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Abstract: The single-electron devices (SEDs) are novel devices based on a new operation concept 

and technologies, with great scaling potential that has been fabricated and is under investigation. The 

SEDs are based on the controllable transfer of single electrons (SEs) between small conducting 

electrodes. They have had already several demonstrative scientific experiments as well as enabled 

fabrication methods. The present work studies the coherence of signals in a two-dimensional 

homogeneous arrays of small tunnel junctions. The Monte-Carlo technique is used to simulate the 

circuit and collect the required statistics. The simulator is a hybrid simulator that uses at the 

beginning the Master Equation representation to compute the steady-state current through the circuit. 

It is shown, how the coherence of oscillations is strengthened with longer arrays structures, and that 

the coupled two-dimensional long arrays are having strong correlated tunnel events, when the finite 

frequency noise characteristics and oscillations pattern variation are addressed. The variation of both 

the applied voltage and the coupling capacitors is illustrated. The dependency of the transport 

process and distribution of time between the events on their setting parameters is shown and the 

coefficient of variation was calculated to clarify the results. Also, the state’s transition flow is 

reviewed for the traverse of electrons through the arrays structure for different bias conditions. 

Keywords: master equation; tunneling; Coulomb blockade; Monte-Carlo modelling; power spectral 

density 
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1. Introduction 

The current through single-electron devices is affected by the Coulomb blockade. At low bias 

voltages and especially at low temperatures, these devices can enter a Coulomb blockade region, 

where the tunneling of electrons is blocked, giving them unique properties [1]. For instance, a tunnel 

junction biased by a dc current may generate single-electron tunneling (SET) oscillations with 

average frequency f0 = <I>/e. This effect is due to the gradual accumulation of continuous charge 

on the junction capacitance, followed by the sudden passage of one electron through the junction, as 

soon as the accumulated charge has reached a threshold level Qt = ±e/2. The discreteness of charge 

transfer will certainly be one of the central issues facing the emerging nano-electronics. This is why 

it is important to formulate the conditions under which the transport of charge through a conductor 

may be considered as quasi-continuous. One of the most interesting systems capable of quasi- 

continuous charge transfer is the one-dimensional array of small tunnel junctions [2]. The key 

property of such an array is that each additional electron inserted into one of its islands creates a 

series of gradually decreasing polarization charges, and hence may be considered as a 

“single-electron soliton” with a characteristic that may be much larger than one island [3]. Nowadays, 

there are some low-cost nanofabrication technologies producing talented results for innovative 

nanostructures in terms of versatility and scalability. These low-cost nanofabrication approaches, like 

self-assembly, colloidal lithography, soft lithography, electrochemical anodization and etching 

approaches, in many cases, can be combined with the conventional nanofabrication technologies 

such as photolithography, interference lithography, electron beam lithography and focused ion beam 

lithography, for a promising way of generating innovative nanostructures suitable for a broad range 

of applications [4]. The small capacitances and tunnel junctions that build the array structures under 

study need a unique nanofabrication technique that best suits their properties for high resolution and 

high throughput in a cost-efficient manner. There are three important reasons for studying tunneling 

junction arrays. Firstly, because they are the simplest structures to construct for a wide range of 

fabrication techniques, particularly for those lithographic techniques that are the best means for the 

controlled fabrication of large systems of such arrays. Secondly, multiple junction arrays could be 

considered as a prototype for building more complex structures, and therefore be analyzed for 

themselves and as a route for gaining the experience and techniques necessary to analyze more 

complex systems. Finally, they would be important components in any extended single electronic 

system, as they act analogously to controlled transmission lines or shift registers. In this work, the 

quality of oscillations has been investigated through the dynamic charging processes coupled by the 

possible instantaneous tunnel processes. For that purpose, the Monte-Carlo technique has been used 

to trace the events and provide a platform to collect the data required to assess the quality of the 

resulting oscillations by computing the distribution of time between tunnel events and then 

calculating the frequency-dependent power spectral density of the resulting oscillations for the signal 

generated by the events. The modelling routine has been applied to characterize the operation of a 

static homogeneous two-dimensional array of small tunnel junctions. 

2. Theory and model 

Figure 1 shows an equivalent structure for a two-dimensional tunnel junction array under study. 

It consists of two series of tunneling junctions 1, 2…, i…, N, each of capacitance Ct1 and Ct2, 

respectively. Both of them are connected by electrodes 1, 2…, i…, N at potential фi, and are coupled 
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to the ground plane via capacitances C01 and C02. The two sets are linked together by capacitances Cc. 

The circuit is voltage biased at its two left and two right voltage terminals. The analysis is performed 

in a low voltage regime. 

 

 

 

 

 

Figure 1. Circuit diagram of a homogeneous two-dimensional array of small tunnel junctions. 

The potential profile created by a single excess electron located at a given node inside any of 

the two array legs will block other electrons from entering that part of the array. Under such 

conditions, the dynamic of charges transport through the two sides of the array will be dominated by 

a single charge tunneling in each of the array legs, from left to right, until finally exiting at the other 

end. At higher bias conditions, the situation changes so that it is possible that more than one electron 

could be found inside the structure and the time between events is a combination of different 

sequences. The properties of the array resulting from such sequential tunneling mode could be 

studied in the time domain as well as in the frequency domain. Experimentally, it is most likely that 

successive tunnel events may take place across non-neighboring junctions. This would require the 

analysis of the various state transition paths contributing to the transport process. For arrays of 

quantum dots biased near the threshold voltage, the transport process is well defined by a single path 

for conduction [5]. 

The Monte-Carlo simulator uses the Master Equation formalism to find the steady-state current 

I0 in the tunnel junction network, and then to compute the average time between successive events. 

This is achieved when several successive algorithms identify the list for the active states that hold the 

system in its steady-state. It is claimed that the steady-state and transport characteristics of single 

electron circuits are strongly affected by the possible states in the system and the relationships 

between the states [6]. The simulator then iterates “events” by repeatedly characterizing the circuit 

for a given set of input voltages and clocked charge positions, discovering which tunneling event will 

occur next and updating dependent and independent circuit parameters using charge conservation 

and the circuit matrix equations. Although this approach is important it is computationally expensive, 

especially for the larger extended systems of coupled devices. The model then divides a total time of 

kT0 (k ~ 5 and T0 is average time between successive events) into W slots (W ~ 1000). The 

Monte-Carlo simulation runs so that, a total of M events crosses the junction under study (M ~ 10
7
). 

The time between successive events is measured and recorded in the corresponding slots. The 

frequency contents resulting from the train of delta functions formed by the electrons crossing the 

reference tunnel junction could be computed as:     
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where, gi(t) is the probability density function (p.d.f) for the time between events, evaluated as the 

percentage of the number of tunnel events counted in slot i to the total number of events within the 

time size of the slot. The probability density function is given by: 
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where, ni is the number of tunnel events counted in slot i, t is the time size of the slot and M

 represents the total events. The power spectrum of the current pulses detected at the measurement 

point is dependent on the pattern of tunnel events and the distribution of the time between events as 

discussed above. The power spectral density S(ω) is estimated using the following relation [7]:
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where, I0 = <I> is the average tunneling current, G(ω) is the Fourier transform of the distribution of 

the time between events and e is the electron charge. For a Poisson process, the power spectral 

density is given by the Schottky value, S(ω) = 2eI0, which is independent of the frequency [7]. The 

tunneling process in single electronic circuits is a Poisson point process. The time spent at any state i 

depends on the transition rates from this state to any of the next states linked to this state by only one 

tunnel event. The probability density function of the dwelling time at that state is obtained by [5,8]: 

    fj(t)= Γj exp (-Γjt)           (4) 

where, Γj  represents the tunnel rates for that state. 

Thus, the distribution of time between tunnel events follows a negative exponential distribution. 

A variable T is defined to represent the time between successive events, which estimates the dwelling 

time at each node. The key statistics for the time between successive events at the reference junction 

are given by:  

   <T> =  
1

Γj 
            (5) 

    σ2 =    
1

Γ2j
            (6) 

The coefficient of variation (β) or the oscillation quality factor is defined as the ratio of standard 

deviation divided by the mean, using Eqs (5) and (6) above: 

   β = 
σ

<T>
             (7) 

The coefficient of variation is useful for comparison between data sets with different units or 

widely different means. It shows the extent of variability in relation to the mean of the studied data 

sets. 

The mean <T> and the standard deviation σ for the time between successive events for the 

two-dimensional arrays that are having different biased conditions could be calculated statistically as:  

    <T> = ∆t.∑ tigi(t)            (8) 

    σ = √ ∆t.  (ti - <T>)2gi(t)             (9) 
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3. Results and discussion 

The dynamics of electron transport and inter-array coupling has been studied in a 

homogeneous two-dimensional arrays of N small tunnel junctions. The parameters used in this 

model are: tunnel junction capacitance Ct = 1.0e
-17 

F, ground plane coupling capacitors C0 = 1.0e
-18 

F, tunnel resistance Rt = 100 kΩ, linking capacitors Cc = 1.0e
-18 

F and the nominal applied 

temperature T = 1.0e
-07 

K. All the junctions grounding and coupling capacitances are taken as equal 

to each other and to those of the corresponding ones in the other array leg. The array is attached to 

an ideal voltage source and the voltage applied on both of its left terminals is slightly above the 

threshold voltage. The analysis is performed in a low voltage regime at either of its left and right 

ends of the array structure, e.g. for the left-hand side of the array, with VR1 = VR2 = 0. The 

development of stable and reliable single electronic systems requires the precise design and 

selection of the junction capacitances (inter-capacitances), the capacitances to ground and the arrays 

coupling capacitances. Any slight change of such ultra-small capacitances will have remarkable 

consequences on the numerical simulation outcome. It can be observed from Figure 2 that, under 

similar operation conditions, the time between successive events leaving the array increases with 

increasing structure length N, because of the increase in the number of tunnel events needed to 

traverse longer arrays set. The reduction of the maximum values of the probability density function 

with increasing N indicates that the fluctuations of the time between events do increase in return. 

This would be clearly noticed in a linear scale plot. For relatively short arrays, the curves of the 

p.d.f are having single peaks, and for the later ones there is an indicator of a presence for other 

peaks. This will be better seen when the corresponding frequency content is plotted. The results of 

Figure 2 for the two-dimensional array structures match those obtained likewise for the 

one-dimensional array as shown in reference [9]. The figure includes a sample curve for a 

one-dimensional array of length N = 40. Under similar operation conditions, in both structures, the 

coherence for oscillations is improved for longer sets of arrays. 

The continuing coherence of the tunnel events has also been investigated in the frequency 

domain using the power spectral density formulation given in Eq (3). The spectral density S(f) has 

been computed after evaluating numerically the Fourier transforms for the time between events. 

Figure 3 illustrates the power spectral density for the trains of tunnel events exiting the arrays of the 

mentioned lengths. For comparatively short structure circuits, e.g. N = 3 or N = 7, the density starts 

to show a flat peak which indicates some level of correlation. The peaks become more noticeable 

with increasing array length and having their maximum values at approximately twice the absolute 

average frequency f0. These results are in contrast to those reported for the longer arrays of the 

one-dimensional arrays [9], as their power spectral densities show their higher peaks around the 

absolute oscillation frequency. This is attributed to the difference of the transport process between 

them, as the two-dimensional arrays are having two legs for the conduction transitions of the 

electrons. The analysis for the power spectral density is in agreement with that obtained for the 

one-dimensional long arrays, showing that the coherence is strengthened when increasing the array 

length. 
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Figure 2. The p.d.f gi across a reference tunnel junction for 2D arrays (N = 3, 7, 20, 30 

& 40), and a 1D array N = 40, all are biased just above the threshold voltage. Note that 

log scales are used in both axes. 

 

Figure 3. The power spectral density, S(f), for different 2D arrays as in Figure 2 above 

against the normalized frequency (f /f0). 

In Figure 4, for the same 2D array of 40 tunnel junctions circuit, the transition modes undergo 

different transfer processes, given the same parameters and conditions when changing the applied 

voltage. This shows the sensitivity of variation of biasing condition in altering the correlation 

between events, by increasing the number of expected events and changing the distribution of time 

between them. 



194 

 

AIMS Electronics and Electrical Engineering  Volume 4, Issue 2, 188–199. 

 

Figure 4. The probability density function gi for the array N = 40. The bias voltages 

applied at both VL1 and VL2 are: -19.475, -19.5 and -19.65 mV. 

The power spectral density provides a clearer perception into the quality of oscillations 

produced by the circuit. In Figure 5, the minima peaks lie between 0.5 and 1 of the absolute 

frequency, and there is a presence of a first order peak for the higher bias voltage value. For all 

curves, there is an existence of a secondary order harmonic frequency, and the peaks become more 

acute as the value of the bias voltage is increased. Also, the observed modes approach the Poisson 

level at higher frequencies.  

 

Figure 5. The power spectral density S(f) for 2D N = 40, with parameters as given above in Figure 4. 
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Figure 6 shows the variation of the value of the linking or inter-coupling capacitors for the same 

2D array structure. The electronic system is having orders of higher magnitude for the distribution of 

time between the events corresponding to the increase in the capacitance values. Figure 7 illustrates 

the probability density function using the same settings as in Figure 6. The observations noticed in 

Figure 6 and Figure 7 match those which have been mentioned in the corresponding Figure 4 and 

Figure 5, for the case of changing the bias voltage. This similarity illustrates the effect of both the 

bias conditions and the coupling capacitors in altering the distribution of time between the events and 

in terms of the transport processes of the electronic circuit. 

 
Figure 6. The distribution of time between successive events for the 2D (N = 20), for 

different values of linking capacitors Cc = 1.0e
-18

 F, 1.5e
-18 

F, 2.0e
-18

 F and 2.5e
-18

 F, as 

shown, at a fixed bias voltage. 

 

Figure 7. The power spectral density S(f) for the 2D (N = 20), for same settings as in Figure 6. 
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In Figure 8, the oscillation quality factor (β) has been plotted against a selected set of 

two-dimensional arrays under the above operation conditions. For relatively short arrays N = 7 or 

N = 10, the values are found to be 0.9379 and 0.829986, respectively. Later, the quality factor 

reached values around 0.7 for the rest of the set under examination. This implies that for the shorter 

set of arrays, the process is closely similar to that of a Poisson process or having a poor quality. 

These results are in agreement with those obtained for β in the one-dimensional arrays as stated in 

reference [9], where the quality improves with a longer set of circuits and reaches a constant value 

around 0.33. This is suggestive of a good quality assurance for the longer two-dimensional arrays 

compared to that of the one-dimensional long arrays sets, as the 2D arrays are having better variation 

for time between events around the means about which they occur. 

 

Figure 8. The coefficient of variation β for the time between events for the 2D arrays 

(N = 3, 7, 20, 30, 40 and 50). 

Figure 9 shows the quality factor β for the 2D array N = 20, for different values of bias voltage. 

The curve is gradually falling below unity as the bias voltage is increased; thus, the quality factor is 

dependent on the applied voltage to the electronic circuit. 
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Figure 9. The coefficient of variation β for the 2D array N = 20, for different values of bias voltage. 

Table 1. Some of the state’s transitions for a 2D array of tunnel junctions (N = 20) biased 

just above threshold voltage. 

States  Nodes           First Array Leg                              Second Array Leg 

   [1->2]:                                                                         

0 * . . . . . . . . . . . . . . . . . . . * . . . . . . . . . . . . . . . . . . . * 

1 * e . . . . . . . . . . . . . . . . . . * . . . . . . . . . . . . . . . . . . . * 

   [22->23]: 

                                  

  

0 * . . . . . . . . . . . . . . . . . . . * . . . . . . . . . . . . . . . . . . . * 

2 * . . . . . . . . . . . . . . . . . . . * e . . . . . . . . . . . . . . . . . . * 

   [2->3]: 

                                   

  

1 * e . . . . . . . . . . . . . . . . . . * . . . . . . . . . . . . . . . . . . . * 

3 * . e . . . . . . . . . . . . . . . . . * . . . . . . . . . . . . . . . . . . . * 

   [23->24]: 

                                  

  

2 * . . . . . . . . . . . . . . . . . . . * e . . . . . . . . . . . . . . . . . . * 

4 * . . . . . . . . . . . . . . . . . . . * . e . . . . . . . . . . . . . . . . . * 

   [3->4]: 

                                   

  

3 * . e . . . . . . . . . . . . . . . . . * . . . . . . . . . . . . . . . . . . . * 

5 * . . e . . . . . . . . . . . . . . . . * . . . . . . . . . . . . . . . . . . . * 

   [24->25]: 

                                  

  

4 * . . . . . . . . . . . . . . . . . . . * . e . . . . . . . . . . . . . . . . . * 

6 * . . . . . . . . . . . . . . . . . . . * . . e . . . . . . . . . . . . . . . . * 
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For voltages above the threshold voltage (Vth), the conductance process of a two-dimensional 

array (N = 20) goes through 41 states. There are two separate electrons within each of the array legs 

attached at the same time and both of them travelling in one direction from the left node towards the 

right node. Some of the state’s transitions are shown in Table 1. The electron enters from the left 

point and travels from one node to the other towards the right node until it finally exits at the end of 

the right electrode of the structure. The presence of the single electron in any of the array legs 

completely blocks other electrons from entering as it is theoretically stated. Transition starts from 

node 1->2 in the first leg for transition state 0 to 1, and from node 22->23 in the other leg for 

transition state 0 to 2, which both happen at the same time. The transition then continues from node 

2->3 in first leg and 23->24 in the other leg, for states 2->3 and 2->4, respectively, …etc. 

When the bias is increased, another conduction path will be possible, as there is an increase in 

the total active states and the tunnelling events. This condition allows another electron to enter when 

the first one reaches the last junction. In the latter case, the second electron can progress towards the 

end of the array. This conduction takes place in both array legs with the same pattern. It is expected 

that there will be a noticeable change in the IV characteristic for the structure caused by the change 

in the number of states and events contributing to the conduction process. 

4. Conclusion 

In summary, the study of the two-dimensional array of quantum dots, shows that the relative 

linewidth of oscillations decreases with increasing array length. The structure is dramatically affected 

by the change in the bias conditions or the linking capacitors, as they change the modes of operation 

of the array structure and the transport through the array. The oscillations are completely messy by 

shot noise for arrays that are shorter than an array of 7 junctions. Without using the coupling 

capacitors to link the two junction tunnel arrays, the arrays operate as totally independent of each 

other. Comparison against experimental data for one-dimensional array confirms the similarity in 

operation, such as the enhancement of the coherence for the longer array structures. The 

two-dimensional arrays are having higher quality factors than that of the one-dimensional arrays. 

There is an important feature, which is the threshold voltage that is used for selecting the optimum 

bias values for a better operation of the two-dimensional array electronic circuits as well as for their 

quality of oscillation. 
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