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Abstract: A smart phone application based on a low complexity image processing technique and a 

novel fuzzy-like classification method are presented for skin disorder diagnosis. The proposed 

classification method takes into consideration the size and color features of skin lesions rather than 

their shape and texture. The classification rules are determined after processing statistically a small 

number of representative training photographs. Consequently, they can be defined by an end user that 

is not necessarily skilled in computer science. The application presented in this paper can serve as a 

complementary tool for a dermatologist to continuously monitor remotely his patients. The accuracy 

of the diagnosis that is based only on the image processing outcomes, ranges between 85.3% and 

97.7% using 5 only representative photographs as a “training set” (corresponding from 9% to 24% of 

the test set per disease). The achieved accuracy can be improved (up to 17%), if the photographs are 

processed using a specific color adaptation technique. The small fraction of training photographs can 

be scaled up if the size of the test set is increased but it is expected that a limited number of training 

photographs will be sufficient in order to achieve an acceptable accuracy for a test set of any size. 

This accuracy can be further improved if other factors are taken into consideration (progression of 

the symptoms, information provided by the user, etc). 

Keywords: skin infections; skin disorders; image processing; color adaptation; mobile apps; lesions; 

histograms 
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1. Introduction  

The diagnosis of skin disorders can be assisted by several smart phone applications that have 

been recently presented in the market or described in the literature. Most of these approaches offer 

the opportunity to the users to access databases, textbooks and journals related to dermatology [1]. 

The rest of these applications can be based on information given by the user or can help in carrying 

out other procedures (e.g., biopsies). Such applications can be integrated in teledermatology 

platforms and they are capable of accessing databases of images, guidelines that are useful for 

diagnosis, etc [2]. In the following, we focus on image processing approaches. 

Several approaches diagnose a single skin disorder like Psoriasis [3]. The skin color is 

processed using the moment of the R, G, B color planes in order to estimate the mean color, the 

standard deviation and the skewness of the color. Co-occurrence matrices are used [3] to extract 

texture features. The diagnosis of Acne is described in [4] and [5]. Color spaces different than RGB, 

such as Hue, Saturation, Value (HSV) can be employed [5], for the efficient segmentation of the 

input image. When a binary decision has to be taken, Support Vector Machines (SVM) is often 

adopted [5]. Smart phone implementations [5] have the advantage of portability and low cost but the 

limited processing speed, memory and power, have to be taken into consideration. The most 

important skin disease is of course the melanoma. A review of segmentation and classification 

techniques for melanoma diagnosis is presented in [6]. MATLAB framework is used in [7] for image 

enhancement by removing artifacts (e.g., hair, noise, etc). In [8], a sophisticated iPhone application 

called SkinScanc is presented for melanoma diagnosis and SVM is used for classification. A similar 

smart phone implementation is presented in [9]. In [10], the color particularity of the melanoma 

lesion is used by special color feature detection techniques that assess the variation of hues. In the 

same paper, a multi-threshold technique has been used for segmentation. Images of the back of a 

human body are used in [11] to monitor potentially malignant Pigmented Skin Lesions. A review 

about Light-Induced Fluorescence Spectroscopy (LIFS) and Optical Coherence Tomography (OCT) 

methods for melanoma diagnosis is presented in [12]. 

The most appropriate supervised techniques for applications where photographs have to be 

classified in different clusters are: Naïve Bayes, k-Means, k-Nearest Neighbors (kNN), Decision 

Trees like J48, Random Forests, Fuzzy Clustering, Neural Networks (NNs). One of the major issues 

concerning the supervised classification methods is their training, since hundreds of images have to 

be analyzed during the training phase. In many approaches (e.g., in [8]), about ¾ of the input 

samples are used for training and ¼ of them for testing. 

Neural networks (e.g., MultiLayer Perceptron-MLP) are used in [7], [13–15] for dermatological 

disease diagnosis. Other approaches such as the ones presented in [16] and [17] are closer to the 

method described here since they classify an image as one of the supported skin diseases. In [16] the 

supported diseases include Eczema, Acne, Leprosy, Psoriasis, Vitiligo, etc. The features used for 

classification are the average color of the infected area, its size, shape, etc. Additional information is 

given by the user about gender, age, liquid type and color, etc. In [17], the presented image 

processing application discriminates between 3 skin disorders. The range of each one of the features 

used is defined for the supported diseases similarly to our approach. The most important features that 

should be used for the recognition of each disease are listed in [10]. Ten skin diseases are 

discriminated by a neural network in [18]. Similarly, six skin disorders are supported in [19]. 

The proposed skin disorder diagnosis was initially presented in [20] and [21]. The proposed 

classification method was inspired for plant disease diagnosis [22]. This previous work is extended 

here by employing a color adaptation method based on the average gray level of the normal skin and 
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the lesion. Moreover, extended experiments have been conducted using different thresholds than [20] 

in order to have comparable results with the ones obtained using the proposed color adaptation 

method. The proposed method has been evaluated in this paper by several metrics: sensitivity, 

specificity and accuracy different to the ones used in [20–22]. A comparison with many referenced 

approaches has been included. Moreover, several different classifiers (Naïve Bayes, MLP, J48 

Decision Tree, Random Forest, available in the framework of the Weka tool [23]) have been tested 

using the same photographs and features, in order to compare the achieved sensitivity. 

In the developed Skin Disease application, the following skin disorders are diagnosed: acne, 

melanoma, mycosis, papillomas, psoriasis, vitiligo and warts. A photograph displaying human skin is 

analyzed and a number of features are extracted. These features are different than the ones described 

in the referenced approaches. A deterministic fuzzy-like method is adopted for the classification of 

an image as one of the supported skin diseases. This classification method is based on a set of 

features and the expected range of these features forms the Color Signature of a specific disease. The 

Color Signatures can be easily defined or modified by the end user that does not need to have access 

to the source code of the application. These signatures can be defined based on simple statistical 

observation of a few representative photographs. This statistical processing can be performed 

manually or using a spreadsheet (it will be performed automatically in future versions of the 

developed tool). This process is similar to the “training” used in the referenced approaches. The 

number of these training photographs is much smaller compared to the ones required e.g., by a neural 

network. Of course, the number of the required training photographs gets larger if the test set is 

extended, in order to cover as many variations in the appearance of a skin disorder as possible. 

However, if the employed training photographs cover all of the possible color and size variations of 

the lesions, their number does not have to be further increased, regardless of the test set size. The low 

complexity of the proposed method makes it ideal for implementation on mobile phones. The 

experimental results presented here, indicate that the proposed classification method has good 

accuracy even if it is merely based on image processing. A skin disorder recognition tool like the one 

described in this paper does not intend to substitute the safe diagnosis performed by a dermatologist. 

However, the extensibility of the proposed application can be exploited in order to define or 

customize the supported diseases and their recognition rules. The progression of a skin disorder 

symptoms can be monitored remotely and the patient may be notified that he should visit his doctor 

for further medical tests if necessary.  

The materials and methods (image processing, classification, color normalization) used in our 

approach are described in Section 2. Experimental results are presented in Section 3. In Section 4, 

the results are discussed and comparison is presented with the referenced approaches. 

2. Materials and method 

2.1. Image sources 

Many of the photographs used in this study were retrieved from the Dermoscopic blog 

(http://dermoscopic.blogspot.com/). These images were cropped to exclude e.g., watermarks, 

stretched or simply resized to 1024 × 576 pixels. In this way, multiple patches can be extracted by a 

single photograph. The specific size was selected because no critical information is lost in this 

resolution while the processing of the photograph is completed in a reasonable time using this size 

(less than 2 seconds). The proposed method processes these images in RGB format. The number of 

photographs tested for each skin disorder ranges between 21 and 54. The “training” of the 
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application i.e., the rules for the diagnosis of each disease were determined using 5 representative 

photographs of the specific disorder i.e., only the 9%–24% of the tested photographs were used for 

training. Larger test sets would require more training photographs but still fewer than the ones 

required by other classification methods. 

Human body parts with skin disorders (lesions) are displayed in the photographs used. The user 

in the current implementation determines the displayed part of the body. It is assumed that the 

camera has focused on the lesion that has different color than the normal skin. In many skin 

disorders, a halo with distinct color exists around the lesion spots. If the photograph is captured 

within a short distance from the body, no background appears. However, if there is a background, it 

is assumed for simplicity that it is white or generally much brighter than the skin color. Complicated 

and time-consuming background separation algorithms are avoided in this way. 

2.2. Image processing method and feature extraction 

An image is divided into 4 distinct regions: Normal skin, Lesions, Halo and Background. The 

invariant features used for the classification of the skin diseases are the following: the number of 

spots and their gray level, the area of the lesion as well as several color features extracted from 

color histograms. The histograms used in this application indicate the number of pixels that have a 

specific red, green or blue color level. For example, if the histogram value for a specific region and 

color level c is H(c), then there are H(c) pixels in this region with color level c. The employed 

classification method checks if the aforementioned features, fall within predefined strict or loose 

limits. Each disease is ranked based on how many features are found within these narrow or broad 

ranges. Since the shape and the texture of the lesion is not taken into consideration, the resolution of 

a photograph as well as the existence of noise or blurring does not affect significantly the 

performance of the employed classification method.  

The segmentation is based on multiple thresholds and is applied to the gray version of the 

image. Although more advanced and precise segmentation techniques can be employed, there is 

actually no need for a more complicated segmentation method, since the classification method used 

does not take into consideration features such as the shape and the perimeter of the lesion. The 

pixels of the gray version of the photograph are swept top-down and from left to right. The 

threshold Bg is used to separate the Background from the skin. Pixels with gray level g > Bg are 

assumed to belong to the background. A second threshold (Th) is used to distinguish the Normal 

skin region from the Lesion. The gray level of all the pixels that do not belong in the Background is 

averaged (Gav). If the Lesion region is brighter than the Normal skin, a lesion pixel i has a gray level 

gi higher than the sum of the average Gav plus an offset Th: 

𝐵𝑔 > 𝑔𝑖 > 𝐺𝑎𝑣 + 𝑇𝑕 , (1) 

If the lesion pixel is darker than the normal skin, then: 

𝑔𝑖 < 𝐺𝑎𝑣 − 𝑇𝑕 , (2) 

The thresholds Bg and Th can be interactively modified by the user in real time in order to achieve a 

higher precision during the segmentation process. The Halo can be defined as a zone (of Hp pixels 

width) around the lesion spots. If no Halo exists, Hp can be set to 0. 
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(a) 

 
(b) 

 
(c) 

Figure 1. The main page (in inverted text/background color) of the Skin Disease 

application with the initial photo (a), the display of the R matrix with Th = 20, Bg = 230, 

Hp = 5 (b) and with Th = 10, Bg = 230, Hp = 10 (c). 

The image pre-processing stage identifies the regions described earlier (Normal skin, Lesion, 

Halo, Background). The matrix R is defined where special values can be assigned to each pixel 

indicating the region it belongs to. In Figure 1a, the initial color photograph is selected. In Figure 1b, 

the R matrix is represented as a gray image. The background is displayed in white, while the normal 

skin in gray and the lesion spots in black. The halo is shown in brighter gray. If higher threshold 

value Th is used than the optimal one then, some lesion spots are not recognized. On the contrary, 

when lower Th values are used, some normal skin areas are misinterpreted as lesion. As was shown 

in [22] a variation by ±10 in the optimal value of Th can result in a degradation of the accuracy by up 

to 20%. This is also an indication about how the light exposure can affect the classification results. 

However, it is unlikely that the user will select such an inappropriate Th value due to the interactive 

comparison of the segmented with the original photograph. In Figure 1b, an appropriate Th value (20) 

is selected. However, if Th = 10 (Figure 1c), more area is recognized as lesion. The user can 

determine Th and Bg values in order to recognize precisely the background and the lesion regions of 

each photograph.  

Table 1. The R matrix after the first scan. The cell in the 8th row, 4th column can be 

initially assigned either to 3 or 1. Halo has not been defined yet. 

N N N N B B B B 

N 1 1 N N N N B 

N N 1 N N N N N 

N N 1 1 N 2 2 N 

N N 1 1 N 2 2 N 

N 1 N N N N N N 

N 1 N 3 N N N N 

N 1 1 ? N N N N 
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Table 2. The R matrix after merging spots 1 and 3. 1 pixel Halo zone has been defined. 

H H H H B B B B 

H 1 1 H N N N N 

H H 1 H H H H H 

N H 1 1 H 2 2 H 

H H 1 1 H 2 2 H 

H 1 H H H H 2 H 

H 1 H 1 H H H H 

H 1 1 1 H N N N 

Tables 1 and 2 show how the R matrix is constructed. Initially, the gray image is scanned 

top-down and from left to the right. If the gray level of the current pixel in the gray version of the 

original image is higher than Bg then, it is marked as Background (“B”) otherwise, it is marked as 

Normal Skin (“N”). The pixels mapped as “N” are averaged to estimate Gav. Then, they are examined 

again to check if their gray level fulfils one of the conditions defined in eq. (1) or eq. (2). In this case, 

the corresponding pixels are marked with a spot identity (Si). Initially, Si is set to 1. If the current 

pixel is adjacent to another spot as indicated by the pixels already visited in the current scan (left, top 

right, top, top left) their spot identity is also used for the current pixel. Otherwise, it is assumed that a 

new spot is found that has to be marked with a new identity Si
′ : 

𝑆𝑖
′ = max 𝑆𝑖 + 1, (3) 

Table 1 shows the described mapping for an arbitrary image of only 8 × 8 pixels. However, 

there are adjacent cells that have been assigned with different identity. In the next iteration, the spots 

No. 1 and 3 will be merged under the identity 1 as shown in Table 2. Moreover, a Halo zone with 

Hp = 1 is also defined in Table 2 and the pixels belonging to this zone are marked with “H”. The area 

of the lesion and the halo can be directly estimated by the number of pixels of the matrix R. The 

parameters NL, NN and NH denote the number of pixels belonging to the lesion, normal skin and halo, 

respectively. The average gray level of each region (GLA, GHA, GNA: lesion, halo and normal skin, 

respectively) can be estimated from the gray level of the corresponding pixels of the original image 

using the mapping of the R matrix. The values of these features are displayed at the bottom of the 

main application page shown in Figure 1. The relative area AL, of the lesion is estimated as: 

𝐴𝐿 = 𝑁𝐿 (𝑁𝐿 + 𝑁𝑁 + 𝑁𝐻) , (4) 

The relative area of the normal (AN) and the halo (AH) regions can also be estimated in a similar 

way. The highest Si value denotes the number of spots recognized in an image. In the specific 

example of Table 2, the lesion consists of 2 spots. The rest of the features used in the classification 

process, are extracted by the color histograms of each region. These color histograms are displayed 

in the Skin Disease application as shown in Figure 2a (Lesion), Figure 2b (Normal skin) and Figure 2c 

(Halo). Overall, there are 9 histograms (one for each color plane: red, green, blue and each region: 

Lesion, Normal skin, Halo). The horizontal axis in each histogram indicates the color level (0.255). 

As can be seen from Figure 2a and Figure 2b, each histogram is a single lobe because most of the 

pixels belonging to the same region have similar color. 
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(a) 

 
(b) 

 
(c) 

Figure 2. The color histograms of the Lesion (a), the Normal skin (b) and the Halo (c) 

for the photograph of Figure 1. 

The peak, the starting and the ending point of the histogram lobes are used as invariant features 

in the classification process. The Begin and the End of the lobe are defined as the color levels where 

a histogram lobe crosses a predefined threshold. The number of these features is 9 × 3 = 27 since 

there are 3 color spaces and 3 regions of interest. The symbol of each one of these features has the 

following format: “crf” where c can be R(ed), G(reen) or B(lue), r can be S(pot), N(ormal skin) or 

H(alo) and f can be B(egin), E(nd) or P(eak). All of these features are estimated by the Skin Disease 

application and the user is notified about them through the administrative page shown in Figure 3a. 

 
(a) 

 
(b) 

 
(c) 

Figure 3. Features extracted from the color histograms (a), selection of body part, (b) 

and the results of the diagnosis (c) for the photograph of Figure 1. 
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2.3. Employed classification method 

The features shown by the Skin Disease application in Figure 1 and Figure 3a can be used in 

order to extend the supported set of skin disorders or customize the Color Signatures of the already 

supported diseases. For example, the analysis of 5 photographs that display papillomas, can show 

that the feature GSE is between 70 and 130. These values can be considered as the strict limits of the 

GSE feature and this feature is also expected to be found within these limits in other photographs 

that display papillomas. Looser limits are heuristically defined e.g., 60 and 140. If a new 

photograph is analyzed and its GSE value is found within those loose limits, it gets a grade RL_GSE 

while if it is found to be within the strict limits an additional RS_GSE grade is added. If the GSE of 

the new photograph is not found in the loose limits then, no grade is given for this feature. Let us 

formally define the loose limits of a feature “crf” as KD(crfL) = (crfLn, crfLx) and its strict limits 

as KD(crfS) = (crfSn, crfSx). Its rank RD of a disease D can be estimated then, as: 

𝑅𝐷 =  𝑅𝐿_𝑐𝑟𝑓 𝑥𝐿_𝑐𝑟𝑓

𝑐,𝑟,𝑓

+  𝑅𝑆_𝑐𝑟𝑓 𝑥𝑆_𝑐𝑟𝑓

𝑐,𝑟,𝑓

 
(5) 

𝑥𝐿_𝑐𝑟𝑓 =  
1, 𝑐𝑟𝑓𝐿𝑛 < 𝑐𝑟𝑓 < 𝑐𝑟𝑓𝐿𝑥,

0, 𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒
  (6) 

𝑥𝑆_𝑐𝑟𝑓 =  
1, 𝑐𝑟𝑓𝑆𝑛 < 𝑐𝑟𝑓 < 𝑐𝑟𝑓𝑆𝑥,

0, 𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒
  (7) 

The exact features used in the Skin Disease application are listed in Table 3. As can be seen by 

this table, the normal skin region features are not used because the color of the skin does not 

provide an indication about a disease. However, the brightness of the normal skin region can be 

useful for adjusting the brightness of the lesion and the halo regions according to the 

environmental conditions. The body part displayed in the photograph can be selected by radio 

boxes (see Figure 3b). A critical feature is the body part displayed since e.g., warts appear more 

often at the feet and the hands. 

The Color Signature of a disease includes the strict and loose limits of the features listed in 

Table 3. The skin disorders that are recognized in the present version of the application are the 

following: Acne, Melanoma, Mycosis, Papillomas, Psoriasis, Vitiligo, Warts. Consequently, seven 

Color Signatures have to be defined. As shown in Figure 3c, the three disorders with the highest rank 

according to equation (5) are listed. 

If KD is the range of a specific feature in the Color Signature of the skin disorder D then, it is 

desirable to distribute the acceptable range L of this feature into KD ranges without overlaps and gaps. 

For example, Figure 4a shows 4 diseases where all the KD ranges are equal. In this case, any feature 

value corresponds to a single disease and there is no ambiguity. The ranges do not necessarily have to 

be equal as long as they do not overlap and they do not leave gaps. If gaps exist as in Figure 4b, then 

the feature values in the gaps do not allow a safe disease diagnosis. This may occur if the ranges 

have been defined based on a very small number of training samples. If too many training samples 

are used then, the extracted feature values can span to a wide range. The overlapping ranges that can 

appear in this case have feature values that belong to multiple diseases and do not allow a safe 

disease diagnosis too. 
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Table 3. List of features. 

Feature Notes 

Number of Spots (NS) Too small spots are assumed to be noise and they 

are ignored. The minimum acceptable number of 

pixels is defined in the field “Min Spot Area” of 

Figure 1 

Relative Lesion Area (AL) See eq. (4) 

Relative Normal Skin Area (AN) Estimated similarly to eq. (4)  

Relative Halo Area (AH) Estimated similarly to eq. (4) 

Lesion Average Gray (GLA) The average gray level of the pixels assigned 

with a spot identity in matrix R 

Halo Average Gray (GHA) The average gray level of the pixels mapped as 

“H” in matrix R 

Normal Skin Average Gray 

(GNA) 

The average gray level of the pixels mapped as 

“N” in matrix R 

Histogram features KD(crfL) and 

KD(crfS)  

c = R, G, or B 

r = Lesion or Halo, f = B, E, or P 

(18 features) 

The corresponding Normal Skin Histogram 

features are not used  

Body part Different grades may be assigned to each body 

part in a disease Signature 

The following Ambiguity metric A, measures how the distribution of the feature ranges favors a 

“one-to-one” mapping between feature values and diseases. It is defined as: 

A = L −  𝐾𝑖

𝑁

𝑖=1

 (8) 

 

 

 

 

 

 

 

 

Figure 4. KD ranges fitting without overlaps and gaps (a), with gaps (b) and with overlaps (c). 

  

 

 

 

 

L 

K1 K2 K3 K4 

K1 K2 K3 K4 

K1 

K2 

K3 

K4 

(a) 

(c) 

(b) 
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Figure 5. Example ranges of the histogram peak of the green color of the spots. 

If Ki = L⁄N, as in Figure 4a, then A = 0 and there is no ambiguity in the disease diagnosis even if 

a single feature is used. In Figure 4b, 𝐿 >  𝐾𝑖
𝑁
𝑖=1  and A > 0 while in Figure 4c, 𝐿 <  𝐾𝑖

𝑁
𝑖=1  and 

A < 0. In these cases, there is a “one-to-many” mapping of feature values to diseases. Since there are 

several features that are taken into consideration in the classification method described in the 

previous sub-section, the ambiguity is cleared by the ranking defined with equations (5)–(7). For 

example, if the value of a feature F1 is extracted from a specific photograph it may correspond to 2 

skin disorders {S1, S2} due to a potential overlapping in the ranges defined for this feature in the 

Color Signatures of these two disorders. A second feature F2 extracted from the same photograph 

may correspond to a different set of disorders {S1, S3, S4}. It is clear that in this example, S1 is the 

dominant disorder since it appears in both sets. However, if e.g., the ranges of these features did not 

overlap, then the system would be capable of diagnosing this disorder with a higher confidence even 

by a single feature. A real example of range overlapping for a specific feature used in skin disorder 

diagnosis is presented in Figure 5. 

2.4. Color normalization 

Several color normalization techniques can be found in [24] that have been used in medical 

imaging and precision agriculture especially in gray scale. The brain MRI scans, mammograms and 

ultrasound images can be enhanced by Gaussian low pass filtering for noise removal and 

normalization of pixel intensity. Histogram stretching and shifting may be used to cover the full gray 

scale and increase the contrast. A different normalization is performed in RGB format where the 

color of each pixel is derived by its previous value divided by the sum of the rest of the colors. This 

kind of color normalization has been employed e.g., to count seedlings in a wheat field. Relative 

color can also be estimated in order to moderate the effect of different light exposure in the detection 

of skin disorders. For example, the average background skin color is subtracted from each lesion 

pixel in melanoma diagnosis. The use of normalized or relative color compensates the effect of 

variation in ambient light, the errors in digitizing images, the skin color variations and mimics the 

way the mammals perceive color. External tools like ColorChecker can be employed in order to 

implement a specific color normalization (https://xritephoto.com/colorchecker-classic). However, an 
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integrated solution was preferred to make this process transparent to the end user.  

As explained in the previous subsection and Figure 4, both the gaps between the ranges of a 

feature and their overlapping are undesirable for safe disorder diagnosis. If the determined ranges are 

wide due to variations in the environmental conditions (e.g., light exposure) then, it is better to 

exploit some kind of normalization that would lead to the shrinkage of these ranges. If on the other 

hand, the shrinking of the feature ranges leaves gaps then, these ranges can be extended to cover the 

gaps by employing a larger number of training photographs. However, much larger training sets do 

not favor the advertised extendibility of the developed system since large training sets are more 

difficult to be statistically processed by the end user. The employed color adaptation process attempts 

to narrow the range of the color histogram features during the definition of the Color Signatures 

(training process).  

The training photograph with the lower normal skin gray level for a specific skin disorder, 

serves as a reference (ref). If the lesion average gray level of each training sample i, is GLA(i) and the 

lesion average gray level of the reference photograph is GLA(ref) then, their difference Di is 

estimated: 

𝐷𝑖 = 𝐺𝐿𝐴 i − 𝐺𝐿𝐴 ref  (9) 

Each one the histogram features “crf” of the trainings samples i, are adjusted by subtracting Di. 

The loose limits KD(crfL) of a feature “crf” and its strict limits KD(crfS) are defined in the Color 

Signature after this subtraction.  

 

Figure 6. The red, green, blue color histograms of a reference lesion spot and a spot 

under test. No color adaptation is performed to the red, green, blue color histograms of 

the spot under test. 

The histograms of Figure 6 are used to demonstrate the lesion spot color adaptation method. 

They display the histograms of a reference (with average gray level: 149) and a spot under test 

(average gray level: 159). Figure 7 shows the adapted color histograms after a left shift by 

D = 159 − 149 = 10 positions. The strict and loose range of the feature f after the described color 



301 

AIMS Electronics and Electrical Engineering  Volume 3, Issue 3, 290–308. 

adaptation is (crfSn-D, crfSx-D) and (crfLn-D, crfLx-D), respectively or (0, crfSx-D) and (0, 

crfLx-D) if for example, crfSn-D < 0 and crfLn-D < 0. The differences Di of the photographs in the 

training set are not identical. If lesion color adaptation is activated, the strict and loose limits defined 

in a Color Signature are determined as described in the previous paragraphs while the GLA(ref) value 

is also stored in this signature. In real time operation, when a new photograph is examined, its 

normal skin average gray value GNA is estimated as well as the difference: D = GLA − GLA(ref). 

Then, all of the “crf” feature values extracted from the specific photograph under test, are updated 

as: crf’ = crf − D. The resulting crf’ values are compared with the adjusted strict and loose limits 

defined in each one of the disease Color Signatures. 

 

Figure 7. The red, green, blue color histograms of a reference lesion spot and a spot 

under test. Color adaptation is performed to the red, green, blue color histograms of the 

spot under test. 

3. Experimental results 

Four metrics have been used to assess the proposed skin disorder diagnosis method and the 

color adjustment method explained in the previous subsection. The Sensitivity metric, measures how 

many of the photographs that display a specific disorder have been recognized correctly. The 

Specificity is an indication about the quality in the recognition of the photographs that do not display 

this disease. The Accuracy is a combination of the two metrics indicating the quality in the 

recognition of both cases. All these metrics can be expressed as a combination of the following 

parameters: TP, TN, FP, FN. The True Positive (TP) is the number of photographs that have been 

correctly recognized with a specific skin disorder. The False Negative (FN) is the number of 

photographs that display a specific disorder and failed to be recognized. The True Negative (TN) is 

the number of photographs that were correctly recognized as negative to a specific disease. Finally, 

the False Positives (FP), are the photographs that were falsely recognized as displaying the specific 

disease [10]. 
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Table 4. Number of test and training photographs. 

Skin Disorder Test Photos Training Photos Fraction of Test Photos used for 

Training 

Acne 21 5 24% 

Melanoma 54 5 9% 

Mycosis 33 5 15% 

Papillomas 22 5 23% 

Psoriasis 41 2+3(INV) 10%–14% 

Vitiligo 21 5 24% 

Warts 32 2+3(INV) 12%–18% 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
, 

(10) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
, (11) 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑁 + 𝐹𝑃
, (12) 

The number of photographs tested for each skin disorder in this paper (ranging between 21 and 

54) is listed in Table 4. Five of the most representative photographs of each skin disorder are used for 

the definition of the corresponding Color Signature. All the tested photographs are somehow 

represented in this test set in terms of disorder progression, brightness of lesion, color skin, etc. Of 

course if the test set is extended with new photographs that display the same disease with very 

different features (such as lesion size, brightness), the training set should also be extended 

accordingly, to cover these cases too. However, the fraction of training photographs in the test set is 

always quite small as explained in the previous subsection, giving to the end user the opportunity to 

perform by himself the statistical processing needed for the Color Signature definition. In some 

photographs displaying Psoriasis and Warts there are cases where the lesion is darker and some 

others where it is brighter (marked as “INVerted” in Table 4) than the normal skin. The most 

appropriate solution for this case is to define two different Color Signatures for the same disease. 

Only 2 or 3 photographs were used here to define each one of the two signatures. 

Three methods related to the color adaptation are experimentally tested. The 1st method does 

not use color adaptation as described in subsection 2.1. This case is similar to the experiments carried 

out in [20] and [21] where the success rate metric in [20] is actually the sensitivity as defined in 

eq. (10) [10]. The 2nd method uses the color adaptation technique described in subsection 2.4 which 

shrinks the feature ranges but can increase the gaps between them. The 3rd method combines the 

results of both techniques to counterbalance the effect of extended gaps between feature ranges 

without using a larger training set. More specifically, in the 3rd method the grades that each skin 

disorder received from the 1st and the 2nd are added and then the diseases are sorted. The sensitivity 

achieved in all these three methods is presented in Table 5. Focusing initially on the two methods 

described in Section 2, we can see that mixed results are obtained. Similarly, in the specificity results 

listed in Table 6, there are 3 cases where color adaptation achieves better results and 2 cases where it 

leads to worse specificity. The accuracy results (Table 7) are also balanced. 
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Table 5. Sensitivity comparison. 

Skin Disorder Sensitivity 

without Color 

Adaptation 

Sensitivity 

with Color Adaptation 

Sensitivity of 

Combined Results 

Acne 85.7% 100% 100% 

Melanoma 75.9% 68.5% 77.7% 

Mycosis 81.8% 75.6% 90.1% 

Papillomas 45.5% 54,5% 68.2% 

Psoriasis 36.6% 27% 31.7% 

Vitiligo 100% 95,2% 100% 

Warts 28.1% 37.5% 43.7% 

Table 6. Specificity comparison. 

Skin Disorder Specificity 

without Color Adaptation 

Specificity 

with Color Adaptation 

Specificity of Combined 

Results 

Acne 92% 90.6% 90.6% 

Melanoma 94.7% 94.7% 94.7% 

Mycosis 97.4% 99% 98.9% 

Papillomas 99.5% 100% 100% 

Psoriasis 100% 100% 100% 

Vitiligo 84.2% 83.7% 83.7% 

Warts 97.9% 98.9% 98.9% 

Table 7. Accuracy comparison. 

Skin Disorder Accuracy 

without Color Adaptation 

Accuracy 

with Color Adaptation 

Accuracy of Combined 

Results 

Acne 91.4% 91.4% 91.4% 

Melanoma 90.1% 88.4% 90.6% 

Mycosis 95% 95.5% 97.7% 

Papillomas 94.2% 95.6% 96.8% 

Psoriasis 88.3% 86.5% 87.4% 

Vitiligo 85.7% 84.8% 85.3% 

Warts 87.9% 90.2% 91% 

The features used in our approach were tested with the following classification algorithms that 

have been implemented in the Weka framework [23]: Naïve Bayes, MultiLayer Perceptron (MLP) 

neural network, J48 Decision Tree and Random Forest [24]. The Sensitivity metric is used to 

compare these methods with the corresponding results of the proposed method, in Tables 8 and 9. 

Two cases were examined for the training of these supervised classification methods. In the first case, 

20% of the samples were used for training of each algorithm in Weka. The results of this case are 

presented in Table 8 and are comparable to the results listed in Table 5 that have been derived when 5 

photographs are used for training from a test set of 21–54 photographs per disease. The selected 

classification methods were also trained with 75% of the samples in Weka and the results are 

presented in Table 9. Although this comparison is not fair for the proposed method that it is trained 

with a much smaller number of samples, it has been included since ¾ of the test samples are often 

used for training in machine learning [24]. 
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Table 8. Sensitivity comparison with other classifiers (training with 20% of the samples). 

Skin 

Disorder 

This method 

(Combined Results) 

Naïve Bayes MLP J48 Random Forest 

Acne 100% 22.2% 55.6% 0% 5.6% 

Melanoma 77.7% 80.1% 81.8% 91% 95.5% 

Mycosis 90.1% 51.5% 33.3% 36.4% 57.6% 

Papillomas 68.2% 47.1% 70.6% 17.6% 17.6% 

Psoriasis 31.7% 60% 55% 30% 60% 

Vitiligo 100% 64.7% 76.5% 64.7% 76.5% 

Warts 43.7% 50% 62.5% 62.5% 50% 

Table 9. Sensitivity comparison with other classifiers (training with 75% of the samples). 

Skin 

Disorder 

This method 

(Combined Results) 

Naïve Bayes MLP J48 Random 

Forest 

Acne 100% 100% 83.3% 33.3% 50% 

Melanoma 77.7% 93.8% 81.3% 75% 100% 

Mycosis 90.1% 70% 80% 80% 90% 

Papillomas 68.2% 40% 60% 60% 40% 

Psoriasis 31.7% 100% 100% 100% 100% 

Vitiligo 100% 80% 100% 60% 100% 

Warts 43.7% 16.7% 100% 50% 100% 

4. Discussion 

From the experimental results presented in the previous section, it is obvious that the 

employment of the color adaptation method is not justified because worse results are achieved in 

some cases, since it shrinks the feature ranges but may leave larger gaps between them. We have not 

compensated these gaps by increasing the size of the training set. On the contrary, the 

complementary achievements of both methods are combined as shown in the 3rd column of Tables 5, 

6, and 7 and higher accuracy is achieved without having to extend the training set. As far as Table 5 

is concerned, the combination of the two methods improves the sensitivity in all cases but psoriasis. 

The best specificity achieved by the first two methods is also achieved by their combination in most 

of the cases as shown in Table 6. Finally, the accuracy results of the combination of the two methods 

presented in Section 2 are improved in most cases 

The developed application seems to fail to recognize efficiently the psoriasis and warts skin 

disorders due to the very low sensitivity results obtained in Table 5. However, this is explained by 

the very small number of photographs used for training (only 2 or 3). A much better sensitivity can 

be achieved if both the Color Signatures for bright or dark lesions of these diseases are defined using 

at least 5 photographs as in the rest of the cases. As was shown in [21] extending the training set 

from 3 or 5 to 8 photographs improves the accuracy (in most of the cases) by up to 53% (e.g., Warts: 

from 32% with 3 training photographs, to 85% with 8 training photographs). The absolute number of 

training photographs is expected to have an upper limit regardless of the test set size when most of 

the variations in the size and color of the lesions has been covered. Using more training photographs 

beyond this limit won’t lead to higher accuracy. 
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As can be seen from Table 8, Naïve Bayes, MLP and Random Forest achieve better sensitivity 

from the proposed method in only 3 of the 7 diseases. A better sensitivity is achieved by the J48 

decision tree in only 2 of the 7 skin disorders. The sensitivity results achieved by each classification 

algorithm are improved in most of the cases when 75% of the samples are used for training as shown 

in Table 9. However, even in this case, a higher sensitivity than the proposed classification method is 

achieved by MLP and Random Forest in 3 of the 7 diseases while the other two classifiers (Naïve 

Bayes and J47) achieve a higher sensitivity in only 2 of the 7 diseases. The cases where the 

referenced classification algorithms achieve a higher sensitivity than the proposed approach are 

highlighted with italics in Tables 8 and 9. The accuracy results achieved by the referenced 

approaches are listed in Table 10. The discriminated diseases are listed in the second column of Table 

10 while the accuracy (and/or sensitivity, specificity) achieved is listed in the third column. The 4th 

column of Table 10 is used to describe mainly the classification method used.  

Each referenced approach is tested on different photographs and databases, but the 

comparison of different classifiers that use the same set of photographs and features has already 

been performed in the Weka framework as described above. The experimental results presented in 

Table 10, provide a good indication about the level of accuracy that has been achieved in similar 

applications in the literature. Higher accuracy is achieved in the approaches where a single disease 

has to be verified as in [9] and [10] for melanoma. However, accuracy higher than 90% is also 

reported for applications where multiple diseases are supported ([13,15,19]). As can be seen from 

Table 10, an accuracy higher than 80% is acceptable in most of the approaches presented in the 

literature. The accuracy achieved by the proposed approach using the combination of the results of 

the two methods described in Section 2 is also higher than 80% and comparable with the 

referenced methods.  

Concerning the type of training that has been used in each one of the referenced approaches, it 

is worth mentioning that in [3], 20497 iterations are needed to achieve a very small Sum Square 

Error, lower than 10
-6

. In [5], each classification method was applied ten times and 10-fold 

cross-validation was used for SVM while in [8], 100 experiments were performed to estimate the 

sensitivity and specificity listed in Table 10. The database used in [9] consisted of 200 image 

lesions: 80 normal moles, 80 atypical moles and 40 melanoma moles. The 75% of these images 

were used for training and the remaining 25% were used for testing. In [13], 704 images were used 

in the experiments performed. In [15], 2/3 of the images were used for training while the 1/3 for 

testing. The number of photographs displaying melanoma, psoriasis and dermo in [17] is 32, 30 

and 25, respectively. The number of images used for each one of the 9 supported diseases in [19] is 

between 24 and 277. The test set size used in our approach is comparatively sufficient and the 

achieved accuracy can be considered representative of the quality of the employed classification 

method.  

The main advantage though, of the proposed method is that it does not require a large number of 

photographs for the definition of Color Signatures (i.e., for the training). In most of the referenced 

approaches (e.g., in [8–9]), ¾ of input samples are used for training and only ¼ for test. Moreover, 

the proposed method gives access to the end user in order to customize the existing diagnosis rules or 

extend the supported set of skin disorders. 
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Table 10. Comparison of the achieved accuracy with the referenced approaches. 

Reference Skin Disorders Accuracy Notes 

[3] Psoriasis Sum Square Error=10-6 

(20497 iterations) 

Feed Forward Back 

Propagation NN 

[4] Eczema, Acne, Leprosy, Benign, 

Dandruff, Syringoma, Mastitis, 

Scabies, Vitiligo, Diapercandi 

90% NN for Classification  

[5] Acne 

 
70% 

66.6% 

80% 

 

100% 

k-means (Segmenation) 

 

Acne/ Inflamatory 

discrimination(SVM  

Or Fuzzy C-means) 

Acne/normal skin 

discrimination with 

Fuzzy C-means 

[8] Melanoma 80.7% (Sensitivity) 

85.6% (Specificity) 

SVM classification 

[9] Melanoma 93.5% (accuracy) 

95% (sensitivity) 

92% (specificity) 

SVM classification 

[10] Melanoma 96.8% (accuracy) 

99.9% (sensitivity) 

95.2% (specificity) 

Segmentation performed 

with multilevel 

thresholding 

[13] Acne/Eczema 

Psoriasis/TineaCorporis 

Scabies/Vitiligo 

97%, 98% 

89%, 88% 

98%, 99% 

Feed Forward, Back 

Propagation NN 

[15] Psoriasis,  

Seborrheic Dermatitis,  

Lichen Planus,  

Pityriasis Rosea,  

Chronic Dermatitis,  

Pityriasis Rubra Pilaris 

98%/97%/82%, 

93%/92%/88%, 

97%/95%/87%, 

85%/89%/75%, 

92%/91%/83%, 

95%/97%/- 

The experimental results 

for each disease were 

obtained using  

NN / Decision Trees / 

k-Nearest Neighbors 

[17] Melanoma, Psoriasis, Dermo 90% AdaBoost classification 

framework 

[18] Eczema, Acne, Leprosy, Benign, 

Dandruff, Syringoma, Mastitis, 

Scabies, Vitiligo, Diapercandi 

90% Neural Network 

[19] psoriasis, seboreic dermatitis, 

lichen planus, pityriasis rosea, 

cronic dermatitis and pityriasis 

rubra pilaris 

91% Back Propagation NN 

This work Acne, Melanoma,  

Mycosis, Papillomas,  

Psoriasis, Vitiligo,  

Warts 

100/91/91%, 78/95/91%, 

90/99/98%, 68/100/97%, 

32/100/87%, 

100/84/85%, 44/99/91%  

Sensitivity/Specificity/ 

Accuracy 

Combined methods for 

color adaptation  

5. Conclusion 

A skin disorder classification method based on Color Signatures that can be defined using a 
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small number of training photographs is presented in this paper. This method can be exploited e.g., 

by a dermatologist in order to customize/optimize the database of the supported skin disorders and 

offer this tool to his customers for the remote monitoring of the skin disorders’ progression. The 

combination of multiple image processing techniques such as the described color adaptation, can 

improve the achieved accuracy without using a large training set. The proposed method is 

characterized by extensibility and low complexity. The accuracy is quite high compared with 

referenced approaches and other classifiers in the Weka framework. 

Future work will focus on testing different classification methods such as multiple strict/loose 

feature limits or pure fuzzy rules. Image processing techniques like color normalization applied in 

color spaces different than RGB will also be examined. The information that can be given by the user 

about the progression, the feel of the lesion, etc, is also expected to improve the achieved accuracy. 
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