lx(T3)} is used to improve the |Sy1| characteristic by using equation (5).

C

2 L34\/ Ereff (5)

The effect of different values of Lx(T3) on [Sii| characteristics of the proposed Ant. 1 is
illustrated in Figure 10. When the length of stub Lx(T3) is taken 5 mm, the antenna produces
appropriate resonance frequencies f;; and f, which are close to each other at 2.1 GHz (—40 dB) and
2.8 GHz (—35 dB), as shown in Figure 10. At Lx(T3) = 3 mm, |S11| covers a wide range of IBW with
two resonance frequencies f,1 at 2.1 GHz (—55 dB) and f,; at 2.85 GHz (—30 dB). The magnitude (|S11|)
of f1 is higher as compared to f,. Similarly, at Lx(T3) = 7 mm, the resonance frequencies f,; at
1.9 GHz (—28 dB) and fy; at 2.75 GHz (—45 dB), in this case, the magnitude (|Sy1|) of f,1 is lower as
compared to f,, as illustrated in Figure 10.

frl,2 =

S-Parameter [Magnitude in dB]
10

The design evolution step-4 of proposed Ant.1 with various ground termina
: length: Lx(T3} is varies from 1 mm to 7 mm and thickness, #(T3)= 0.5 mm :
L Lx(T1)= 2050 mm, Ly(T1)=19 mm and t(T1)= 0.5 mm are fixed. [ frrormmnrmmmmrmsennaes

\ Lx(T2)= 20.50 mm, Ly(T2)= 15 mm and t(T2)= 0.5 mm are fixed
_10 4

___________________ The substrare material is FR4 Epoxy, and its thickness (t)= 0.76 mm.

B ]| T e S CLLLELr T o ‘ F RN s T
301 I | i /e  ——
; Lx(T3)= 1 mm
-40 4-- - | .- AL x(T3)=3mm}- Y- f-eeoeemeeos - | ...
: — 1x(T3)=5mm :
: Lx(T3)= 7 mm :
ol ] HEE . .. a3)=7mm| " i EEn B
-55 t : : } }
1 1.5 p 2.5 3 3.5 4

Frequency [/ GHz

Figure 10. |Sy1| of proposed Ant.1 with Step-4; 1 mm < Lx(T3) <7 mm.

When the stub length Lx(T3) is raised from 1mm to 7 mm for the proposed Ant.1, the resonance
frequencies shift to the low-frequency regions. Table 3 shows that the antenna offers the optimal
magnitude (|S11]) for the suggested Ant.1 when Lx(T3) =5 mm and Lx(T1) = Lx(T2) = 20.50 mm.
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Table 3. Optimal resonance frequencies of proposed Ant.1 with different configurations.

Design Various Length of Ground Terminal Stubs and Substrate Thickness (t) | Resonance Frequencies (fn), (N =1, 2)
Steps of Lx(T1) Ly(T1) Lx(T2) | Ly(T2) | Lx(T3) | FR4(t) fr1 [Suls fio Sl
Ant.1 (mm) (mm) (mm) (mm) (mm) (mm) (GHz) (—=dB) (GH2z) (—=dB)
Step-1 - - - - 4 0.76 2.90 20 - -
- - - - 5 0.76 2.90 21 - -
- - - - 6 0.76 2.85 22 - -
- - - - 7 0.76 2.85 23 - -
- - - - 8 0.76 2.80 23 - -
Step-2 18.50 19 - - 7 0.76 1.90 20 2.85 34
19.50 19 - - 7 0.76 1.75 20 2.85 34
20.50 19 - - 7 0.76 1.90 20 2.85 34
21.50 19 - - 7 0.76 1.75 23 2.80 35
22.50 19 - - 7 0.76 1.80 23 2.80 36
Step-3 - - 18.50 15.25 7 0.76 1.40 16 2.75 29
- - 19.50 15.25 7 0.76 1.35 19 2.75 30
- - 20.50 15.25 7 0.76 1.35 19 2.75 39
- - 21.50 15.25 7 0.76 1.35 20 2.75 39
- - 22.50 15.25 7 0.76 1.40 22 2.75 39
Step-4 20.50 19 20.50 15 1 0.76 2.10 45 2.85 30
20.50 19 20.50 15 3 0.76 2.10 55 2.85 30
20.50 19 20.50 15 5 0.76 2.05 40 2.80 32
20.50 19 20.50 15 7 0.76 1.90 30 2.75 45

4.1.5. Length variation of L4

The influence of ground terminal stub Ly(T3) as a resonator on the fn and IBW
characteristics [24,25] is investigated by using equation (6). The resonant length Ly(T3) is varied from
8 mm to 20 mm, while the remaining two parameters (T1 and T2) are fixed. The effect of total
resonant length (L44) on |Syy| for proposed Ant.2 has been illustrated in Figure 11 and tabulated in
Table 4.

fri23=

C
2 L44\/ Ereff (6)

The findings in Table 4 show that the optimal magnitude of the |Si;| parameter for the proposed
Ant.2 is set for Lx(T3) = 16 mm and Lx (T1) = Lx(T2) = 20.50 mm.
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S-Parameter [Magnitude in dB]

Parametric study of proposed Ant.2 with ground terminal length:

Lw(T3) is the variable length of terminal-3 in Y -direction
: Lx(T3)= 7 mm, is the fixed length of terminal-3 in X-direction
-10 1 P TN Substrate material is FR4 Epoxy and thickness. t= 0.76 mm

-20 4

.30 4-- | | Ly(T3)= 08 mm|_%
{ [m—Ly(T3)= 12 mm
| | —Ly(T3)= 16 mm
e |y(T3)= 20 mm
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Frequency |/ GHz

Figure 11. Parametric study (|S11|) of proposed Ant.2 with Ly (T3) stub; 8 mm < Ly (T3) <20 mm.

Table 4. Optimal resonance frequencies of proposed Ant.2 with different configurations.

Design Various Length of Ground Terminal Stubs fiwin GHz at (-dB); N=1,2,3
Steps of Ant.2 Lx(T1) | Ly(T1) | Lx(T2) | Ly(T2) | Lx(T3) | Ly(T3) fr at frpat frs at
(mm) | (mm) | (mm) | (mm) | (mm) | (mm) (-dB) (-dB) (-dB)
Step-1 20.50 19 20.50 15 1 8 1.25(12) | 1.80(25) 2.7 (36)
Step-2 20.50 19 20.50 15 3 12 1.75(25) | 2.65(31) -
Step-3 20.50 19 20.50 15 5 16 1.70 (24) | 2.65(28) 3.5(14)
Step-4 20.50 19 20.50 15 7 20 1.65 (20) | 2.60 (25) 3.2(16)

4.2. Effect of substrate materials on |S;;| parameter of Ant.1

The effect of different substrate materials and their thicknesses on antenna performances have
been investigated in this section. The resonance frequencies are dependent on the substrate area,
thickness, and dielectric constant. The optimal thicknesses of substrate materials are used to evaluate
|S11| such as 0.51 mm for Alumina, 0.76 mm for FR4, 0.95 mm for Arlon, and 1.11 mm for Rogers as
tabulated in Table 5 and illustrated in Figure 12(a—d) for dual-band applications. The thickness of
substrate material 0.51 mm is considered to analyze the performance of proposed Ant.1 with Arlon,
FR4, Rogers, and Alumina. The characteristic with Arlon, FR4, and Rogers provides the close
resonance frequencies towards higher frequency bands whereas Alumina provides resonance
frequency at low-frequency bands (f; = 1.9 GHz, and f,, = 2.8 GHz) as illustrated in Figure 12(a). The
substrate materials thickness, t = 0.76 mm is considered to evaluate the effect of different materials on
|S1;] for dual-band applications. The characteristics of Rogers, Arlon, and FR4 are similar whereas the
performance of Alumina is not significant as shown in Figure 12(b). FR4 laminated structure provides
better |S;1| as compared to Rogers and Arlon. The two resonance frequencies with FR4 are f; =
2.1 GHz and f, = 2.8 GHz for wireless applications as shown in Figure 12(b).
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Figure 12. Parametric study (|Si11|) of proposed Ant.1 with different type of substrate
materials; (a) t = 0.51mm, (b) t = 0.76 mm, (c) t = 0.95 mm, and (d) t = 1.11 mm.
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Table 5. Best performance comparison of proposed Ant.1 with different substrate materials.

|S11| parameter of Substrate Substrate Stub Resonance IBW IBW
Ant.1 shown in Material Thickness (t) | Lx(T3) Frequency S;<-20dB S1<-10dB

Figure (&) (mm) (mm) (GHz) (GHz) (GHz)

fr fra (IBW), (1BW), (IBW)1otal
Figure 12(a) Alumina (9.9) 0.51 5 1.90 2.80 0.20 0.50 2.0
Figure 12(b) FR4 (4.3) 0.76 5 2.05 | 2.80 0.25 0.50 2.0
Figure 12(c) Arlon (3.2) 0.95 5 210 | 2.95 0.25 0.50 2.1
Figure 12(d) Rogers (2.2) 1.1 5 2.20 | 3.40 0.15 0.55 2.5

The optimal substrate thickness of 0.95 mm Arlon (f;1 = 2.1 GHz, and f,, = 2.95 GHz) provides
a higher magnitude of the |Sy;| parameter among the four considered substrates as shown in Figure
12(c). The optimal thickness of the Rogers substrate is 1.11 mm which offers wider IBW with two
resonance frequencies (f.; = 2.2 GHz, and f, = 3.4 GHz), among all the considered substrates as
shown in Figure 12(d).

4.3. Effects of substrate materials on |S;1| parameter of Ant.2

The optimal thicknesses of substrate materials are taken of value 0.76 mm for triple and
quad-band applications to evaluate the |S;;| for the proposed Ant.2. The performance parameters of
all the four substrate-based antennas are tabulated in Table 6 and their characteristics are presented in
Figure 13(a—b). Rogers and FR4 at Ly(T3) = 8 mm provide three resonance frequencies as shown in
Figure 13(a) and Table 6 for the triple-band applications. At Ly(T3) = 16 mm, Rogers showed the
quad-band application, the resonance frequencies are fr; = 1.4 GHz, f,= 1.9 GHz, f;3= 3.2 GHz, and
frs= 3.8 GHz as depicted in Figure 13(b).

4.4. Effect of substrate thickness on |Sy;| parameter of Ant.2

Figure 14 and Table 7 show the results of the analysis of the suggested Ant.2 |S;1| parameter for
various substrate thicknesses and four substrate materials. The optimal thickness (t) = 0.95 mm for
quad-band applications is most suitable for the Rogers substrate-based laminated Ant.2 which offered
four resonance frequencies (f.1 = 1.4 GHz, f, = 1.9 GHz, f;3 = 3.2 GHz, and f,;,= 3.8 GHz) as shown
in Figure 14(a). For triple-band applications, Arlon substrate thickness (t) = 0.76 mm based laminated
proposed Ant.2 provides the three resonance frequencies (fn = 1.8 GHz, f, = 2.9 GHz, and f3 =
3.7 GHz) as shown in Figure 14(b). The |S;;| parameters of proposed Ant.2 based on FR4 laminated
at different substrate thicknesses ranging from 0.51 mm to 0.95 mm are shown in Figure 14(c). The
|S11| parameters of the suggested Ant.2 ensured similar |S;3| pattern for FR4 laminated case when t =
0.63, 0.76, and 0.95 mm, but the |S;;| parameter provides a higher magnitude for t = 0.51 mm as
shown in Figure 14(c). However, FR4 laminated Ant.2 at t = 0.51 mm is more suited for triple-band
(fn = 1.8 GHz, f;, = 3.2 GHz, and f,3 = 3.8 GHz) applications, see Figure 14 (c).
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Figure 13. Parametric study (|]S11]) of proposed Ant.2 among different substrate materials

by thickness (t) = 0.76 mm; (a) Ly(T3) =8 mm, and (b) Ly(T3) = 16 mm.

Table 6. Best performance comparison of proposed Ant.2 with different substrate materials.

|Sa1] Substrate Substrate Stub fon in GHz IBW in GHz at (—dB)
parameter of Material Thickness | Ly(T3) (N=1,2,3,4)
Ant.2 (en) (mm) (mm) | £y | fo | fu | fu | (IBW) | (IBW), (IBW)3 (IBW),
Rogers (2.2) 0.76 8 145 | 210 | 3.35 - 0.25 (10) | 0.35(15) | 0.50 (20) - -
Figure 13(a) Arlon (3.2) 1.90 | 3.00 - - 0.40 (15) | 0.50 (20) - - - -
FR4 (4.3) 1.30 | 1.80 | 2.65 - 0.15 (10) | 0.45(15) | 0.50 (20) - -
Alumina 1.50 | 2.00 - - 0.17 (20) | 0.45 (20) - - - -
(9.9
Rogers (2.2) 0.76 16 1.40 | 1.90 | 3.20 | 3.85 | 0.10(10) | 0.45(12) | 0.75(15) | 0.30(20)
Figure 13(b) Arlon (3.2) 1.80 | 2.75 | 3.65 - 0.35(13) | 1.00(15) | 0.50(10) - -
FR4 (4.3) 1.75 | 2.65 | 3.50 - 0.25 (15) | 0.40(20) | 0.25(10) - -
Alumina 1.40 | 1.90 | - - | 0.10(20) | 0.45(20) - - - -
9.9)
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Figure 14. Parametric study (|Si1i|) of proposed Ant.2 along with different substrate
thicknesses; (a) Based on Rogers, (b) Based on Arlon, (c) Based on FR4, and (d) Based
on Alumina.
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Table 7. Best performance comparison of proposed Ant.2 with different substrate thicknesses.

|S11| parameter of Ant.2 Substrate Substrate fininGHz, (N=1, 2,3, 4)
shown in Material Thickness
Figure (&) (t, mm) fra frz fra fra
0.95 1.40 1.90 3.20 3.85
Figure 14(a) Rogers (2.2) 1.11 1.35 1.90 3.10 3.80
1.35 - 1.85 3.10 3.75
1.50 - 1.85 3.05 3.75
0.76 1.80 2.90 3.75 -
Figure 14(b) Arlon (3.2) 0.95 1.78 2.90 3.70 -
111 1.75 2.77 3.55 -
1.35 1.65 2.75 3.50 -
0.51 1.85 3.15 3.80 -
Figure 14(c) FR4 (4.3) 0.63 1.80 2.90 3.65 -
0.76 1.75 2.65 3.50 -
0.95 1.65 2.45 3.40 -
0.31 - 3.25 4.10 -
Figure 14(d) Alumina (9.9) 0.40 1.90 3.20 3.95 -
0.51 1.60 2.65 3.35 -
0.76 1.402 1.95 - -

The optimal thickness t = 0.40 mm of Alumina substrate is considered to ensure higher
frequency triple-band applicability resonating at f; = 1.9 GHz, f, = 3.2 GHz, and f,3= 3.9 GHz. The
thickness t = 0.76 mm was taken to achieve lower frequency dual-band (f,; = 1.4 GHz, and f., =
1.9 GHz) applications for proposed Ant.2 as shown in Figure 14(d).

Figure 15 shows the optimal values (|S1;|) of proposed Ant.1 and Ant.2, which are listed in Table
8. The Ant.1 is investigated for dual-band applications on various substrate materials. The obtained
results show that resonance frequencies are shifted towered the lower frequencies range at a higher
dielectric constant and low substrate thickness as shown in Figure 15(a). As illustrated in Figure 15(b)
and listed in Table 8, the proposed Ant.2 can be used for triple and quad-band applications ranging
from 1.35to 4.25 GHz (S <10 dB).

Table 8. Excellent performance of proposed antennas along with four dielectric materials.

Resonance Frequencies (f,) of Proposed Ant.1 and Ant.2
Laminated Proposed Ant.1 Proposed Ant.2
Antenna t fi1 fro Response t fi1 fio fis fra Response
(&) (mm) | (GHz) | (GHz) (mm) | (GHz) | (GHz) | (GHz) | (GHz)

Rogers (2.2) 111 2.15 3.40 Dual-band 0.95 1.40 1.90 3.20 3.80 Quad-band
Arlon (3.2) 0.95 2.10 2.90 Dual-band 0.76 - 1.80 2.85 3.65 Triple-band
FR4 (4.3) 0.76 2.05 2.80 Dual-band 0.51 - 1.80 3.10 3.75 Triple-band
Alumina (9.9) 0.51 1.90 2.80 Dual-band 0.40 - 1.85 3.15 3.95 Triple-band
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Figure 15. Optimized |S1;| along with substrate material and its finest thickness; (a)
Relative results of proposed Ant.1, and (b) Relative results of proposed Ant.2.

5. Results and discussion

The simulation and measurement results of a CPW-fed Ant.2 (Q) with several resonance
frequencies and bands are described in this section. The suggested multi-ground terminal resonator
stubs printed CPW-fed antennas were constructed on FR4 substrate using standard photolithographic
method after optimization in CST Microwave Studio as shown in Figure 16 (a). The proposed
antenna’s return loss (|S11]) was measured on Keysight Technologies (N5224B) network analyzer for
the validation of the simulated result. The radiation pattern of antenna is measured inside the
near-field anechoic chamber as shown Figure 16 (b).
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Figure 16. Photograph of the proposed Ant.2 based on FR4 substrate; (a) Front view of
antenna Prototype, and (b) Antenna inside anechoic chamber.

Figure 17 (a-b) shows the simulated and measured |S;1| and Voltage Standing Wave Ratio
(VSWR) vs frequency plots of the proposed antenna. As can be seen in Figure 17 (a), there is a good
agreement between simulated and measured results with some predictable inconsistencies due to
fabrication tolerance and measurement environments, which confirms the theoretical prediction. The
fabricated antenna is resonating at 1.75/2.75/3.50 GHz frequencies and cover three separate
impedance bandwidths of 0.25 GHz at —15 dB, 0.40 GHz at —20 dB, and 0.25 GHz at —10 dB, with
respect to the appropriate resonant frequencies at |S1;| < —10 dB level, which can satisfy both the
PCS 1.8/1.9 GHz (1.750-1.870 GHz and 1.880-1.990 GHz), and WiMAX 2.5/3.5 GHz (2.500-2.690
GHz and 3.400-3.690 GHz) bands. Figure 17 (b) shows that the simulated and measured VSWR
values are in good agreement, with minor expected variations due to variations in actual values of
relative permittivity, loss tangent (tan 98) and thickness of the material taken for measurement and
simulation, fabrication error, soldering of the SMA connector with the antenna and measurement
environment, confirming the theoretical prediction.
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Figure 17. Simulated and measured result of the proposed Ant.2; (a) Return loss (|S11|),
and (b) VSWR.
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The measurement setup of radiation pattern and gain is carried out using broadband
LB-10180-NF horn antenna as reference antenna in an anechoic chamber of the developed prototype
antenna. Figure 18 depicts the measured E-plane and H-plane radiation patterns of a CPW-fed Ant.2
with three resonance frequencies of values 1.75, 2.65, and 3.50 GHz. Figure 18 (a) illustrations the
far-field patterns of co-polarization in the E-plane (¢ = 0 and H-plane (¢ = 909, respectively. It
could be seen that antenna has almost omnidirectional co-polarized patterns at ¢ = 0< angle and
nearly bi-directional co-polarized patterns at ¢ = 90< angle at the resonance frequency of 3.5 GHz

for WiMAX band in H-plane.
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Figure 18. Measured radiation patterns of proposed Ant.2 at three resonance frequencies;
(@) Co-polarization E/H-plane, and (b) Cross-polarization E/H-plane.
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Figure 19. Reference gain (dB) against frequency of the proposed Ant.2.

Figure 18 (b) illustrates that the cross-polarization patterns of the antenna are fairly improved at
the same resonance frequencies as compared to co-polarization patterns in E-plane and H-plane,
respectively. At 1.75 and 2.65 GHz frequencies, the proposed Ant.2 has omnidirectional radiation
patterns in the both (E/H)-plane, while the radiation patterns at 3.5 GHz have slightly departed from
omnidirectional radiation patterns due to asymmetrical structure of antenna. Figure 19 depicts the
measured reference gain of the proposed Ant.2 as a function of frequency. The reference gain
variation is 7.25-10.15 dB of proposed structure. At the resonance frequencies of 1.75, 2.75, and 3.50
GHz, the reference gain of antenna is 7.25, 9.75, and 10.15 dB, respectively as shown in Figure 19.

Table 9 presents the performance comparison of proposed antennas (Ant.1 and Ant.2) with
some of the previously reported antennas referred in [6-16] which utilized the same dielectric
substrate for the fair comparison.

Although the overall area of the proposed antennas is identical to the reported antennas, its
bandwidth is larger than all the works mentioned in Table 9. In terms of IBW, the proposed structure
is performing far better than the existing structures except for the structures proposed in [10], [12],
and [15]. However, as the major goal of this research is to increase the number of bands with a wide
bandwidth, the proposed topology accomplishes its goal.

6. Conclusions

The performance of the antenna in terms of |S;1| characteristics are investigated for four different
substrate materials at a different thickness in this article. The designs of two antennas are proposed, and
their performances are analyzed for dual, triple, and quad-band applications. The multi resonating modes
frequencies of proposed Ant.1 and Ant.2 can be obtained by optimal selection of the dielectric substrate
materials, their thicknesses, and the length of the three-ground terminal stub resonators. The proposed
Ant.1 is expected to be useful in wide-band services of PCS-1900 (1.880-1.990 GHz), GSM-1900
(1.850-1.990 GHz), IMT-2000 (1.920-2.170 GHz), UMTS (1.900-2.170 GHz), IMT-2800
(2.700-2.900 GHz), and WiMAX (3.200-3.800 GHz) for dual-band applications. The proposed Ant.2 is
designed for receiving ability for IMT service (f; = 1.4 GHz, FDD LTE band), GSM-1800
(1.710-1.805 GHz), GSM-1900 (1.850-1.990 GHz), IMT-2800 (2.700-2.900 GHz), Radiolocation
Service (f; = 3.1 GHz), and IMT-3800 (3.400-4.200 GHz) for triple and quad-band applications. The
achieved |S;1| results of proposed antennas (Ant.1 and Ant.2) demonstrate that fundamental resonance
frequencies are moved towards the low-frequency band at a higher dielectric constant and low substrate
thickness. Thus, substrate of high dielectric constant ensures antenna miniaturization. Due to the low
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profile, simple structure, and broadband impedance characteristics, the proposed antennas can suitably
be employed for several wideband RF communications.

Table 9. Performance comparison of the proposed antennas with other reported antennas.

[Ref] Substrate Material Size fovin GHz (N=1, 2, 3, 4) IBW in GHz at<-10 dB
Year (&r) t (mm) (mm?) fr fr2 frs fra (IBW1).gs (IBW,).s (IBWs).gs (IBWy).gs
[06] FR4 0.80 12040 | 2.45 | 5.45 - - (051) 4008 | (1.01) 1008 - -
2006 (4.4)
[07] Rogers 2.00 64>62 244 | 355 - - (0.11) 4048 (0.14) 1048 (0.63) 108 -
2010 (2.2)
[08] Rogers 3.20 4028 245 | 350 | 5.28 - (0.14) 1048 (0.15) 1048 (0.24) 108 -
2015 (2.33)
[09] FR4 1.60 7070 231 | 240 | 248 - (0.05) 1048 (0.06) 1048 (0.06) 108 -
2018 (4.2)
[10] FR4 0.80 30>28 262 | 355 | 556 - (0.25) 1048 (0.48) 1048 (0.50) 208 -
2019 (4.2)
[11] FR4 1.60 65>30 2.45 5.15 - - (0.45) -1048 (0.45) -1048 -
2019 (4.4)
[12] FR4 1.60 50>60 245 | 3.80 | 5.80 - (0.08) 1048 (0.95) 2048 (1.20) 2008 -
2020 (4.3)
[13] Rogers 1.27 25x31 2.46 5.11 - - (0.11) -1048 (0.07) —10a8 - -
2020 (10.2)
[14] Rogers 0.80 1.64 1.79 211 243 (0.04) 1048 (0.10) —1048 (0.07) 1048 | (0.08) -1008
2021 (3.0)
Duroid 1.60 40560 | 1.75 | 1.87 | 2.24 - (0.07) 5.8 (0.06) 5 48 (0.05) s 48 -
2.2
FR4 1.60 163 | 1.80 | 231 - (0.12) 3008 0.09) 1006 | (0.07) 1008 -
(4.4)
[15] FR4 0.80 50>60 250 | 3.60 | 6.00 - (0.20) 1648 (0.90) 2048 (0.30) 20 a8 -
2021 (4.4)
[16] FR4 1.60 11611 1.02 1.75 - - (0.35) 1548 (0.38) 1248 - -
2021 (4.4) 6
Rogers 1.1 215 | 3.40 - - (0.70) 1008 | (0.75) 1008 - -
22
Proposed Arlon 0.95 210 | 2.90 - - (0.40) 1048 (0.55) 2048 - -
Ant.1 (3.2) 50>60
FR4 0.76 2.05 | 2.80 - - (0.45) 1008 | (0.50) 2048 - -
(43
Alumina 0.51 190 | 2.80 - - (0.55) 1548 (0.60) 2048 - -
(9.9
Rogers 0.95 140 | 190 | 320 | 3.80 | (0.25) 1048 (0.50) 1248 (0.75) 1548 | (0.55) 1508
Proposed (2.2) 50>60
Ant.2 FR4 0.51 - 180 | 310 | 3.75 - (0.35) 1248 (0.70) 154 | (0.65) 1008
(4.3)
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