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Abstract: Sleep quality has a vital effect on good health and well-being throughout a life. Getting 

enough sleep at the right times can help protect mental health, physical health, quality of life, and 

safety. In this study, an electroencephalography (EEG)-based machine-learning approach is proposed 

to measure sleep quality. The advantages of this approach over standard Polysomnography (PSG) 

method are: 1) it measures sleep quality by recognizing three sleep categories rather than five sleep 

stages, thus higher accuracy can be expected; 2) three sleep categories are recognized by analyzing 

EEG signals only, so the user experience is improved because fewer sensors are attached to the body 

during sleep. Using quantitative features obtained from EEG signals, we developed a new automatic 

sleep-staging framework that consists of a multi-class support vector machine (SVM) classification 

based on a decision tree approach. We used polysomnographic data from PhysioBank database to 

train and evaluate and test the performance of the framework, where the sleep stages have been 

visually annotated. The results demonstrated that the proposed approach achieves high classification 

performance, which helps to measure sleep quality accurately. This framework can provide a robust 

and accurate sleep quality assessment that helps clinicians to determine the presence and severity of 

sleep disorders, and also evaluate the efficacy of treatments. 

Keywords: automatic sleep quality measurement; electroencephalography (EEG); machine learning; 

time-frequency features; dendrogram-support vector machine classifier 
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KNN: K-nearest neighbor; HMM: hidden Markov model; LDA: linear discriminant analysis; DT: 

decision trees; NB: naive Bayes; RF: random forests; AW: awake; DS: deep sleep; LS: light sleep 

1. Introduction 

Sleep quality plays an important role in a person’s learning ability, physical movement, and 

performance [1]. With the fast pace of modern life, millions of people suffer from poor sleep quality. 

Therefore, automated sleep quality measurement is of utmost interest and can help in evaluating the 

treatment progress in patients with common sleep disorders such as restless legs syndrome, insomnia, 

narcolepsy, and obstructive sleep apnea. 

Sleep is characterized by continuous changes in respiration and heart beat rate, eye movement, 

muscles movements, and brain activity. Traditional polysomnographic (PSG) records different types 

of physiological data including the electroencephalogram (EEG), electrooculogram (EOG), 

electromyogram (EMG) and electrocardiogram (ECG) to measure the sleep quality. The PSG 

recording then divides into 30 sec sequence of non-overlapping time windows (segments) based on 

the American academy of sleep medicine (AASM) manual [2] recommendation. Each segment is 

subsequently classified to one of the five sleep stages: 1) wakefulness (W), 2) rapid eye movement 

(REM), 3) stage 1 (S1); 4) stage 2 (S2); and 5) deep sleep, or slow wave sleep (SWS = S3 + S4) [2]. 

This segment duration is appropriate for hand scoring and can accurately reflect the macrostructure 

and time course of normal sleep, without the risk of having many stage shifts. In the case where two 

or more sleep stages occur on one segment, the stage that comprising the majority of the segment 

will be considered as the stage of the segment. Sleep stage scoring is the gold standard for analyzing 

human sleep [1], [3–7] that helps to identify the sleep stages that are vital in diagnosing and treating 

sleep disorders.  

Sleep staging is usually conducted by specialized experts. This process, however, is hard, time 

consuming and error prone [8]. Many methods have been proposed for automatic sleep staging in order 

to reduce the required time and effort and reduce the number of errors [8]. In automatic sleep staging, 

classifiers are first trained using features associated with each segment of sleep data and its 

corresponding stage that is manually annotated by sleep specialists or neurologists. Then, the trained 

classifiers are used to automatically determine the sleep stage corresponding to each segment. 

The traditional PSG approach use several sensors to measure EEG, EOG, EMG and ECG 

signals [9]. This can make users feel uncomfortable during sleep since a lot of sensors are attached 

on their body and scalp. On the other hand, the EEG signals are able to provide information about 

brain activities based on electrical recordings taken on the scalp of a subject. The EEG signals at 

different frequency sub-bands of alpha, beta, delta and theta show different characteristics during 

different sleep stages. This makes EEG signals as the most important signals in sleep stage 

classification regardless of manual or automatic classification [1]. Therefore to improve the user 

experience, automatic sleep staging based on measuring only EEG signals is of utmost interest 

among the sleep research community during the last decade [1,3–6].  

Many different machine learning-based methods for automatic sleep stage classification (ASSC) 

have been proposed in the past. Approximately 31% of the ASSC methods use classification schemes 

that are based on support vector machine (SVM) classifiers, 22% based on artificial neural networks 

(ANN) classifiers, 11% based on linear discriminant analysis (LDA), 10% based on K-nearest 

neighbor (KNN), 5% based on decision trees (DT) and the remaining 21% based on other types such 

as naive Bayes (NB), hidden Markov model (HMM), fuzzy classification, and combined 

classification [1]. 
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“Sleep-EDF Database [Expanded]” dataset is one of the most widely used sleep datasets in the 

literature for evaluating automatic sleep staging algorithms that is publicly available on the Physionet 

website (https://physionet.org/physiobank/database/sleep-edfx/) [10]. Here we briefly compare the 

performance of some of the most popular procedures based on “Sleep-EDF Database [Expanded]” 

dataset with highest classification performance among the available literature. We must note that 

comparison with the studies using other sleep databases and PSG signals is very difficult and is not 

considered in this study. 

In study by [3] Zhu et al. used multiclass SVM classifier to classify the six sleep stages of W, S1, 

S2, S3, S4, and REM, where the algorithm achieved 87.5% classification accuracy. Liu et al. [4] 

performed sleep stage classification based on ANN classifier. They achieved an optimal classification 

accuracy of 89.5% to classify W, S1 + REM, S2, and SWS. Sanders et al. [5] used LDA classifier for 

sleep stage classification. Their proposed method correctly classified the five stages of W, S1, S2, 

SWS, and REM with an average accuracy of 75%. Phan et al. [6] used KNN to develop an ASSC 

system to classify the four sleep stages of W, S1 + REM, S2, and SWS. The classifier provided 94.49% 

accuracy. Aboalayon et al. [1] compared the performance of DT, SVM, ANN, and KNN to classify 

six sleep stages of W, S1, S2, S3, S4, and REM. DT classifier obtained the best overall classification 

accuracy with an average accuracy of 93.13%. DT classifier was followed by the SVM (92.37%), 

ANN (91.70%), and KNN (89.38%) in terms of classification accuracy. 

In order to reliably estimate sleep disorders, it is essential to precisely estimate sleep quality 

parameters. Given the sleep cycles overnight, we can measure the sleep quality using the following 

three main parameters: 1) sleep latency, 2) sleep efficiency, and 3) percentage of deep sleep [11,12]. 

Specifically, sleep latency is the time that it takes to fall asleep after going to bed. Sleep efficiency is 

the ratio of the amount of time spent asleep to the total amount of time in bed. Percentage of deep sleep 

is the ratio of deep sleep to the all sleep stages. In order to calculate these parameters, in contrast to the 

previous studies on the classification of sleep stages [1,3–7], only three sleep categories need to be 

distinguished: wakefulness, light sleep + REM (S1, S2, REM), and deep sleep (S3, S4) [11]. Therefore, 

assessment of sleep quality can be made with significant reductions in cost and complexity. On the 

other hand, the sleep literature show that EEG signals of S1 and REM sleep are very similar [13]. In 

addition, there is a high variability in the EEG signals between and within subjects, especially in stages 

S1 and REM sleep [14,15]. Therefore, we attempted to classify the three sleep categories based on the 

EEG signals alone. We used an automatic sleep staging framework that consists of a multi-class 

support vector machine (SVM) classification based on a decision tree approach. We first trained and 

evaluate the performance of the SVM classifier by using polysomnographic datasets of first night of 8 

healthy subjects from PhysioBank database with annotated sleep stages [10]. Then we test the 

performance of the classifier using the remaining 110 sleep datasets (nights) from the remaining 67 

subjects. The performance of the classifier is also compared with widely used random forests 

classification approach. 

The rest of the paper is organized as follow. Section 2 describes the dataset and the method. The 

classification results are discussed in Section 3. Conclusions are given in Section 4. 

2. Materials and method 

2.1. Subjects 

In this study we used sleep dataset from SC Sleep-EDF Database [Expanded] that is freely 

https://physionet.org/physiobank/database/sleep-edfx/
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available through Physionet at “https://physionet.org/physiobank/ database /sleep-edfx/” for training, 

evaluation, and testing purposes [10]. We selected EEG signals recorded from 67 healthy subjects 

(female (n = 34, 50.74%), male (n = 33, 49.25%), mean age of 57.13 years (age range: 25–101 years 

with the standard deviation of 23.03 years)) without any medication for 24 hours sampled at 100 Hz. 

For each subject the EEG dataset were recorded for two nights. However, we considered one-night 

dataset for 13 of the subjects, since the dataset from the other night were noisy and could not be 

considered in the study. Also 3 of the subjects had just one-night dataset. Thus the total number of 

datasets is 118. Sleep stages have been scored manually according to Rechtschaffen & Kales (R & K) 

criteria [16] based on 30 sec segments of recordings. We selected Fpz-Cz and Pz-Oz EEG electrodes 

in our evaluations. 

2.2. Feature extraction 

As EEG signals are dynamic and mostly nonstationary for analysis, their frequency components 

are needed to know with the times at which they occur. Time-frequency analysis is especially 

suitable for addressing such issues [17]. We usually need more time accuracy in high frequency 

locations with transient waves, and more frequency resolution for slow waves. Such an analysis can 

be performed using wavelet transform (WT). We designed a wavelet packet tree (WPT) with 7 levels 

for this purpose. Daubechies wavelet of order 2 (db2) was applied to each 30 sec segments of EEG 

signal [18]. The frequency ranges of the EEG signal were divided into Delta (below 3.5 Hz), Theta 

(4–7 Hz), Alpha (8–13 Hz), and Beta (14–30 Hz) bands [19]. We also considered another frequency 

band named spindle frequency band in the sleep EEG dataset, because of presence of sleep spindles. 

We then manually selected the wavelet coefficients vectors (sub-bands) Cn (n = 1:38) that containing 

frequency information of the following 6 bands (Figure 1): 

1. Delta: {0.39–3.13 Hz}, Wavelet coefficients = [C38, C30, C31, C32] = B1 

2. Theta: {3.13–8.46 Hz}, Wavelet coefficients = [C33, C34, C22, C23, C35] =B2 

3. Alpha: {8.46–10.93 Hz}, Wavelet coefficients = [C36, C25] = B3 

4. Spindle: {10.9–315.63 Hz}, Wavelet coefficients = [C26, C27, C28] = B4 

5. Beta1: {15.63–21.88 Hz}, Wavelet coefficients = [C16, C17] = B5 

6. Beta2: {21.88–37.50 Hz}, Wavelet coefficients = [C18, C5] = B6 

 

Figure 1. WPT and selected sub-bands. 
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For example, the frequency range of Delta frequency band is {0.39–3.13 Hz}. Based on the 

frequency range for each vector Cn, we need to concatenate several vectors to cover the frequency 

range for this specific band. Considering that C38 covers the frequency range of {0.39–0.78 Hz}, C30 

covers the frequency range of {0.78–1.56 Hz}, C31 covers the frequency range of {1.56–2.34 Hz}, 

and C32 covers the frequency range of {2.34–3.13 Hz}, concatenating these vectors will cover the 

whole frequency range for Delta frequency band.  

The following 32 statistical features were then extracted from each EEG segment to represent 

the time-frequency distribution of the segment for each electrode. Considering two EEG electrodes 

(Fpz-Cz and Pz-Oz) in this study, the total number of features are 2 × 32 = 64. 

 Mean quadratic value or Energy (E1, E2, …, E6) of wavelet packet (WP) coefficients for each of 

the 6 bands (features 1–6) 

 Total Energy (E7) (feature 7) 

 Mean of the absolute values of the coefficients in each sub-band (features 8–13) 

 Standard deviation of the coefficients in each sub-band (features 14–19) 

 Ratio of different mean absolute values in different sub-bands (features 20–24) 

 Shanon entropy of the vector B = [B1, B2, B3, B4, B5, B6] (feature 25) 

 Permutation entropy [20]. (feature 26) 

 Mean of each segment (feature 27) 

 Maximum of each segment (feature 28) 

 Minimum of each segment (feature 29) 

 Median of each segment (feature 30) 

 Standard deviation of each segment (feature 31) 

 Mean of absolute differences (MAD) of each segment (feature 32) 

𝑀𝐴𝐷 =
1

𝑁
  𝑥 𝑘 − 𝑥(𝑘 − 1) 𝑘                             (1) 

where 𝑥 𝑘  is the kth time sample of segment 𝑥 and N is the total number of samples (here 

N = 30 × 100 = 3000). 

Features 1–13 display the frequency distribution of the signal, features 14–24 show the amount 

of variation in the distribution of the frequency. Feature 25, Shannon entropy, describes the energy 

distribution of the wavelet coefficients. Shannon entropy can be used in sleep EEG signal processing 

since it has high values in wakefulness and REM sleep stages, and low values in SWS stages [21]. 

Feature 26, permutation entropy, is used to measure quantitative complexity for a dynamical time 

series. Features 27–32 mainly contain statistical measures that directly applied to the time series. 

2.3. Feature selection 

The second step in the machine learning process is feature selection, which is critical to the 

performance of the classifier. The goal in this step is to find a set of Nr features which are most 

relevant to differentiating between the three sleep categories. We tested widely used feature selection 

algorithms such as minimum redundancy maximum relevance (MRmR) [22]; fast correlation based 

feature selection (FCBF) [23]; t-test; and Fisher score algorithms to select most discriminating 

features between the three categories. The best performance was obtained using MRmR approach. 

In order to avoid choosing features that are dominant in just a few patterns, a 10-fold cross 

validation procedure was used to select the best Nr features, where each fold contains approximately 
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the same number of segments for each sleep category. The 10-fold cross validation is an iterative 

process, where in each iteration, 9 folds are used for feature selection. In the proposed scheme, for 

each iteration, MRmR method is used to determine a list of the best kNr, k > 1 features. The value of 

k is considered to be 2. After completing all iterations, the Nr features with the highest number of 

repetitions (probability of appearance) were selected as the final set of selected features. To avoid 

over-fitting, it is desirable to select Nr as small as possible. 

2.4. Dendrogram multi-class SVM 

In this study, we used a decision-tree-based support vector machine classifier named 

Dendrogram-SVM (DSVM) for classifying the three sleep categories [7]. The kernel function is 

Gaussian Radial basis function and the optimization technique is sequential minimal optimization [24] 

using the Statistics and Machine Learning Toolbox in MATLAB R2016. The rationale behind it is that 

combining decision tree architecture with binary SVMs benefits the advantages of the efficient 

computation of decision trees and the high classification accuracy of SVMs. The performance of 

DSVM approach is then compared with widely used random forests classification approach. 

3. Results 

3.1. Dendrogram generation 

Figure 2 shows the hierarchical cluster analysis step yielded the dendrogram. At the top of the 

tree (i.e. the root node), the first binary classifier (SVM1) is trained to classify the awake class (a 

terminal node) as a negative class and the remaining merged two classes as positive class. Similarly, 

the second binary classifier in the tree (SVM2) is trained to classify the elements of deep sleep as 

negative class and the elements of light sleep + REM as positive class. In this approach, the 

hierarchical cluster tree is created using the smallest distance between elements in the two clusters, 

where pairwise distance between pairs of observations is correlation, which is one minus the sample 

correlation between them. 

 

Figure 2. Dendrogram shows the multiple SVM classification generated for the three 

classes (awake, light sleep + REM, and deep sleep). 

3.2. Evaluate the classification performance 

To train DSVM and random forests classifiers, we try to find the least number of training 

samples for each sleep category with the best classification performance. To do that, we first 

SVM1 

SVM2 
Awake 

Sleep 

Light Sleep + REM   Deep Sleep 
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randomly selected 8 datasets from first night of 8 different subjects in PhysioBank database. The 

number 8 is the minimum number of subjects needed to have adequate number of training samples 

(i.e. non-overlapping 30 sec segments of subjects’ EEG recordings), for each sleep category. We then 

used the EEG data of these 8 subjects and selected different set of training samples, where in each set 

the number of training samples N for the three sleep categories are the same. We started from N = 20 

training samples for each sleep category and increased the numbers with the step of 20. In the third 

step, for each set of training samples, we evaluated the classification performance with the remaining 

samples from the same selected 8 subjects using the bootstrap approach when different number of 

best features are used starting from the best selected feature to all 64 features. The best features are 

selected using MRmR method with 10-fold cross validation. Using different set of training samples 

and number of features, we found that the best classification performance is achieved when 800 

samples of each sleep category and Nr = 15 best features are used for training. 

For the illustrative purpose, Figure 3 shows the average total classification accuracy for 

different numbers of training samples for both DSVM and random forests approaches using Nr = 15 

best features. From Figure 3, the minimum number of training samples for each sleep category to 

achieve best evaluation performance is 800 for DSVM approach with the average classification 

accuracy of 94.2% and 750 for random forests with the average classification accuracy of 93.5%. 

Table 1 shows the corresponding sensitivity and specificity for each sleep category along with the 

total classification accuracy over all three sleep categories using 3 × 800 = 2400 training samples 

(800 sample for each category) for DSVM and random forests approaches. The total number of 

evaluation segments is 11676 including 4173 light sleep + REM, 526 deep sleep, and 6977 awake 

segments. The results show that the DSVM method could classify the three categories with higher 

sensitivity, specificity, and total accuracy. Furthermore, Figure 4 shows the total classification 

performance versus number of selected features for DSVM and random forests approaches using 

2400 samples for training. From the figure, the least number of features with the best classification 

performance is Nr = 15. The performance is approximately the same with increasing the number of 

features up to 45 for DSVM approach and then the performance is decreasing by increasing the 

number of features from 45 to 64 that may be due to over-fitting for this classifier. For random 

forests approach, the performance remains approximately at the same level by increasing the number 

of features from 15 to 64. The classification performance versus number of training samples for other 

numbers of features and versus number of features for other numbers of training samples are not 

shown for the sake of brevity. The set of 15 most relevant features selected by the MRmR procedure 

is shown in Table 2, sorted in terms of the optimized MRmR value. This number of features is much 

lower than 2400 training samples to prevent over-fitting (the feature to training sample ratio is 

15/2400 × 100 = 0.625%). 

Table 1. DSVM and random forests classification performance using 800 samples in 

each sleep category for training and the remaining 4173 light sleep + REM, 526 deep 

sleep, and 6977 awake samples for evaluation. 

Class Sensitivity 

DSVM 

Sensitivity 

RF 

Specificity 

DSVM 

Specificity 

RF 

Total accuracy 

DSVM 

Total accuracy 

RF 

LS + REM 89.0 87.3 97.3 97.2 94.2 93.5 

DS 94.5 90.8 96.7 96.3   

AW 97.3 97.2 97.9 97.1   
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Table 2. The Nr = 15 discriminating features. 

Feature # Feature MRmR 

1 Standard deviation of each segment (Pz-Oz) 0.9245 

2 Standard deviation of sub band S6 (Pz-Oz) 0.9238 

3 Mean quadratic value or Energy in sub band S6 ( Pz-Oz) 0.9220 

4 Mean quadratic value or Energy in sub band S1 ( Pz-Oz) 0.8989 

5 Max of the segment ( Pz-Oz) 0.8906 

6  Mean absolute value of sub band S5 ( Pz-Oz) 0.8895 

7 Mean of absolute differences of each segment (Pz-Oz) 0.8867 

8 Mean absolute value of sub band S4 ( Pz-Oz) 0.8841 

9 Mean absolute value of sub band S1 ( Pz-Oz) 0.8816 

10 Mean quadratic value or Energy in sub band S2 ( Pz-Oz) 0.8199 

11 Permutation entropy ( Fpz-Cz) 0.7602 

12 Permutation entropy ( Pz-Oz) 0.7446 

13 The ratio of mean absolute value of sub band S3 to sub band S4 (Pz-Oz) 0.7013 

14 The ratio of mean absolute value of sub band S5 to sub band S6 (Fpz-Cz) 0.6752 

15 Mean absolute value of sub band S6 ( Fpz-Cz) 0.5428 

 

 

Figure 3. Total classification accuracy versus number of training samples in each sleep 

category using DSVM and random forests algorithms. 
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Figure 4. The classification performance versus number of features using 800 training 

samples for each sleep category. 

3.3. Test the classification performance 

In this section we test the trained classifier for the remaining 110 datasets (nights) from 67 

subjects that are not used for training and evaluation of the classifiers. The classification performance 

of the DSVM and random forests approaches for three sleep categories of awake, light sleep + REM, 

and deep sleep using 91285 light sleep + REM, 10022 deep sleep, and 133246 awake segments for 

110 test datasets are shown in Tables 3 and 4, respectively. From Tables 3 and 4, DSVM is capable of 

discriminating the three categories with the total accuracy of 91.4%, which is about 2.4% more than 

random forests approach (with the total accuracy of 89.0%) using only test dataset segments. 

Furthermore, the test accuracy for both approaches are very close to the training accuracy (Table 1). 

This confirms that the over-fitting has not occurred. Comparing with the preceding works using the 

same database and EEG signals [1,3–6], the performance of the proposed procedure obtained high 

accuracy rate even for the case where the test dataset are from 110 nights that were not used for 

training. 

Table 3. DSVM classification performance using 91285 light sleep + REM, 10022 deep 

sleep, and 133246 awake segments for 110 test datasets.  

Class LS + REM DS AW Sensitivity Specificity Total accuracy 

LS + REM 76914 6729 7642 84.3 96.1  

91.4 DS 991 8960 71 89.4 96.9 

AW 4548 178 128520 96.5 92.4 

Table 4. Random forests classification performance using 91285 light sleep + REM, 

10022 deep sleep, and 133246 awake segments for 110 test datasets. 

Class LS + REM DS AW Sensitivity Specificity Total accuracy 

LS + REM 73119 8229 9937 80.1 95.5  

89.0 DS 1303 8633 86 86.1 95.8 

AW 5185 1132 126929 95.3 90.1 
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3.4. Sleep quality evaluation 

To evaluate the accuracy for estimating the sleep quality, we calculate the sleep quality criteria 

using the true (annotated) and estimated (using machine learning) sleep categories. Of the three 

criteria of measuring sleep quality (i.e. sleep latency, sleep efficiency, and percentage of deep sleep), 

sleep latency is not recorded for the subjects in this dataset. Due to the lack of this information, sleep 

efficiency was calculated as the ratio of the time spent asleep to the total sleep time (from falling 

asleep time) detected by the EEG dataset. Figures 5(a) and (b) show the histograms of estimation 

errors of sleep efficiency and percentage of deep sleep, respectively for all 110 test datasets (sleep 

nights) using DSVM and random forests approaches. From the figures, the sleep efficiency error is 

less than 0.02 for 63 and 62 sleep nights for DSVM and random forests approaches, respectively. 

Furthermore, the percentage of deep sleep estimation error is less than 0.02 for 82 and 75 sleep 

nights for DSVM and random forests approaches, respectively. The mean ± mean absolute deviation 

(MAD) of the difference between true and estimated sleep efficiency and percentage of deep sleep 

for all 110 test datasets are shown in Table 5. From Table 5 and Figure 5, DSVM can estimate sleep 

quality with higher accuracy than random forests approach. 

 

(a) 

 

(b) 

Figure 5. Histograms of (a) sleep efficiency estimation error and (b) percentage of deep sleep. 
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Table 5. Mean (±MAD) values of the difference between true and estimated sleep 

efficiency and percentage of deep sleep across all 110 test datasets. 

Criterion  Estimated-True Mean (±MAD) DSVM  Estimated-True Mean (±MAD) RF 

Sleep efficiency 2.93e-5 ± 0.031 4.1e-3 ± 0.033 

 Percentage of deep sleep -3.3e-3 ± 0.011 -1.2e-2 ± 0.02 

4. Conclusions 

In this study, we developed a machine-learning algorithm based on Dendrogram Multi-Class 

SVM to detect the three sleep categories of light sleep+REM, deep sleep, and awake. Considering 

that standard PSG system may make users feel uncomfortable, our approach is specifically designed 

to recognize three sleep categories from two EEG electrodes only. We trained and evaluated the 

machine-learning algorithm using only 8 datasets from first night of 8 subjects available in 

Physiobank sleep database. We then tested the algorithm using the remaining 110 datasets from 67 

subjects in comparison to widely used random forests algorithm. The results demonstrated that our 

approach can achieve high sensitivity, specificity and accuracy though only two EEG electrodes were 

used. The detected sleep categories were then being used to estimate the sleep quality. Comparing the 

estimated sleep quality criteria with the true ones (using visual annotations) revealed that the 

proposed approach could estimate sleep quality with high accuracy. This framework can help 

clinicians by reducing the analysis time of polysomnographic signals while enhancing the 

quantitative nature and robustness of the scoring procedure. 
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