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Abstract: H∞ disturbance attenuation of nonlinear networked systems which are described by the
Takagi-Sugeno fuzzy time-delay systems is concerned. In the networked control system, the control
signal is delayed and the closed-loop system with the controller can be modeled as a fuzzy system with
time-varying delays in sensor and actuator nodes. The system often encounters the external noises
that disturb its behaviors. For such a nonlinear system with delays, the H∞ disturbance attenuation
problem is considered. Multiple Lyapunov-Krasovskii function with multiple integral functions allows
us to obtain less conservative conditions for a networked control system to satisfy the disturbance
attenuation criterion. Based on this approach, a novel control design method for a networked control
system is proposed. An illustrative example is given to show the effectiveness of the proposed method.

Keywords: Takagi-Sugeno fuzzy systems; nonlinear systems; observer design; linear matrix
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1. Introduction

Networked control systems(NCSs) are a class of systems where the signals of feedback loops are
closed via communication network. These systems are found in many applications such as automobiles
and airplanes, large scale disributed industrial systems and telecommunication systems due to easier
installation and maintenance, simpler upgrading and more reliability over the point-to-point connected
systems [3]. Therefore, much attention has been paid to NCSs in the last decades [5, 21]. In the
networked control system, the information is exchanged with packets through a network where the
data packets encounter delays. Considering the effects of network-induced delays in nonlinear NCS,
we model its closed-loop system as a fuzzy system with bounded delays.

For a nonlinear control system, Takagi-Sugeno fuzzy model has been playing an important role. It
can represent a nonlinear system effectively and is known to be a great tool to analyze and synthesize
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nonlinear control systems [11–13]. The papers [4, 6, 7, 9, 10, 16, 19, 20] and [22] considered control
design problems for nonlinear networked control systems. The paper [6] partially introduced a
multiple Lyapunov-Krasovskii matrix method for fuzzy systems with time-delay but it is not a general
multiple Lyapunov matrix method. The papers [4, 9, 20] and [22] discussed various fuzzy networked
control systems but all employed a common Lyapunov-Krasovskii function method. The
papers [7, 10] and [19] employed a common Lyapunov-Krasovskii function method with descriptor
system approach, which is still more conservative than a multiple Lyapunov-Krasovskii matrix
method. The papers [6, 16] and [19] used a free matrix method to reduce the conservatism but
increase computational load by introducing a number of free matrices. Furthermore, the paper [17]
introduced a new multiple Lyapunov matrix method but only considered the stability of a networked
control system. The papers [17] and [18] considered the stability and stabilization problems based on
multiple Lyapunov-Krasovskii matrix method.

In this paper, we consider the H∞ disturbance attenuation of nonlinear networked control systems
based on Takagi-Sugeno fuzzy models. First, we assume a new class of fuzzy feedback controller and
consider the H∞ disturbance attenuation of the closed-loop system with such a feedback controller. In
order to obtain less conservative H∞ disturbance attenuation conditions, we introduce a new type of
multiple Lyapunov-Krasovskii function, which reduces the conservatism in stability conditions. A
multiple Lyapunov-Krasovskii function is a natural extension of a common Lyapunov-Krasovskii
function. However, a conventional multiple Lyapunov function contains the membership function and
hence a resulting condition depends on the derivatives of the membership function. However, the
derivative of the membership function may not always be known a priori nor differentiable. The
paper [8] introduced a new class of multiple Lyapunov function, which contains an integral of the
membership function of fuzzy systems. This approach requires no information on the derivatives of
the membership function and is shown to reduce the conservatism in H∞ disturbance attenuation
conditions. In addition, triple and quadruple integrals of Lyapunov-Krasovskii functions are
employed, which enormously reduce the conservatism. Based on such a multiple
Lyapunov-Krasovskii function, a control design method of nonlinear networked control systems are
proposed. Finally, a numerical example is shown to illustrative our control design method and to show
the effectiveness of our approach.

2. Fuzzy model of networked control systems

Consider the Takagi-Sugeno fuzzy model, described by the following IF-THEN rules:

IF ξ1 is Mi1 and · · · and ξp is Mip,

T HEN ẋ(t) = Aix(t) + Biu(t) + Diw(t),
z(t) = Cix(t)

where x(t) ∈ <n is the state, u(t) ∈ <m is the control input. and z(t) ∈ <q is the controlled output.
The matrices Ai, Bi,Ci and Di are constant matrices of appropriate dimensions. r is the number of
IF-THEN rules. Mi j are fuzzy sets and ξ1, · · · , ξp are premise variables. We set ξ = [ξ1 · · · ξp]T . The
premise variable ξ(t) is assumed to be measurable.
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Then, the state equation and the controlled output equation are described by

ẋ(t) =

r∑
i=1

λi(ξ){Aix(t) + Biu(t) + Diw(t)}

∆
= Aλx(t) + Bλu(t) + Dλw(t) (2.1)

z(t) =

r∑
i=1

λi(ξ)Cix(t)

∆
= Cλx(t) (2.2)

where

λi(ξ) =
βi(ξ)
r∑

i=1

βi(ξ)

, βi(ξ) =

p∏
j=1

Mi j(ξ j)

and Mi j(·) is the grade of the membership function of Mi j. We assme

λi(ξ(t)) ≥ 0, i = 1, · · · , r,
r∑

i=1

λi(ξ(t)) = 1 (2.3)

for any ξ(t).
In the considered networked control system, the controller and the actuator are event-driven and

sampler is clock-driven. The actual input of the system (2.1) is realized via a zero-order hold device.
The sampling period is assumed to be a positive constant T and the information of the zero-order hold
may be updated between sampling instants. The updating instants of the zero-order hold are denoted
by tk, and τa and τb are the time-delays from the sampler to the controller and from the controller to
the zero-order hold at the updating instant tk, respectively. So, the successfully transmitted data in
the networked control system at the instant tk experience round trip delay τ = τa + τb which does not
need to be restricted inside one sampling period. Regarding the role of the zero-order hold, for a state
sample data tk − τ, the corresponding control signal would act on the plant from tk unto tk+1. Therefore,
the rules of the fuzzy control input for tk ≤ t ≤ tk+1, is written as follows:

IF ξ1 is Mi1 and · · · and ξp is Mip,

T HEN u(t) = Kix(t − τ(t)), i = 1, · · · , r.

where Ki, i = 1, · · · , r are constant matrices, and τ(t) may be an unknown time varying delay but its
lower bound τ1 and upper bound τ2 are assumed to be known. The upper bound η of the delay rate is
also assumed to be known:

τ1 ≤ τ(t) ≤ τ2, 0 < τ̇(t) ≤ η.

Then, an overall controller is given by

u(t) =

r∑
i=1

µi(ξ(t − τ(t)))Kix(t − τ(t))
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∆
= Kτ

µx(t − τ(t)) (2.4)

where

µi(ξ(t)) =
1
h

∫ t

t−h
λi(ξ(s))ds,

and h > 0 is some scalar. The closed-loop system (2.1) with (2.4) is given by

ẋ(t) =

r∑
i=1

r∑
l=1

λi(ξ(t))µl(ξ(t − τ(t))){Aix(t) + BiKlx(t − τ(t)) + Diw(t)}

= Aλx(t) + BλKτ
µx(t − τ(t) + Dλw(t). (2.5)

We note that µi(ξ(t)) ≥ 0, i = 1, · · · , r and

r∑
i=1

µi(ξ(t)) =
1
h

∫ t

t−h

r∑
i=1

λi(ξ(s))ds

= 1,

which imply that µi(ξ(t)) and λi(ξ(t)) share the same properties as seen in (2.3).
We define the cost function

J =

∫ ∞

0
(zT (t)z(t) − γ2wT (t)w(t))dt (2.6)

where γ is a prescribed scalar. Our problem is to find a condition such that the closed-loop system (2.2)
and (2.5) is asymptotically stable with w(t) = 0 and it satisfies J < 0 in (2.6). In this case, the system
is said to achieve the H∞ disturbance attenuation with γ.

3. H∞ disturbance attenuation

Let us first assume that all the controller gain matrices Ki, i = 1, · · · , r are given. Importance
on the disturbance attenuation conditions lies on how to choose an appropriate Lyapunov-Krasovskii
function. Here, we introduce a new Lyapunov-Krasovskii function. To begin with, let us consider a
polytopic matrix:

Zµ =

r∑
i=1

µi(ξ(t))Zi

and similar notations will be used for other matrices. It is easy to see that the time-derivative of Zµ is
calculated as

Żµ =

r∑
i=1

µ̇i(ξ(t))Zi

=
1
h

r∑
i=1

(λi(ξ(t)) − λi(ξ(t − τ)))Zi

∆
=

1
h

(Zλ − Zτ
λ). (3.1)
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For later use, we give some notation and lemmas:

ζ(t) =

[
xT (t) xT (t − τ(t)) xT (t − τ1) xT (t − τ2)

∫ t

t−τ1

xT (s)ds
∫ t−τ1

t−τ(t)
xT (s)ds∫ t−τ(t)

t−τ2

xT (s)ds
∫ 0

−τ1

∫ t

t+β
xT (s)dsdβ

∫ −τ1

−τ(t)

∫ t

t+β
xT (s)ds

∫ −τ(t)

−τ2

∫ t

t+β
xT (s)ds w(t)

]T
∆
=
[
ζT

1 (t) ζT
2 (t) · · · ζT

11(t)
]T
.

Lemma 3.1. (Jensen’s Inequality) For τ ∈ <, x(t) ∈ <n, and P > 0 ∈ <n×n, the following inequalities
hold:

−τ

∫ t

t−τ
xT (s)Px(s)ds ≤

∫ t

t−τ
xT (s)dsP

∫ t

t−τ
x(s)ds,

−
τ2

2

∫ 0

−τ

∫ t

t+β
xT (s)Px(s)dsdβ ≤

∫ 0

−τ

∫ t

t+β
xT (s)dsdβP

∫ 0

−τ

∫ t

t+β
x(s)dsdβ,

−
τ3

6

∫ 0

−τ

∫ 0

β

∫ t

t+θ
xT (s)Px(s)dsdβdθ ≤

∫ 0

−τ

∫ 0

β

∫ t

t+θ
xT (s)dsdβdθP

∫ 0

−τ

∫ 0

β

∫ t

t+θ
x(s)dsdβdθ.

Lemma 3.2. [1] For τ1, τ2, α, ε ∈ <, x(t) ∈ <n, and P > 0 ∈ <n×n, the following inequalities hold:

−(τ2 − τ1)
∫ t−τ1

t−τ2

xT (s)Px(s)ds ≤ −ζT
6 (t)Pζ6(t) − ζT

7 (t)Pζ7(t) − (1 − α)ζT
6 (t)Pζ6(t) − αζT

7 (t)Pζ7(t),

−
(τ2

2 − τ
2
1)

2

∫ t−τ1

t−τ2

∫ t

t+β
xT (s)Px(s)dsdβ ≤ −ζT

9 (t)Pζ9(t) − ζT
10(t)Pζ10(t) − (1 − ε)ζT

9 (t)Pζ9(t) − εζT
10(t)Pζ10(t).

Now, we are ready to give our first result.

Theorem 3.1. Given control gain matrices Kl, l = 1, · · · , r and scalar h > 0. The closed-loop system
(2.5) achieves the H∞ disturbance attenuation with γ if there exist matrices Z j > 0, P1 > 0, P2 >

0, P3 > 0, P4 > 0, R j1 > 0, R2 > 0, R3 j > 0, R4 > 0, X1 j > 0, X2 > 0, X3 j > 0, X4 > 0, U1 >

0, U2 > 0, W j, j = 1, · · · , r, and scalars δi > 0, i = 1, 2 such that[1
2θi jl + θ1 j + δ1I CT

i
∗ −I

]
< 0, i, j, l = 1, · · · , r, (3.2)[1

2θi jl + θ2 j + δ1I CT
i

∗ −I

]
< 0, i, j, l = 1, · · · , r, (3.3)[1

2θi jl + θ3 j − δ2I CT
i

∗ −I

]
< 0, i, j, l = 1, · · · , r, (3.4)[1

2θi jl + θ4 j − δ2I CT
i

∗ −I

]
< 0, i, j, l = 1, · · · , r, (3.5)

δ1 − δ2 > 0 (3.6)[ 1
τ1

Zi + X2 −X2

−X2 Q1i + X2

]
≥ 0, i = 1, · · · , r, (3.7)[ 1

τ2−τ1
Zi + X4 −X4

−X4 Q2i + X4

]
≥ 0, i = 1, · · · , r (3.8)
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where τ12 = τ2 − τ1, τ
(2)
12 = τ2

2 − τ
2
1

θ1 j = −eT
7 X3 je7 − (e2 − e4)T X4(e2 − e4),

θ2 j = −eT
6 X3 je6 − (e2 − e3)T X4(e2 − e3),

θ3 j = −eT
10R3 je10 − (τ12e1 − e7)T R4(τ12e1 − e7),

θ4 j = −eT
9 R3 je9 − (τ12e1 − e6)T R4(τ12e1 − e6),

θi jl = πi jl − eT
5 X1e5 − (e1 − e3)T X2(e1 − e3) − eT

6 X3e6 − eT
7 X3e7 − (e2 − e3)T X4(e2 − e3)

−(e2 − e4)T X4(e2 − e4) − eT
8 R1 je8 − (τ1e1 − e5)T R2(τ1e1 − e5) − eT

9 R3 je9

−eT
10R3 je10 − (τ12e1 − e6)T R4(τ12e1 − e6) − (τ12e1 − e7)T R4(τ12e1 − e7)

−( τ12
2 e1 − e8)T U1( τ12

2 e1 − e8) − ( τ
(2)
12
2 e1 − e9 − e10)T U2( τ

(2)
12
2 e1 − e9 − e10)

πi jl =



Λ11i j Λ12i jl 0 0 P1 0 0 τ1P3 τ12P4 τ12P4

∗ Λ22i jl 0 0 0 0 0 0 0 0
∗ ∗ −Q1 j + Q2 j 0 −P1 P2 P2 0 0 0
∗ ∗ ∗ −Q2 j 0 −P2 −P2 0 0 0
∗ ∗ ∗ ∗ 0 0 0 −P3 0 0
∗ ∗ ∗ ∗ ∗ 0 0 0 −P4 −P4

∗ ∗ ∗ ∗ ∗ ∗ 0 0 −P4 −P4

∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

Z jDi + AT
i ΩDi

KT
l BT

i ΩDi

0
0
0
0
0
0
0
0

DT
i ΩDi − γ

2I



,

Λ11i j = AT
i Z j + Z jAi + Q1 j + W j + 1

h (Zi − Zl) + τ2
1X1 j + τ2

12X3 j +
τ4

1
4 R1 j +

(τ(2)
12 )2

4 R3 j + AT
i ΩAi,

Λ12i jl = Z jBiKl + AT
i ΩBiKl,

Λ22i jl = −(1 − η)W j + KT
l BT

i ΩBiKl,

Ω = τ2
1X2 + τ2

12X4 +
τ4

1
4 R2 +

(τ(2)
12 )2

4 R4 +
τ6

1
36U1 +

(τ3
2−τ

3
1)2

36 U2,

Φil =
[
AT

i KT
l BT

i 0 0 0 0 0 0 0 0 DT
i

]
,

C̄i =
[
Ci 0 0 0 0 0 0 0 0 0 0

]
,

and ei, i = 1, · · · , 11 denote an 11-dimensional fundamental vector whose i-th element is 1 and 0
elsewhere.

Proof: Consider the following Lyapunov-Krasovskii function:

V(xt) = V1(xt) + V2(xt) + V3(xt) + V4(xt) + V5(xt) (3.9)
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where xt = x(t + θ), −τ2 ≤ θ ≤ 0,

V1(xt) = xT (t)Zµx(t) +

∫ t

t−τ1

xT (s)dsP1

∫ t

t−τ1

xT (s)ds +

∫ t−τ1

t−τ2

xT (s)dsP2

∫ t−τ1

t−τ2

x(s)ds

+

∫ 0

−τ1

∫ t

t+θ
xT (s)dsdθP3

∫ 0

−τ1

∫ t

t+θ
x(s)dsdθ +

∫ −τ1

−τ2

∫ t

t+θ
xT (s)dsdθP4

∫ −τ1

−τ2

∫ t

t+θ
x(s)dsdθ,

V2(xt) =

∫ t

t−τ1

xT (s)Q1µx(s)ds +

∫ t−τ1

t−τ2

xT (s)Q2µx(s)ds +

∫ t

t−τ(t)
xT (s)Wµx(s)ds,

V3(xt) = τ1

∫ 0

−τ1

∫ t

t+θ
xT (s)X1µx(s)dsdθ + τ1

∫ 0

−τ1

∫ t

t+θ
ẋT (s)X2 ẋ(s)dsdθ

+(τ2 − τ1)
∫ −τ1

−τ2

∫ t

t+θ
xT (s)X3µx(s)dsdθ + (τ2 − τ1)

∫ −τ1

−τ2

∫ t

t+θ
ẋT (s)X4 ẋ(s)dsdθ,

V4(xt) =
τ2

1

2

∫ 0

−τ1

∫ 0

β

∫ t

t+θ
xT (s)R1µx(s)dsdθdβ +

τ2
1

2

∫ 0

−τ1

∫ 0

β

∫ t

t+θ
ẋT (s)R2 ẋ(s)dsdθdβ

+
τ2

2 − τ
2
1

2

∫ −τ1

−τ2

∫ 0

β

∫ t

t+θ
xT (s)R3µx(s)dsdθdβ +

τ2
2 − τ

2
1

2

∫ −τ1

−τ2

∫ 0

β

∫ t

t+θ
ẋT (s)R4 ẋ(s)dsdθdβ,

V5(xt) =
τ3

1

6

∫ 0

−τ1

∫ 0

β

∫ 0

λ

∫ t

t+θ
ẋT (s)U1 ẋ(s)dsdλdβdθ

+
τ3

2 − τ
3
1

6

∫ −τ1

−τ2

∫ 0

β

∫ 0

λ

∫ t

t+θ
ẋT (s)U2 ẋ(s)dsdλdβdθ

where

X jµ =

r∑
i=1

µi(ξ)X ji > 0, j = 1, 3

and similar notations are used. Now, we take the derivative of V(xt) with respect to t along the solution
of the system (2.5).

First, using Lemma 3.1, we see that∫ t

t+θ
ẋT (s)X2 ẋ(s)ds ≥ −

1
θ

∫ t

t+θ
ẋT (s)dsX2

∫ t

t+θ
ẋ(s)ds

= −
1
θ

[x(t) − x(t + θ)]T X2[x(t) − x(t + θ)]

and ∫ 0

−τ1

∫ t

t+θ
ẋT (s)X2 ẋ(s)dsdθ ≥ −

∫ 0

−τ1

1
θ

[x(t) − x(t + θ)]T X2[x(t) − x(t + θ)]dθ

=

∫ τ1

0

1
θ

[x(t) − x(t − s)]T X2[x(t) − x(t − s)]ds

≥
1
τ1

∫ τ1

0
[x(t) − x(t − s)]T X2[x(t) − x(t − s)]ds

=
1
τ1

∫ t

t−τ1

[x(t) − x(α)]T X2[x(t) − x(α)]dα
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Similarly, we have∫ −τ1

−τ2

∫ t

t+θ
ẋT (s)X4 ẋ(s)dsdθ ≥

1
τ2 − τ1

∫ t−τ1

t−τ2

[x(t) − x(α)]T X4[x(t) − x(α)]dα

Hence, we get

xT (t)Zµx(t) +

∫ t

t−τ1

xT (s)Q1µx(s)ds +

∫ t−τ1

t−τ2

xT (s)Q2µx(s)ds

+τ1

∫ 0

−τ1

∫ t

t+θ
ẋT (s)X2 ẋ(s)dsdθ + (τ2 − τ1)

∫ −τ1

−τ2

∫ t

t+θ
ẋT (s)X4 ẋ(s)dsdθ

≥

∫ t

t−τ1

[
x(t)
x(α)

]T [ 1
τ1

Zµ + X2 −X2

−X2 Q1µ + X2

] [
x(t)
x(α)

]
dα

+

∫ t−τ1

t−τ2

[
x(t)
x(α)

]T [ 1
τ2−τ1

Zµ + X4 −X4

−X4 Q2µ + X4

] [
x(t)
x(α)

]
dα

It follows from the above that for V1(xt) + V2(xt) + V3(xt) to be positive, the positive definiteness of Q1i

and Q2i, i = 1, · · · , r can be removed if the positive definiteness of Pi,W j, X1 j, X3 j, i = 1, · · · , 4, j =

1, · · · , r is guaranteed and (3.7)-(3.8) are satisfied.
The derivatives of V1(xt) and V2(xt) in (3.9) are calculated as follows:

V̇1(xt) = 2(Aλx(t) + BλKτ
µx(t − τ(t)) + Dλw(t))T Zµx(t) +

1
h

xT (t)(Zλ − Zτ
λ)x(t)

+2(x(t) − x(t − τ1))T P1

∫ t

t−τ1

x(s)ds + 2(x(t − τ1) − x(t − τ2))T P2

∫ t−τ1

t−τ2

x(s)ds

+2[τ1x(t) −
∫ t

t−τ1

xT (s)ds]T P3

∫ 0

−τ1

∫ t

t+θ
x(s)dsdθ

+2[(τ2 − τ1)x(t) −
∫ t−τ1

t−τ2

xT (s)ds]T P4

∫ −τ1

−τ2

∫ t

t+θ
x(s)dsdθ, (3.10)

V̇2(xt) ≤ xT (t)(Q1µ + Wµ)x(t) − xT (t − τ1)Q1µx(t − τ1) + xT (t − τ1)Q2µx(t − τ1)
−xT (t − τ2)Q2µx(t − τ2) − (1 − η)xT (t − τ(t))Wµx(t − τ(t)). (3.11)

Using Lemmas 3.1 and 3.2, we have

V̇3(xt) = τ2
1xT (t)X1µx(t) − τ1

∫ t

t−τ1

xT (s)X1µx(s)ds + τ2
1 ẋT (t)X2 ẋ(t) − τ1

∫ t

t−τ1

ẋT (s)X2 ẋ(s)ds

+(τ2 − τ1)2xT (t)X3µx(t) − (τ2 − τ1)
∫ t−τ1

t−τ2

xT (s)X3µx(s)ds

+(τ2 − τ1)2 ẋT (t)X4 ẋ(t) − (τ2 − τ1)
∫ t−τ1

t−τ2

ẋT (s)X4 ẋ(s)ds,

≤ τ2
1xT (t)X1µx(t) − ζT

5 (t)X1µζ5(t) + τ2
1 ẋT (t)X2 ẋ(t) − (ζ1(t) − ζ3(t))T X2(ζ1(t) − ζ3(t))

+(τ2 − τ1)2xT (t)X3µx(t) − ζT
6 (t)X3µζ6(t) − ζT

7 (t)X3µζ7(t) − (1 − α)ζT
6 (t)X3µζ6(t)

−αζT
7 (t)X3µζ7(t) + (τ2 − τ1)2 ẋT (t)X4 ẋ(t) − (ζ2(t) − ζ3(t))T X4(ζ2(t) − ζ3(t))
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−(ζ2(t) − ζ4(t))T X4(ζ2(t) − ζ4(t)) − (1 − α)(ζ2(t) − ζ3(t))T X4(ζ2(t) − ζ3(t))
−α(ζ2(t) − ζ4(t))T X4(ζ2(t) − ζ4(t)), (3.12)

V̇4(xt) =
τ4

1

4
xT (t)R1µx(t) −

τ2
1

2

∫ 0

−τ1

∫ t

t+β
xT (s)R1µx(s)dsdβ +

τ4
1

4
ẋT (t)R2 ẋ(t)

−
τ2

1

2

∫ 0

−τ1

∫ t

t+β
ẋT (s)R2 ẋ(s)dsdβ +

(τ2
2 − τ

2
1)2

4
xT (t)R3µx(t) −

τ2
2 − τ

2
1

2

∫ −τ1

−τ2

∫ t

t+β
xT (s)R3µx(s)dsdβ

+
(τ2

2 − τ
2
1)2

4
ẋT (t)R4 ẋ(t) −

τ2
2 − τ

2
1

2

∫ −τ1

−τ2

∫ t

t+β
ẋT (s)R4 ẋ(s)dsdβ

≤
τ4

1

4
xT (t)R1µx(t) − ζT

8 (t)R1µζ8(t) +
τ4

1

4
ẋT (t)R2 ẋ(t) − (τ1ζ1(t) − ζ5(t))T (t)R2(τ1ζ1(t) − ζ5(t))

+
(τ2

2 − τ
2
1)2

4
xT (t)R3µx(t) − ζT

9 (t)R3µζ9(t) − ζT
10(t)R3µζ10(t) − (1 − ε)ζT

9 (t)R3µζ9(t)

−εζT
10(t)R3µζ10(t) +

(τ2
2 − τ

2
1)2

4
ẋT (t)R4 ẋ(t)

−((τ2 − τ1)ζ1(t) − ζ7(t))T R4((τ2 − τ1)ζ1(t) − ζ7(t))
−((τ2 − τ1)ζ1(t) − ζ6(t))T R4((τ2 − τ1)ζ1(t) − ζ6(t))
−ε((τ2 − τ1)ζ1(t) − ζ7(t))T R4((τ2 − τ1)ζ1(t) − ζ7(t))
−(1 − ε)((τ2 − τ1)ζ1(t) − ζ6(t))T R4((τ2 − τ1)ζ1(t) − ζ6(t)) (3.13)

V̇5(xt) =
τ6

1

36
ẋT (t)U1 ẋ(t) −

τ3
1

6

∫ 0

−τ1

∫ 0

β

∫ t

t+λ
ẋT (s)U1 ẋ(s)dsdλdβ +

(τ3
2 − τ

3
1)2

36
ẋT (t)U2 ẋ(t)

−
τ3

2 − τ
3
1

6

∫ −τ1

−τ2

∫ 0

β

∫ t

t+λ
ẋT (s)U2 ẋ(s)dsdλdβ

≤
τ6

1

36
ẋT (t)U1 ẋ(t) − (

τ2
1

2
ζ1(t) − ζ8(t))T U1(

τ2
1

2
ζ1(t) − ζ8(t)) +

(τ3
2 − τ

3
1)2

36
ẋT (t)U2 ẋ(t)

−(
τ2

2 − τ
2
1

2
ζ1(t) − ζ9(t) − ζ10(t))T U2(

τ2
2 − τ

2
1

2
ζ1(t) − ζ9(t) − ζ10(t)). (3.14)

It follows from (3.10)–(3.14) that

V̇(xt) + zT (t)z(t) − γ2wT (t)w(t)

= ζT (t)

 r∑
i=1

r∑
j=1

r∑
l=1

λi(ξ)µ j(ξ)µl(ξ(t − τ))(αθ(1)
i jl + (1 − α)θ(2)

i jl + εθ(3)
i jl + (1 − ε)θ(4)

i jl

 ζ(t)

+xT (t)(
r∑

i=1

λi(ξ)Ci)T (
r∑

i=1

λi(ξ)Ci)x(t) + ẋT (t)Ωẋ(t)

∆
= ζT (t)

[
(αθ(1)

λµµ + (1 − α)θ(2)
λµµ + εθ(3)

λµµ + (1 − ε)θ(4)
λµµ

]
ζ(t) + ζT (t)eT

1 CT
λCλe1ζ(t)

+ζT (t)(Aλe1 + BλKτ
µe2 + Dλe11)T Ω(Aλe1 + BλKτ

µe2 + Dλe11)ζ(t) (3.15)

where θ(k)
i jl = 1

2θi jl + θk j, k = 1, 2 and θ(k)
i jl = 1

2θi jl + θk j, k = 3, 4. By Schur complement formula, the
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upper bound of V̇ is negative if and only if

r∑
i=1

r∑
j=1

r∑
l=1

λi(ξ)µ j(ξ)µl(ξ(t − τ))


αθ(1)

i jl + (1 − α)θ(2)
i jl + εθ(3)

i jl + (1 − ε)θ(4)
i jl ΦT

il C̄T
i

∗ −Ω−1 0
∗ ∗ −I

 < 0. (3.16)

(3.16) holds if and only if the following conditions hold simultaneously provided that δ2 < δ1;

αΨ
(1)
λµµ + (1 − α)Ψ(2)

λµµ < −δ1I,
εΨ(3)

λµµ + (1 − ε)Ψ(4)
λµµ < δ2I

where

Ψ
(i)
λµµ =


θ(i)
λµµ Φλµ CT

λ

∗ −Ω−1 0
∗ ∗ −I

 , i = 1, 2, 3, 4.

The above conditions can be rewritten as

α(Ψ(1)
λµµ + δ1I) + (1 − α)(Ψ(2)

λµµ + δ1I) < 0, (3.17)

ε(Ψ(3)
λµµ − δ2I) + (1 − ε)(Ψ(4)

λµµ − δ2I) < 0. (3.18)

Since 0 ≤ α, ε ≤ 1, the terms α(Ψ(1)
λµµ + δ1I) + (1−α)(Ψ(2)

λµµ + δ1I) is a convex combination of Ψ
(1)
λµµ + δ1I

and Ψ
(2)
λµµ + δ1I. Similarly, the terms ε(Ψ(3)

λµµ − δ2I) + (1 − ε)(Ψ(4)
λµµ − δ2I) is a convex combination of

Ψ
(3)
λµµ − δ2I and Ψ

(4)
λµµ − δ2I. These combinations are negative definite if the vertices become negative.

Therefore, (3.17) and (3.18) are equivalent to

Ψ
(1)
λµµ + δ1I < 0,

Ψ
(2)
λµµ + δ1I < 0,

Ψ
(3)
λµµ − δ2I < 0,

Ψ
(4)
λµµ − δ2I < 0

which can be written as (3.2)–(3.5). It follows from (3.15) that this proves that the conditions (3.2)–
(3.6) suffice to show

V̇(xt) + zT (t)z(t) − γ2wT (t)w(t) < 0.

Integrating t = 0 to t = ∞, we have

V(x(∞)) − V(x(0)) + J < 0.

Since V(x(∞)) ≥ 0 and V(x(0)) = 0, we can show that J < 0 and this achieves the H∞ disturbance
attenuation of the system (2.5). The stability of the system with w(t) = 0 is proved in the same lines as
in [18].

Remark 3.1. The paper [18] uses the similar method to propose a stabilizing control design for
nonlinear NCSs. It has shown that its method has advantaes over the previous methods in [6] and [7].
The novelty of Theorem 3.1 lies in a new multiple Lyapunov-Krasovskii function (3.9) where
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Z j, W j, Q1 j, Q2 j, R1 j, R3 j, X1 j and X3 j are multiple Lyapunov matrices. In addition, the integral
µi(ξ(t)), i = 1, · · · , r of the membership functions avoid the derivatives of the membership function in
the H∞ disturbance attenuation conditions (3.2)–(3.5). The quadruple integral terms and the
quadratic forms of the double integral terms

∫ ∫
xT (s)dsdβP

∫ ∫
xT (s)dsdβ are employed in (3.9),

which leads to a drastic reduction of the conservatism in the H∞ disturbance attenuation condition. In
fact, recent papers [6] and [7] do not use the quadruple integrals and the quadratic forms of the
double integrals. This implies that our H∞ disturbance attenuation conditions are less conservative
than recent results, and is technically better than others. In fact, this advantage was shown in [18].

Remark 3.2. The conditions (3.7)–(3.8) remove the positive definiteness of Q1i and Q2i, i = 1, · · · , r,
and reduce the conservatism in conditions in Theorem 3.1.

Remark 3.3. The conditions (3.2)–(3.8) are not strict LMIs unless h > 0 is given. By defining h̃ = 1
h ,

these conditions can be seen as bilinear matrix inequalities. Effective algorithms to solve them
include the branch-and-cut algorithm, the branch-and-bound algorithm, and the Lagrangian dual
global optimization algorithm in [2, 14] and [15], respectively.

4. Control design

Next, we shall propose a control design method. It is assumed that instead of the controller (2.4), a
form of the controller is given by non-PDC, described by

u(t) =

r∑
i=1

µi(ξ(t − τ(t)))Ki

 r∑
i=1

µi(ξ(t − τ(t)))Zi

−1

x(t − τ(t))

= Kτ
µ(Z

τ
µ)
−1x(t − τ(t)) (4.1)

where Ki and Zi, i = 1, · · · , r are to be determined, and µi, i = 1, · · · , r are given as in (2.4). Then, the
closed-loop system (2.1) with (4.1) becomes

ẋ(t) = Aλx(t) + BλKτ
µ(Z

τ
µ)
−1x(t − τ(t)) + Dλw(t). (4.2)

Applying Theorem 3.1, we obtain the following theorem for control design.

Theorem 4.1. For some scalar h > 0. A controller (4.1) makes the fuzzy system (2.1)–(2.2) achieve
the H∞ disturbance attenuation with γ if there exist matrices Z j > 0, P̄1mn > 0, P̄2mn > 0, P̄3mn >

0, P̄4mn > 0, R̄1 jmn > 0, R̄2mn > 0, R̄3 jmn > 0, R̄4mn > 0, X̄1 jmn > 0, X̄2mn > 0, X̄3 jmn > 0, X̄4mn >

0, Ū1mn > 0, Ū2mn > 0, W̄ jmn, K j, j,m, n = 1, · · · , r, and scalars δi > 0, i = 1, 2 such that[
Υ

p
i jklmn Γi jl

∗ Ω̄ jkl

]
< 0, i, j, k, l,m, n = 1, · · · , r, p = 1, · · · , 4, (4.3)

δ1 − δ2 > 0 (4.4)

[ 1
τ1

Z̄i + X̄2mn −X̄2mn

−X̄2mn Q̄1imn + X̄2mn

]
≥ 0 i,m, n = 1, · · · , r, (4.5)
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τ2−τ1

Z̄i + X̄4mn −X̄4mn

−X̄4mn Q̄2imn + X̄4mn

]
≥ 0 i,m, n = 1, · · · , r (4.6)

where

Υ1
i jklmn = 1

2 θ̄i jklmn + θ̄1 jmn + δ1I,
Υ2

i jklmn = 1
2 θ̄i jklmn + θ̄2 jmn + δ1I,

Υ3
i jklmn = 1

2 θ̄i jklmn + θ̄3 jmn − δ2I,
Υ4

i jklmn = 1
2 θ̄i jklmn + θ̄4 jmn − δ2I,

θ̄1 jmn = −eT
7 X̄3 jmne7 − (e2 − e4)T X̄4mn(e2 − e4),

θ̄2 jmn = −eT
6 X̄3 jmne6 − (e2 − e3)T X̄4mn(e2 − e3),

θ̄3 jmn = −eT
10R̄3 jmne10 − (τ12e1 − e7)T R̄4mn(τ12e1 − e7),

θ̄4 jmn = −eT
9 R̄3 jmne9 − (τ12e1 − e6)T R̄4mn(τ12e1 − e6),

θ̄i jlkmn = π̄i jlkmn − eT
5 X̄1mne5 − (e1 − e3)T X̄2mn(e1 − e3) − eT

6 X̄3 jmne6 − eT
7 X̄3 jmne7 − (e2 − e3)T X̄4mn(e2 − e3)

−(e2 − e4)T X̄4mn(e2 − e4) − eT
8 R̄1 jmne8 − (τ1e1 − e5)T R̄2mn(τ1e1 − e5) − eT

9 R̄3 jmne9

−eT
10R̄3 jmne10 − (τ12e1 − e6)T R̄4mn(τ12e1 − e6) − (τ12e1 − e7)T R̄4mn(τ12e1 − e7)

−( τ12
2 e1 − e8)T Ū1mn( τ12

2 e1 − e8) − ( τ
(2)
12
2 e1 − e9 − e10)T Ū2mn( τ

(2)
12
2 e1 − e9 − e10)

Ξ̄kl = −X̄2kl − τ
2
1R̄2kl − 2τ2

12R̄4kl −
τ4

1

4
Ū1kl −

(τ(2)
12 )2

4
Ū2kl,

π̄i jklmn =



Λ̄i jkl BiKl 0 0 P1mn 0 τ1P̄3mn τ12P̄4mn

∗ −(1 − η)W jmn 0 0 0 0 0 0
∗ ∗ −Q̄1 jmn + Q̄2 jmn 0 −P1mn P̄2mn P̄2mn 0
∗ ∗ ∗ −Q̄2 jmn 0 −P̄2mn −P̄2mn 0
∗ ∗ ∗ ∗ 0 0 0 −P̄3mn

∗ ∗ ∗ ∗ ∗ 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

τ12P̄4mn 0 Di

0 0 0
0 0 0
0 0 0
0 0 0

−P̄4mn −P̄4mn 0
−P̄4mn −P̄4mn 0

0 0 0
0 0 0
∗ 0 0
∗ ∗ −γ2I



,
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Λ̄i jkl = AiZ j + Z jAT
i + Q̄1 jkl + W̄ jkl −

1
h (Z̄i − Z̄l) + τ2

1X̄1 jkl + τ2
12X̄3 jkl +

τ4
1

4 R̄1 jkl +
(τ(2)

12 )2

4 R̄3 jkl,

ΓT
i jl =

[
AiZ j BiKl 0 0 0 0 0 0 0 0 DiZ j

CiZ j 0 0 0 0 0 0 0 0 0 0

]
,

Ω̄ jkl =

2(−2Z j + τ2
1X̄2kl + τ2

12X̄4kl +
τ4

1
4 R̄2kl +

(τ(2)
12 )2

4 R̄4kl +
τ6

1
36Ū1kl +

(τ3
2−τ

3
1)2

36 Ū2kl) 0
∗ −I


where τ12 = τ2 − τ1, τ

(2)
12 = τ2

2 − τ
2
1. In this case, control gains Kl and Z j, j, l = 1, · · · , r can be found

as solutions of the above LMIs.

Proof: We consider the same Lyapunov-Krasovskii function (3.9) except for the first term of V1(xt),
which is replaced by

V̄1(xt) = xT (t)Z−1
µ x(t).

The time-derivative of V11(xt) is calculated as
˙̄V1(xt) = 2xT (t)Z−1

µ (Aλx(t) + BλKτ
µ(Z

τ
µ)
−1x(t − τ(t)) + Dλw(t)) + xT (t)Ż−1

µ x(t)
= xT (t)Z−1

µ (AλZµ + ZµAT
λ − Żµ)Z−1

µ x(t) + 2xT (t)Z−1
µ BλKτ

µ(Z
τ
µ)
−1x(t − τ(t)))

+2xT (t)Z−1
µ Dλw(t))

We follow the similar lines of proof of Theorem 3.1, and obtain

V̇(xt) =

r∑
i=1

r∑
j=1

r∑
k=1

r∑
l=1

r∑
m=1

r∑
n=1

λi(ξ)µ j(ξ)µk(ξ)µl(ξ)µm(ξ(t − τ))

×µn(ξ(t − τ))ζ̄T (t)(αθ̄(1)
i jklmn + (1 − α)θ̄(2)

i jklmn + εθ̄(3)
i jklmn + (1 − ε)θ̄(4)

i jklmn)ζ̄(t)

where θ̄(p)
i jklmn = 1

2 θ̃i jklmn + θ̄p jmn, p = 1, 2, θ̄(p)
i jklmn = 1

2 θ̃i jklmn + θ̄p jmn, p = 3, 4,

θ̃i jklmn = θ̄i jklmn + ΦT
il ΩΦil +


ZT
µCT

λCλZµ 0 · · · 0
0 0 · · · 0
...

...
. . .

...

0 0 · · · 0

 ,
ζ̄ =
[
Z−1
µ (Zτ

µ)
−1 · · · (Zτ

µ)
−1 I

]
ζ.

We have defined the following matrices:
r∑

j=1

r∑
k=1

r∑
l=1

µ j(ξ)µk(ξ)µl(ξ)Q̄ jkl = ZµQµZµ,

r∑
j=1

r∑
m=1

r∑
n=1

µ j(ξ)µm(ξ(t − τ(t)))µn(ξ(t − τ(t)))Q̄ jmn = Zτ
µQµZτ

µ

for example. Similar notations have also been used for others matrices. Applying the Schur
complement formula and the inequality −Ω−1 ≤ −2Z + ZΩZ, we obtain (4.3)–(4.6).

Remark 4.1. In case that the delay rate η is unknown, we can still make use of Theorem 4.1 with
W j = 0, j = 1, · · · , r.

Remark 4.2. The conditions (4.3)–(4.6) are not strict LMIs unless h > 0 is given, either. However,
they can be solved in the same way as discussed in Remark 3.3.
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5. Numerical example

We consider the system [19]

ẋ(t) =

2∑
i=1

λi(ξ){Aix(t) + Biu(t) + Diw(t)}, (5.1)

z(t) =

2∑
i=1

λi(ξ)Cix(t) (5.2)

where x1(t) ∈ [1, −1] and

A1 =

[
0 1
−0.01 0

]
, A2 =

[
0 1
−0.68 0

]
, B1 =

[
0
1

]
, B2 =

[
0
1

]
,

C1 =
[
1 0.1

]
, C2 =

[
1.1 0.1

]
, D1 =

[
0

0.1

]
,D2 =

[
0

0.5

]
,

λ1(x1) = 1 − x2
1, λ2(x1) = x2

1.

Suppose that 0.0 ≤ τ(t) ≤ 1.50 and η = 0.3.
First, we compare our results with others to show the effectiveness of Theorem 3.1 for stabilization

with w(t) = 0 (Table 1).

Table 1. Comparison of the methods.

Method τ2

[19] 0.60
[7] 1.40
Theorem 3.1 2.38

This obviously show that our new multiple Lyapunov-Krasovskii function method is better than the
existing conditions.

Next, we design an H∞ controller for the fuzzy networked system (5.1)–(5.2). Given the H∞
attenuation level γ = 1, Theorem 4.1 gives the feedback control u(t) by

u(t) = Kτ
µ(Z

τ
µ)
−1x(t − τ(t)) (5.3)

where
K1 =

[
0.0522 −0.1368

]
, K2 =

[
0.1121 −0.1643

]
,

Z1 =

[
0.0936 −0.0485
−0.0485 0.1289

]
, Z2 =

[
0.0924 −0.0468
−0.0468 0.1258

]
.

Theorem 4.1 is based on Theorem 3.1, which has been shown to be least conservative in the above
numerical example. It implies that Theorem 4.1 is a control design method which requires less
conservative design conditions than others.
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Finally, the simulation result on the state trajectories of the closed-loop system with the initial
conditions x(0) = [−0.5 0.5]T and the zero-mean Gaussian random variable w(t) of variance 0.1 is
shown in Figure 1. The delay τ(t) is assumed to be τ(t) = 1 + 0.5 sin(0.1t). The bold and dotted lines
indicate x1(t) and x2(t), respectively, and they show the system stability with disturbance attenuation.

Figure 1. The state trajectories.

6. Conclusions

The H∞ disturbance attenuation and control design of nonlinear networked control systems
described by Takagi-Sugeno fuzzy systems have been considered. A new multiple
Lyapunov-Krasovskii function was introduced to obtain new H∞ disturbance attenuation conditions
for the closed-loop system. This technique leads to less conservative conditions. Control design
method for nonlinear networked control systems was also proposed based on the same multiple
Lyapnov-Krasovskii function and thus conditions for control design are less conservative than the
existing ones.
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