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Abstract: Almost all of the complex dynamic processes are subjected to non-Gaussian random noises
which leads to the performance deterioration of Kalman filter and Extended Kalman filter (EKF). To
enhance the filtering performance, this paper presents an EKF-based filtering algorithm using minimum
entropy criterion for a class of stochastic non-linear systems subjected to non-Gaussian noises. For
practical implementations, the Kalman filters are widely used and the structure will not be changed
due to the system integration, therefore, it is important to enhance the performance without changing
the existing system design. In particular, a compensative framework has been developed where the
EKF design meets the basic filtering requirements and the polynomial-based non-linear compensation
has been used to adjusted the basic estimation from EKF with the entropy criterion. Since the entropy
of the system output estimation error can be approximated using the measured data by kernel density
estimation (KDE). A data-based framework can be obtained to enhance the performance. In addition,
the presented algorithm is analysed from the view of the estimation convergence and a numerical
example has been given to demonstrate the effectiveness.

Keywords: stochastic non-Gaussian systems; minimum entropy optimisation; performance
enhancement; extended Kalman filter; polynomial compensation; kernel density estimation

1. Introduction

In order to control and optimise the system performance, the system state observiation is a
significant concept since the system state can reflect the internal properties of the dynamic system.
However, for most of the practical systems, the system state cannot be measured directly, meanwhile,
the random noise would affect the state and the measurement. To estimate the system state using
system output measurement, Kalman filter has been presented in 1960 [3].

Kalman filter is well-developed for linear stochastic systems which are subjected to Gaussian noises.
To deal with the non-linearities of the stochastic systems, extended Kalman filter (EKF) [6] has been
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presented by adding the linearisation operation into the Kalman filter design. In this case, the non-
linear system model has been converted to linear model locally for each instant. Due to the fact that
the Kalman filter and EKF have simple parametric structure, they are widely used in practice. Notice
that both Kalman filter and EKF have adopted Gaussian assumption. In other words, the performances
of Kalman filter and EKF would be deteriorated if the systems are subjected to non-Gaussian noises.

Motivated by non-Gaussian distribution shaping control, the non-Gaussian systems widely exist
in industrial process, for example, paper-making process, networked systems [7], neural interaction
systems [16, 17], etc, it is important to investigate the filtering problem subjected to non-Gaussian
noises. Note that the states or outputs will be non-Gaussian even if the noise is Gaussian due to the
influences of the non-linear dynamics [8]. The performance enhancement problem for non-Gaussian
control system design has been analysed in [19, 20], where the entropy criterion has been adopted to
enhance the performance of the exiting fixed control loop. Similarly, this approach can be extended to
filtering problem in order to overcome the fore-mentioned shortcomings.

In particular, the filter design cannot be adjusted anymore once the system integration is completed,
which means the filter cannot adapt to the model time-variant dynamics, unexpected damage, non-
Gaussian noise, etc. Therefore, the performance enhancement strategy should be considered based
on the existing system structure and a new compensative framework for the estimated states should
be established. We assume that the existing EKF design has been completed for the system and a
compensative non-linear term is added to the estimated state directly. Following this approach, the
residuals and un-modelled dynamics can be compensated by the non-linear term. In particular, our
objective is to design an optimal non-linear term to enhance the performance.

In this paper, the non-linear term has been re-expressed by polynomial while the coefficients of the
polynomial can be optimised in real time to minimise the performance criterion, where entropy has
been used as performance criterion to describe the randomness of the estimation error [4]. Comparing
with the existing minimum entropy filter, the convergence analysis of the presented algorithm would
be obtained based upon the existing EKF structure, while the non-Gaussian effects will be attenuated
by entropy optimisation. Moreover, the entropy can be estimated by kernel density estimation (KDE)
with data. As a result, the analytical evolution is not essential. Different from the Kalman framework,
not only the variance has been considered in the design but also the whole distribution of the
estimation error has been taken into account which implies that our design includes more information
and makes the performance enhancement feasible. Since the presented filtering algorithm can
improve the estimation accuracy, it would affect a lot of related research topics such as fault
diagnosis [5], probabilistic decoupling [15, 18] and even non-linear filtering problem [13].

The rest of this paper is organised as follows: in Section 2, the preliminaries are briefly introduced
including the problem formulation, EKF and KDE. Section 3 shows the main algorithm where the
compensation loop has been designed and the optimisation has been achieved. In Section 4, the
convergence of the presented algorithm has been analysed. To validate the effectiveness of the
presented filtering framework, the simulation results have been illustrated in Section 5. As the last
part of the paper, further discussion and conclusions have been given by Section 6 and Section 7,
respectively.

2. Preliminaries

Consider the stochastic non-linear system model:
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xk+1 = f (xk) + wk

yk = h (xk) + vk (2.1)

where x ∈ Rn and y ∈ R denote the system state vector and system output, respectively. w ∈ Rn

and v ∈ R stand for the random noises with arbitrary stochastic distributions where E {wk} = 0 and
E {vk} = 0. k is the sampling index. f : Rn → Rn and h : Rn → R are known differentiable non-linear
functions where f (0) = 0 and h (0) = 0. Note that E {·} denotes the operation for calculating the mean
value.

Remark 1. For the filtering problem, single-output means the limited measurable information which
demonstrates the benefit of the system state estimation. Actually, the multi-output model can be covered
using the presented algorithm with the generalised joint-entropy minimum optimisation. Without loss
of the generality, the single-output model is adopted in this manuscript for simplifying the formulation.

2.1. Extended Kalman filter

Based upon the structure of the system model, the EKF design can be started with linearisation as
follows:

{Fk,Hk} =

{
∂ f
∂x
,
∂h
∂x

}∣∣∣∣∣∣
x=xk

(2.2)

After system linearisation, the investigated system model (2.1) can be re-presented as follows:

xk+1 = Fkxk + f̄ (xk) + wk

yk = Hkxk + h̄ (xk) + vw (2.3)

where f̄ (xk) and h̄ (xk) stand for the un-modelled dynamics of the investigated system model (2.1).

The EKF filter structure can be given by Eq. (2.4)

x̂k+1 = f (x̂k) + Kkỹk (2.4)

where x̂k denotes the estimated system state xk for sampling index k, ỹk = yk − h (x̂k) stand for the
estimation error of the system output yk and the filter gain Kk ∈ R

n×1 can be calculated recursively as
follows:

Kk = FkPkHT
k

(
HkPkHT

k + Rk

)−1
(2.5)

while the P matrix is governed by the following Riccati equation.

Pk+1 = FkPkFT
k + Qk − FkPkHT

k KT
k (2.6)

Note that Rk and Qk stand for the covariance matrix for wk and vk which implies these matrices are
time-varying symmetric positive definite matrices and

Rk = E
{
wkwT

k

}
,Qk = E

{
vkvT

k

}
(2.7)
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The filtering design objective can be formulated as

lim
k→∞

x̃k = 0,∀x0 ∈ R
n (2.8)

where x̃k = xk − x̂k denote the estimation error of the system state xk and x̂0 is the initial value of the
filter.

For theoretical analysis, the following assumptions can be made for the investigated system model
(2.1).

Assumption 1. There exists one positive real number L1,k < 1, such that the inequality (2.9) holds for
any sampling instant k. ∥∥∥ f̄ (xk) − f̄ (x̂k)

∥∥∥ ≤ L1,k ‖x̃k‖ (2.9)

where ‖·‖ denotes the norm operation.

Assumption 2. There exists one positive real number L2,k < 1, such that the inequality (2.10) holds
for any sampling instant k. ∥∥∥h̄ (xk) − h̄ (x̂k)

∥∥∥ ≤ L2,k ‖x̃k‖ (2.10)

Remark 2. Since the noises are unmeasurable, the covariance matrices Rk and Qk cannot be obtained
accurately, while the approximation also results in the performance decay. It affects the performance
strongly for non-Gaussian systems because the non-Gaussian distribution cannot be characterised
sufficiently by 1st-order and 2nd-order moments.

2.2. Kernel density estimation

Note that Kalman-like filters are based on quadratic cost function which means that the optimal
result is obtained using 2nd-order moment such as variance and covariance. However, since the
variance and covariance cannot be used to deal with the non-Gaussian distribution properly, the
concept of entropy can be introduced to describe the signal randomness which is subjected to the
non-Gaussian noise. In particular, the quadratic Rényi entropy has been used in this paper.

H2 (ω̄) = − log
∫

Ω

γ2 (ω̄)dω̄ (2.11)

where ω̄ denotes random variable, Ω denotes the sample space and γ (·) stands for the probability
density function (PDF). Notice that the entropy is equivalent to variance for Gaussian random variable.

Once the samples of the random variable ω̄ can be collected as a data set {ω̄1, ω̄2, . . . , ω̄N}, then the
PDF of ω̄ can be estimated by kernel density estimation (KDE) as follows:

γ̂ (ω̄) =
1
N

N∑
i=1

GΣ (ω̄ − ω̄i) (2.12)

where G denotes the Gaussian kernel function. Σ stands for the covariance matrix of the kernel
function.
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Substituting the KDE equation into the definition of Rényi entropy, the estimation of entropy can
be formulated as follows:

Ĥ2 (ω̄) = − log

 1
N2

N∑
i, j=1

G√2Σ

(
ω̄i − ω̄ j

) (2.13)

Note that logarithm is a monotonic function, the entropy optimisation can be rewritten as
information potential optimisation equivalently, where the information potential has been defined as

P̂ (ω̄) =
1

N2

N∑
i, j=1

G√2Σ

(
ω̄i − ω̄ j

)
(2.14)

3. Performance enhanced filtering algorithm using polynomial compensation

Based upon the analysis above, the accuracy will be improved if a compensative term can be added
to the EKF filter, where the EKF has been design as fixed component in terms of structure and
parameters. The additional term can be inserted onto the existing filter directly which is shown as
follows:

x̂k+1 = f (x̂k) + Kk (yk − h (x̂k)) + g (ỹk) (3.1)

Since the non-linear function g (ỹk) is difficult to estimate for sampling instant k, the polynomial
form can be adopted as follows:

g (ỹk) = α0 + α1ỹk + α2ỹ2
k + · · · + αiỹi

k + · · · (3.2)

where αi denotes the coefficient of the polynomial. Note that g (0) = α0 which results in α0 = 0 since
g (0) = 0. Potentially, the polynomial can be simplified with α0 = 0.

Equivalently, the polynomial can be re-written based on parametric structure with optimisation
purpose.

g (ỹk) = Λkφk (ỹk) (3.3)

where

Λk = [α0, α1, . . . , αi, . . .] (3.4)

φk (ỹk) =
[
1, ỹk, ỹ2

k . . . , ỹ
i
k, . . .

]T
(3.5)

while i denotes the order for polynomial estimation. Generally, high-order polynomial will lead to
better estimation however the order should be pre-specified considering the computational load.
Without loss of generality, we can choose m as the order of the estimation. Notice that m = 1 results
in a linear compensator. In addition, Eq. (3.3) can be further simplified since g (0) = 0. As a result,
α0 = 0 while the first element can be removed from Eq. (3.5) and α0 can be also removed from
Eq. (3.4).
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Since φk is known for any sampling instant k, the parameter matrix Λk should be obtained with the
entropy optimisation. Using KDE and information potential definition, we use information potential to
describe the randomness while it can be approximated as follows:

P̂2 =

 1
k2

k∑
i, j=1

G√2Σ

(
ỹi − ỹ j

) (3.6)

where G denotes the Gaussian kernel function. Σ stands for the covariance matrix of the kernel
function.

Based upon the obtained entropy value, Eq. (3.7) can be considered as the performance criterion
for the optimisation.

Jk = R1P̂2
2 + R2Λ

T
k Λk + R3E

{
ỹ2

k

}
(3.7)

where R1, R2 and R3 are the weighting constants.
To minimise the performance criterion (3.7), the gradient descent optimisation can be adopted as

follows:

Λk+1 = Λk − εk
∂Jk

∂Λk
(3.8)

where εk is the time-varying step for optimisation.

Figure 1. The block diagram of the presented filtering algorithm. Note that the existing EKF
loop will not be affected by the additional compensative loop.

Note that there always exists a real sufficient large-value constant R2, such that the inequality (3.9)
can be satisfied.

∂2J
∂Λ2

k

> 0 (3.9)

which results in the existence of the optimum.
To illustrate the presented algorithm, the block diagram is given by Figure 1.

4. Convergence

The convergence analysis of the presented filtering algorithm should be started from the dynamics
of the system state estimation error. Particularly, substituting the designed filter (3.1) (3.3) into the
system model (2.1), we have
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x̃k+1 = f (xk) − f (x̂k) − Kkỹk − Λkφk (ỹk) + wk

= Fk x̃k + f̄ (xk) − f̄ (x̂k) − Kkỹk − Λkφk (ỹk) + wk (4.1)

Moreover, we have

ỹk = Hk x̃k + h̄ (xk) − h̄ (x̂k) + vw (4.2)

Substituting ỹk and Λk into the equations (4.2) and (4.3), we have

x̃k+1 = Fk x̃k + f̄ (xk) − f̄ (x̂k) + wk

− Kk

(
Hk x̃k + h̄ (xk) − h̄ (x̂k) + vw

)
−

(
Λk−1 − εk−1

∂Jk−1

∂Λk−1

)
φk (ỹk)

= (Fk − KkHk) x̃k + f̄ (xk) − f̄ (x̂k)

− Kk

(
h̄ (xk) − h̄ (x̂k)

)
− Kkvk + wk +

(
Λk−1 − εk−1

∂Jk−1

∂Λk−1

)
φk (ỹk) (4.3)

Using Assumption A2, the inequality (4.4) can be obtained.

‖ỹk‖ = ‖Hk‖ ‖x̃k‖ +
∥∥∥h̄ (xk) − h̄ (x̂k)

∥∥∥ + ‖vk‖

≤ ‖Hk‖ ‖x̃k‖ + L2,k ‖x̃k‖ + ‖vk‖ (4.4)

which leads to

E {‖ỹk‖} ≤
(
‖Hk‖ + L2,k

)
E {‖x̃k‖} (4.5)

Using the structure of φk, there always exist two real positive numbers L̄2,k and σ̄k, such that,

E {‖φk (ỹk)‖} ≤ L̄2,kE {‖x̃k‖} + σ̄k (4.6)

where σ̄k denotes the upper bound for α0 for all sampling instants.

Substituting Eqs. (4.5) and (4.6) to Eq. (4.3) with Assumption A1, we have

E {‖x̃k+1‖} = (Fk − KkHk) E {‖x̃k‖} + E {wk} +
∥∥∥ f̄ (xk) − f̄ (x̂k)

∥∥∥ + E {Kkvk}

+ ‖Kk‖ E
{∥∥∥h̄ (xk) − h̄ (x̂k)

∥∥∥} +

∥∥∥∥∥Λk−1 − εk−1
∂Jk−1

∂Λk−1

∥∥∥∥∥ E {‖φk (ỹk)‖}

≤ ‖Fk − KkHk‖ E {‖x̃k‖} + ‖Kk‖ L2,kE {‖x̃k‖} + L1,kE {‖x̃k‖}

+

∥∥∥∥∥Λk−1 − εk−1
∂Jk−1

∂Λk−1

∥∥∥∥∥ (
L̄2,kE {‖x̃k‖} + σ̄k

)
=

(
‖Fk − KkHk‖ + L1,k + L2,k ‖Kk‖ +L̄2,k

∥∥∥∥∥Λk−1 − εk−1
∂Jk−1

∂Λk−1

∥∥∥∥∥) E {‖x̃k‖}

+ L̄2,k

∥∥∥∥∥Λk−1 − εk−1
∂Jk−1

∂Λk−1

∥∥∥∥∥ σ̄k (4.7)
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Note that the estimation error x̃k is bounded if

‖Fk − KkHk‖ + L1,k + L2,k ‖Kk‖ + L̄2,k

∥∥∥∥∥Λk−1 − εk−1
∂Jk−1

∂Λk−1

∥∥∥∥∥ < 1 (4.8)

In addition, the selected step εk−1 makes the inequality (4.9) holds, naturally.

L̄2,k

∥∥∥∥∥Λk−1 − εk−1
∂Jk−1

∂Λk−1

∥∥∥∥∥ < 1 (4.9)

which leads that the upper bound σ̄k is decreasing along k. In other words, σ̄k → 0 implies that the
estimation error converges to 0 in mean-norm sense. In this paper, σ̄k = 0 since α0 = 0 which simplifies
Eq. (4.8) as follows:

E {‖x̃k+1‖} =
(
‖Fk − KkHk‖ + L1,k + L2,k ‖Kk‖ +L̄2,k

∥∥∥∥∥Λk−1 − εk−1
∂Jk−1

∂Λk−1

∥∥∥∥∥) E {‖x̃k‖} (4.10)

Note that ‖Fk − KkHk‖ < 1,L1,k < 1 and L2,k < 1, Eq. (4.8) is implementable. For any sampling
instant k, the system evaluation is governed by the pre-specified step εk−1. Note that the convergence
can be achieved with the information from the previous sampling instant then Jk is always bounded.

Based upon the convergence analysis, the design procedure can be demonstrated using the following
pseudo-code: Algorithm 1.

Algorithm 1 Entropy-based EKF with non-linear compensation
Require: Data collection of system output y
Input: The existing EKF
Output: The measured system output yk

Initialization: Pre-specified the kernel density function, the dimension m for polynomial order, the
time tc to add the compensative signal into the system and the ts for operation time.
for k ≤ ts do

Collect the time sampling data set of y
if k ≥ tc then

Estimate the entropy using the collected data y
Calculate the value of cost function
Select the step to meet the system convergence condition
Calculate the compensative gain Λk using gradient descent optimisation
Kk is fixed by EKF and add the compensator into system

else
Kk is fixed by EKF without compensative loop

end if
Update the system with system model
k = k + 1

end for
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5. Simulation

In order to demonstrate the effectiveness of the presented algorithm especially for practical
application, the two-tank system model, shown by Figure 2, has been investigated in terms of level
control. In particular, the water in the pool is injected into tank 1 with controlling the pump u2,k and
flow from tank 2 to tank 1 goes through the intercommunicating valve, while the valve opening ratio
u1,k and the discharge vale of tank 2 are closed. Based on [13], the system model can be formulated as
follows:

A1
dx1

dt
= k3u1 − c1 − k1

√
x1 + k0

√
x2 − x1 + w1

A2
dx2

dt
= k4u2 − c2 − k3u1 + c1 − k2

√
x2 − k0

√
x2 − x1 + w2

y = x1 + v (5.1)

where x1 is the level of tank 1and x2 denotes the level of tank 2. A1 and A2 are the cross-sectional area.
c1 and c2 are constant parameters of the valves and pumps. k0, k1, k2, k3 and k4 stand for the ratio of the
valves. Note that w and v are the process noise and measurement noise, respectively. Furthermore, w
and v are non-Gaussian noises although they are with zero mean values.

Figure 2. The investigated two-tank water level control system.

To apply the presented filtering algorithm, the discrete-time model can be obtained following the
discretisation of system model (5.1) where the sampling time is selected as 0.1s. In addition, the
parameters of the model can be pre-measured as A1 = A2 = 167.4cm2, k0 = 0.7, k1 = 0.25, k2 = k3 = 0,
k4 = 0.1, c1 = 0 and c2 = 2.88. Since the value of tank 1 is assumed as closed, we have u1 = 0 while
the system is driven by u2 only where it has been pre-specified as u2 = 30.

Without loss of generality, we choose m = 2 which results in a 2-nd order polynomial based
compensator and α0 = 0. The weighting constants are given as R1 = R3 = 1 and R2 = 50. Before
k = 3000, only EKF is used where the EKF can give a good tracking property for any initial value,
however the entropy of each instant has not been optimised. The enhanced performance scheme will
be adopted based on existing EKF design after k = 3000 while the entropy will be attenuated by the
additional compensation.
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In particular, Figure 3 shows the performance of the estimation for system output, where the
measurement noise v has been attenuated. And based on the estimation error ỹk, the system state x1

and x2 can be estimated while performances have been illustrated by Figures 4 and 5. It has been
shown that the non-Gaussian noise strongly affects the process. The presented algorithm can supply
the good performance for system state estimation subject to the non-Gaussian noise. In addition, the
estimation errors x̃1 and x̃2 are given by Figures 6 and 7, where the estimation errors are bounded and
close to zero.
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Figure 3. The measured system output yk, the ideal dynamics of yk without noise and the
estimated system state ŷk.
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Figure 4. The measured system state x1,k, the ideal dynamics of x1,k and the estimated system
state x̂1,k.
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Figure 5. The measured system state x2,k, the ideal dynamics of x2,k and the estimated system
state x̂2,k.
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Figure 6. The system state x1 estimation error x̃1.
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Figure 7. The system state x2 estimation error x̃2.
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Based upon the performance enhancement via entropy attenuation, the probability density function
of the system output estimation error should become sharp which has been shown by Figure 8. Note
that after k = 3000, the probability density function becomes sharper which implies that the entropy
value has been attenuated and the randomness of the estimation error has been reduced. Meanwhile,
the performance criterion is given by Figure 9 where the value of the entropy-based cost function
has been minimised. Figure 8 also illustrates the comparison of the performance between the EKF
and the presented filtering scheme, where the performance has been enhanced in terms of minimum
randomness of the estimation. Note that the EKF can be used firstly and then the filter design can be
switched to the enhancement scheme as the presented algorithm will not affect the existing design loop.
Meanwhile, the convergence is much easier to achieved once the estimation error has been governed
within a neighbourhood of zero point.

Figure 8. The probability density function of the system output estimation error ỹk. Note
that the sharp probability density function leads to the attenuated entropy.
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Figure 9. The value of performance criterion Jk and its mean value.
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6. Further discussion

The contribution of the presented algorithm can be considered as the framework. In particular,
most of the practical system structures cannot be changed after the design progress. In other words,
it is significant to enhance the performance without changing the existing design from the view of the
implementation. Moreover, this paper shows the framework with EKF as a standard example. The
approach can be adopted with all the other filter design such as high-gain [2], NN-based filter [13],
even particle filter [14], etc. On the other hand, the performance criterion can also be replaced by other
optimisation objectives such as the economic dispatch [9], etc.

Notice that the presented algorithm will not increase the complexity of the algorithm
implementation. For each instant, the optimisation operations have been merged into the EKF
algorithm, however, only one iteration has been adopted for each instant optimisation which means
the addition complexity for each instant k is equal to O (M), where M is a positive integer constant
denoting the operation number for optimisation at each instant. In other words, along the system runs
k → ∞, the additional compensator complexity will be kept at the same level comparing to the
existing filter design algorithm.

Since a number of the exciting fault diagnosis approaches are based on the filter or observer
designs. The presented framework has a direct perspective for practical applications. Due to the fact
that the probability density function based design has been used for fault diagnosis and tolerance
control [1, 12], the entropy performance enhancement can be merged into the existing methods
directly. Another perspective is the potential applications for operation control of industrial processes,
such as magnesium furnaces [10, 11], etc.

7. Conclusions

In this paper, a novel filtering algorithm has been proposed in order to enhance the estimation
accuracy for the non-Gaussian system based upon the existing EKF design. Basically, the existing EKF
design has not been changed in terms of the structure and the parameters. An additional compensation
loop has been designed using the non-linear compensator in the polynomial format with adjustable
coefficients. Moreover, this addition non-linear term can be restated as a gain vector with a measurable
vector, then the optimal coefficients should be obtained as the gain of the compensator. To achieve this
optimisation, the concept of the entropy and kernel density estimation (KDE) have been adopted where
the parameters have been optimised with the minimum entropy cost function using the gradient descent
approach. The theoretical analysis demonstrates that the additional compensative loop design is able to
guarantee the convergence of the estimation error and the simulation results indicate the effectiveness
of the presented algorithm.
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