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Abstract: In order to overcome the constraints of Networked Control Systems (NCSs) such as random
packet delays or dropouts, it is a natural idea to estimate the system state and compensate for the time
delays on the controller side. This paper provides an estimate on the scale of the complete dynamical
system that uses this idea of control. The structure of the complete system is clearly illustrated. Then a
concise sufficient and necessary stability condition is provided. In the numerical example, it is shown
that this seemingly small system turns out to have a very large scale.
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1. Introduction and preliminaries

This work is motivated by the networked control system (NCS) or remote control system where
the media that connects the controller and actuator causes random packet delays or dropouts. This
type of control systems are anticipated to have vast applications. The readers are referred to the review
paper [1]. The common features of NCS are random packet delays or dropouts, competition of multiple
nodes in the network, data quantization, etc., and this makes the modeling and stability analysis very
challenging. Markovian type regime switching models have been proved to be very successful in
modeling NCS [2, 3]. However, the stability of such systems still remains a challenge. Most stability
criteria are given as complicated LMI conditions [4, 5] via Lyapunov function approach, or dwell
time [6], or delay Riccati equations [7]. A stability condition using hybrid system analysis is found
in [8], which is again a sufficient condition and is not easy to verify. A neat sufficient and necessary
condition is in great need.

In order to overcome the constraints of NCS, such as random packet delays or dropouts, it is a
natural idea to estimate system state and compensate for packet disorders [9]. One believes that in
this way better system performance and better system stability can be achieved. Predictive control has
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been effectively applied to NCS [10-13]. This control method generates a sequence of future control
variables, which can be used to compensate for packet disorder or dropouts [14], and to estimate
unknown system state as well [15, 16]. However, as mentioned earlier, the stability conditions are
usually hard to verify. To analyze the stability issue, one must have a thorough understanding of the
dynamics of NCS with random time delays and state estimate.

In this paper we propose a predictive control method of NCS with random packet delays and state
estimate/compensation, and clearly show the structure of this system. This control method has much
less computational burden compared to classical predictive control method. Then the system is
modeled as a regime switching system, and an upper bound on the number of regimes is provided. By
the word “scale” we mean the number of distinct regimes (denoted by M), and the size of minimal
state representation in each regime (denoted by d). Then we provide a concise stability criterion that
is sufficient and necessary. Both M and d play a role in the validation of this criterion (see Section 4).

Throughout this paper we use X, u; to denote the system state on the actuator side, and the control
variable, respectively, where k is time index. Note that this is not the state representation in the overall
system. The controller and actuator are connected through a network. The random time delay in
actuator-to-controller channel is called the backward delay, denoted by 7,. The delay in the controller-
to-actuator channel is called the forward delay, denoted by 7,. Markov models have been shown to be
very general for the transition of these random delays [13], which we shall adopt.

Unlike most NCSs where the objective systems on the actuator side are time invariant, here we
assume that the objective system is a regime switching system with Markovian jumps, and we call it
a Markov Jump System (MJS). The application of switching systems in engineering can be found, for
example, in [17-19]. We let i; € {1, 2,...,m} denote the system mode/regime at time k. P, with size
m X m denotes the transition probability matrix among the m modes. Entries in P, are denoted by 4;;’s,
i,j€{l1,2,...,m}. Thus, this NCS has another layer of complexity.

We begin with simple and practically reasonable assumptions on this system.

e The actuator receives signals with random delays.
The actuator receives control signals from the controller and performs the required actions. Due
to the random packet delays, the actuator might receive no signal, or receive a packet that is
randomly delayed, or receive multiple packets. If more than one packet arrive at the same time,
the actuator executes the most recent one.

e Obsolete signals are discarded.
If, at a certain time instant, a control variable has been applied, then any control signal older than
it but arrives at later times will be discarded. For example, if us has been applied to the system at
the present time and at the next time step uy arrives, then uy is discarded.

e The delay times are bounded.
The backward time delay 7, and the forward time delay 7, are independent and bounded. This
can be done by designing a transmission protocol such that, when a packet has been delayed for
a certain amount of time, it is upgraded to the highest priority at a relay station and is transmitted
immediately. Therefore we assume that 7, € {0, 1, ..., 7} and 7, € {0, 1,2, ..., T»}.

e The controller sends out signals at every discrete instant.
The controller receives state feedback from the actuator via randomly delayed packets, and the
controller estimates the future system state and sends out a new control signal. If no state feedback
is received at a certain time instant, the controller simply sends a zero control signal.
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e Past control signals are recorded.
The controller keeps a record of past control signals that have been sent. This information is used
to calculate a new control signal whenever a feedback packet arrives.

e Packet size is limited.
The network bandwidth is very limited so that each time the controller and actuator just send
out one small packet to the other party. That means, sending out a large packet containing a long
sequence of controls or system states is not applicable. (Otherwise this system reduces to classical
control system without time delay.)

The controlled system on the actuator side becomes
Xer1 = a(i)Xe + DY (i)wr,, (L.1)

where k is present time, and the system dynamics a(iy), b’ (i;) depend on the mode i;. The superscript j
is an indicator function such that if j = 0, b"’(i;) = 0 which means no control signal is received; and if
j=1,bY3ip) = b(ip), iy € {1,2, ..., m} meaning at least one (possibly delayed) control signal is received.
In the complete state representation to be introduced shortly it can be seen that the information of j is
absorbed by a variable C;k). Recall that the control variable u; depends on delayed feedback x;_,, and
ix-r,-1, and the controller does not know the system information between k — 7, — 1 and k, except the
past controls up to u;_;. In what follows we shall show that this seemingly simple model actually has
a very large scale.

2. The scale of NCS with random delay and state estimate

The NCS is a special dynamical system that might be easy to describe in words, but is hard to
understand because its dynamics looks chaotic. One must get down to the bottom and have a careful
dissemination to obtain a clear understanding. In what follows we shall do this work.

We use the triplet (C & T(Zk), i) to denote the situation at the actuator side at time k, where C ;k) €
{0,1,2,...,T,}. Without the script k, C», 75, i just denote generic information, respectively.

If no control signal arrives at time k but there was one packet arrived at k — 1, it means that this is a

new round of receiving no signal, hence C;k) = 1. And at the same time we set T(zk) in this triplet equal

to its counterpart in the proceeding packet, i.e., T(Zk) = T(zk_l). Thus the information of the last applied
control index is recorded. If at the next time step, say k + 1, no control signal arrives, Cg‘”) =2,
78D = 79 and so forth. If a new packet arrives at time k + 2, we set C3"> = 0 and 75> equals the
time delay in control in this received packet. Recall that the forward time delay is bounded. So before
or by the time C, + 7, = T», a new control signal is guaranteed to arrive. And finally i; denotes the
mode of the system at time k. For example, (3, T(Zk), i) denotes the situation that for the past 3 time
instants, no control signal was received, and the last applied control was delayed by T(2k) (the total delay
at this time is 3 + T(zk)). (0, 2, i) denotes the situation that at least one control signal arrives, and u;_; is
the most recent one (if more than one signal have arrived).

The expression (1,T(k), i) — (2, T(2k+1), ix+1) represents a state transition. It should be pointed out
that the states (C;k), T(Zk), i) do not have full reachability. For example, if the current state is (0, 0, iy),
the next one cannot be (0, 1, i;,;). That is because, the state (0, 0, i;) indicates that at time k the control

u, arrived with no delay and was applied to the system, while (0, 1, i;,;) means that at time k + 1, the
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one step delayed control (which is again uy) arrives and is to be applied. But this is a contradiction.
The transition probability matrix for the transitions (C;k), T(zk)) - (C;k“), T(2k+1)) is denoted by P,.

We use a similar mechanism to represent the situation at the controller side. The pair (CY‘), T(lk))
is constructed where C Ek) €{0,1,2,...T}. If C (lk) = 0, that means the controller receives a feedback
packet from the actuator and the time delay in this packet is T(lk), which is the most recent one if multiple
packets have arrived. If C(lk) > (, that means no feedback packet arrives and C(lk) is a counter recording
the time steps of receiving no signal, while T(lk) equals its counterpart in the previously received packet.
Because the backward time delay is bounded, before or by the time C; + 7; = T} a feedback packet is
guaranteed to arrive. The transition probability matrix for the transitions (C ik), T(lk)) - (C §k+1), T(lk+1)) is
denoted by P;.

Notice that the received information depends on the sequence of the past states (C () , T(zj), i), J <k,
from the actuator side. Then we have the following proposition on the number of different
regimes/scenarios of this control system.

Proposition 2.1. An upper bound on the number of different regimes of this problem (denoted by M),
or equivalently, an upper bound on the number of different scenarios of the system, is given by

m*T (1 + TP Q4+ T2)/2-(1+T)) - 2+ T1)/2 2.1

Proof. On the controller side we consider the pair (C(k),rgk)), where C(k),T(lk) both take values in

{0,1,2,...,T,}. Notice that any combination of C (k), T(lk) such that C (lk) + T(lk) < T is possible, thus there
are 1 +2+---+ (1 +Ty)=(1+T)2+ T)/2 different scenarios in total for the pair (Ci"), 7'(1")).

Similarly, on the actuator side, any pair (C,, 75) satisfying C, + 7, < 15, C5, 7, € {0, 1,2, ..., T3}, is a
possible scenario. There are 1+2+- - -+(1+7>) = (1+7,)(2+75)/2 different combinations. Furthermore,
ir €{1,2,...,m} also determines the system dynamics. So there are m - (1 + T5)T2/2 + 1 + 1) =
m-(1+T)-(2+ T,)/2 different cases.

Due to the feedback delay, a sequence with length 1 + 7'} of past system states (Y, T(zj), ij), j=
k—T;—-1,k—-Ti,..,k— 1, must be maintained. Thus, a state (C(lk),T(lk)) = (0, T(lk)) indicates that the

. . . h=7P-1)  (k=r®-1) . .
controller receives the informationx, _«,C, ' 7, ' and i,__w_, at time k.
1 1

The controller then calculates and sends out a new control variable u; based on this received
information. When or whether will this control be applied by the actuator depends on the situation
(C(k), T(Zk), i;) at time k (which the controller does not know), and this contributes another triplet to the
representation. That means, there should be a total of 2 + T, of the triplets (C,,1,,i) in the
representation of the system regime.

However, recall that not all the transitions (C(k), T(zk), i) — (C;k“), T(2k+1), ir+1) are possible. The sum
C;“ + T(Zk) (which is less than or equal to 75) indicates the time index of the last applied control, and
only the controls newer that it are likely to be accepted by the actuator. When the time index shifts to
the next time instant, it automatically gives one more spot for future control. Therefore, given a triplet
(Cg‘),r(zk), i) in a sequence, there are at most m - (1 + T3) successors. Thus, given that the first triplet
has m- (1 +T,) - (2 + T,)/2 possibilities, the rest 1 + T triplets each has m - (1 + T,) possibilities. This
contributes

m-(1+T5)-Q+T)/2-[m-(1+T)]"" =m* T - (1 + )T - (2 + T)/2.

Now the proof is complete. O
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It is clear that to represent the complete system scenario, we need 2 + T triplets (C», 75, 1) and a pair
(C1,11). We call this complete scenario/regime representation (R).

3. State estimate and new control signal

3.1. State estimate

In each scenario in (R), we need to represent the system dynamics. Firstly we write a column vector
z, as follows:

. . . T
Zi = [Xi(ix)s Xe—1(ig=1)s ooos Xi1y (ot )s Wiem1, W2y oo, W -1, | (3.1)

where the superscript 7 means transpose, then we get
k k) - k k) .
71 = ACY, 7y, iz + B(CY, 7y, iy, (3.2)

which is an extension of (1.1). Since each entry in (3.1) is necessary to describe the system dynamics
in a certain regime, we are clear that d (as mentioned in Section 1) equals the length of z,. Notice that
if Ty = T, = 0, there is no need to keep any control variable in z; (and z; reduces to x;). The matrices
A, B are explained in the following.

If Cék) > (), that means no control signal is received at time k, we simply write

aii) 0 00 0
10 00 O
01 00 O

A(C;k), T(Zk)’ )= ceeeer eeeenn s ,
0™ 00 O
0 01 0

B(C;k),‘r(zk), i)=[000--- 1%00---]7,

where (x) corresponds to the 7 + 2nd row. Indeed it corresponds to the entry u; in z;,; on the left
side of (3.2). The information Cgk) affects the scenario representation in (R) only and plays a role as
a counter, and it does not alter the system dynamics. 7(2]‘) records the delay in the last received control
packet.

If Cék) = 0, it means at least one control signal is received, then there are two cases. If T(Zk) =0,
u, arrives at the actuator side without delay, then A(0, 0, i) remains the same as A(C(k), T(zk), ix) shown
above, and B(0,0,i;) = [b(ix) 00--- 19 00---] .
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If 7% > 0 while C{ = 0, then

=)
o

a(i) 0 ---b(ip)
10 00 00

A(0, T(2k)’ )= ceeeer ceeeen il o,

B(O,T;k),ik): [000--- 19 00---17,

where the position of b(i;) corresponds to the entry u, __« in ;.
2
On the controller side we have

) (k) k=T k=P-1)
w=-FC. 7. ¢ T i e )z (3.3)

If Cgk) > 0, it means no feedback packet is received at time k, so F = 0 and C(lk) plays the role as a
counter. If Cﬁk) = 0, the controller receives at least one feedback packet among which the most recent
k) _ G-

one is X,__w, together with the last applied control whose index is k — 7" — 7, — 1. Based on the
1
o . . (k—7"-1) dth 1
information Xk__r(lk)’ lk__r(lk)_l, T, and the past controls
. th=r® 1y u " et gy 5 e UWi—1, (34)
k—‘r(l )—72 1 k—T(l )—72 1 +1

the controller is able to estimate the system state x; and sends out a new control variable u;. It is

thus given in the feedback form (3.3). Notice that when Cik) =0, T(lk) is the only random variable: it
determines which past triplet (C v, T(Zj i ;) 1n (R) is received by the controller. The controller also keeps

a record of T(lk) in the last received packet such that any future arrivals with indices older than k — T(lk)

will be discarded.
Recall that if the controller does not receive any feedback packet at present time &, it simply sends
uy = 0. If the controller receives a packet that contains X, with the triplet
1

(k-7P-1) _(k=7®-1) . . BN ®) i i
Cc, ' LT, ' ,i_.w_),and if the time index k — 7, is the newest, it accepts this packet. Then
1

the controller estimates the system state x; and calculates a new control u, that is to be sent.
We need to point out that there is much flexibility in calculating the new control variable, which

might be the most resourceful research in NCS. In this paper we present our control method as
. ) . =rP-1)  k=rP-1) . .
follows. Firstly, based on the most recent information x,__w, C; i ),T(Z n ), i,_.w_,, where k is
1 1

present time, the controller knows that the last applied control to the system was u o G s and
k—1"-1 -1
any controls older than it will be discarded by the actuator, while the controls

k_T(k)_T(k_Tgm_l),uk_T(k)_T(k_T(lm_l)H,--- ,u,_; are either on their way, or have been (possibly partially)
1

applied by time k. Since this sequence of controls were sent out in order, it is reasonable to assume

AIMS Electronics and Electrical Engineering Volume 3, Issue 1, 16-32.



22

that they were or will be applied to the system one by one. A letter with a hat denotes the estimate of
that corresponding quantity. Thus, X, is estimated at
1

Xk—r(lk)ﬂ = a(lk—r(lk))xk—r(lk) + b(lk—fﬁk))uk © (k—‘r(lk)*l)’ (3.5)
TN

and Ky 18 estimated at

X, 0, =a(,_w,)X,_ o, +bl_w, Ju PR (3.6)
1 1 ! ! k-7\" -7, +1
and so forth until u,_; is applied to yield X ey
+T
2
One may notice that the system mode information g5 T _gb0y 57" s lk+ Gy 1 are not known by
. _

2
the controller. So the controller needs to predict a future path of modes.

Based on the probability transition matrix P,, and the received mode i, »_,, one can easily calculate
oy . 1 . .
the probability for each path to occur. We hope to determine one path over which we may estimate

system states up to X 41y SO WE apply a greedy search algorithm as follows. Starting from mode
k+t,

i,_uw_;, we search in P,, the next connected mode i, . sothatd; =~ ; - isthe maximum in the row of
1 1 k=13 =1 k=1
1 1

P,, corresponding to mode i, __w_,. If there is a tie, we just randomly choose one mode. Then starting
1

from i,__w» we search in P, the next connected mode i,_ w,, so that 4; ©l w is the maximum in
1 1 k=137 k=137 +1
1 1

the row of P,, corresponding to the mode i,__«». We repeat this process to obtain a sequence of future
1
modes i PENCH T lk+T(k_T(lk)_1) - With the past controls (3.4) we obtain an estimate for ka(k_Tik)_l)
- 2

via (3.5) and (3.6) recursivel}zf.

3.2. New control signal

To calculate a new control u;, we apply the idea of predictive control, which is also referred to as
receding horizon control (RHC). Firstly we extend the prediction of future modes to get

ik_T(lk), ik—r(l")+1’ EEIN T i I ik—T(lk)+L—1’ 3.7
k+t, -1 k+7,
where L (> T; + T») is the total length of prediction. The future controls G, Gy, ..., 0 e
o &=V-1
k+L—‘r(1 >—‘r2 1 -1
are chosen to minimize the following cost function:
(k)
o A k) _(k=7"=1)
JRpirys 1 ey ST Ty ) (3.8)
k+t, -1
(k)
L—‘r(lk) L—‘r(lk)—‘r(;_T1 _1)—1
_ AT “A AT A
= > K0k R+ Y WL RK i,
e =0
j=T(2 T

where Q, R’s are symmetric positive definite (SPD) matrices. A sequence of future controls are thus
determined and the control u, to be sent equals the first control variable in this sequence, i.e., u; = Q.
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Unlike the usual cost function which is the expected value along all possible future paths, this
cost function (3.8) is calculated along the deterministic path (3.7), and because the optimization is
performed on one path, a huge amount of calculation is saved. To see this in more details, let us
consider a control method which chooses future controls i, Gy, ..., 0 to minimize the

k
kLT
1 2
following expected cost function:
(k)

o 2 (o _(k="=1)

J(Xk+‘r2’ l (k*T(lk)*l) ) T] ’ Tz ) (39)
k+t, -1
®
k— -1
L—‘r(lk) L—T(lk)—T(z i )—1

_ AT A AT A
= E E [xk+jQ(k + ])xk+jlxk_7<lk)] + E uk+jR(k + 0,

RN ! J=0

J=T, +1

where E[-|-] denotes conditional expectation. Since the system has m modes, from k — ‘r(lk) to K+L— T(lk)
the calculation will have to consider m® different paths. Furthermore, this calculation is based on the
assumption that the past controls that have been sent before will be applied to the actuator one by one
in order, which is certainly not guaranteed in NCS with random time delay. Even if this calculation
is carried out to send the new control variable uy, this control may not be applied to the actuator
at expected instant. Therefore, it looks to have no advantage to carry out this heavy calculation to
optimize the expected cost as in classical predictive control.

But for our proposed simplified predictive control method, a natural question remains: what if the
path we predicted does not actually occur? Remember that so far we have not used rolling optimization
which is the true power of RHC. The calculation of future control sequences is repeated at each sample
instant, and if a prediction error occurs, it will be corrected by re-planning at the next sample instant.

Actually we can make this calculation faster by noticing that the control format in RHC with
quadratic criterion function (3.8) is given by linear feedback form, see, e.g., [20]. We borrow the
iterative algorithm in [20] for the calculation of state feedback control in time varying case, then we

obtain
U k=71

llk = —F(ik+T(2k_T(lk)_l)_17 Tl ’T2 )ﬁk_'_?_;k_‘r(lk)_l)' (3.10)
Recall that X ey Was determined by X)_rth ik_T(lk)_l and the past controls (3.4), via (3.5) and
k+T1
(3.6) recursively. Szo we construct the following matrix
0O--- 0 a(/l:k—r(k)) 0O --- 0 b(gk_T(lo)
1 1
[ . 0 1 0
D w, = ’
! | 0 O

where a(ik_T(lk)),b(ik_T(lk)) in the first row correspond to the entries X)_rth and u in z; ,

)
k—‘r<|k)—‘r<k !
respectively. The entry 1 in the second row corresponds to the entry u in z;, and so forth
1

(k)
(k=77 =1)
k=W n +

1

up to the entry u;_;. Then

= TR | T
Dk_T(1k>+1Zk = (Xk_T(lk)Jrl LR W 1)
k=171, +1
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by (3.5).
Now we define
a(’ik—r(lk)ﬂ) b(;k_T(lk)H) 00
0 0 10

k—‘r(lk) +2 = ’

0 0 0 1

D

and get

= X DY T
Dy Dy o2 = X wp 0 0, We-1)
k-1"-1, +2

by (3.6). Continue this process until we reach D

wr_;, SO that
k+T m

2

D
k

--D (3.11)

Zk:ﬁ

(k)
k=77 +1 X

(R =Py
+7, +1,

Substituting (3.11) in (3.10) yields

(k)
_ £ (k) _(k=77"=1)

u; = —F(l (l\'—‘r(lk)—l) . ‘I'1 s T2 ) -D

k+T. -1

2

--D Z.

w1 T =941
+7,

k

A 0 .
Since i is determined by i, _ w_, via (3.7) and C (lk), C;k P well, we obtain by (3.3)
1 1

(k)
(k=737 =1)
1
k+7—2 —

o k) kTP =rP-1)
F(Cg),‘r(l),C2 R S ’lk—‘r(lk)—l)

--D (3.12)

(k)
_ (ky (k=771
= F(lk T ker®

w1y 2T T
+7, -1

)-D
k

+T(2k_r(1k)‘1) '
In the next section we shall investigate the stability of this control algorithm.
4. Stability analysis

Putting (3.3) in (3.2) yields

. : k=r'=1) _(k=r’=1) .
21 = ACY, 7 iz = B(CY, 70 i) - F(CP, 70,6 0 e g (1)

Denote

k--1) _k=rP-1)

_ k) _(k) - (k) __(k) .
H- H(c2 70, €0, 70, T ,zk_T(lk)_l)
) . —t9_1)  k=rP-1) .
= ACP, 70 i) =B, 70 iy - FC®, 70, T e ),
1

then we obtain the following dynamics
i, = H-z, 4.2)
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-rP-1  k=®-1) . )
where H depends on the representation C(k) T(zk),lk, CY‘), (lk),C( i ),T(Z i ), [,_b_,. This result
1

also explains the scale estimate stated in (2.1). Now it can be seen that the system becomes a pure
Markov Jump System where the total number of regimes/scenarios is bounded by (2.1). Let P be the
transition probability matrix for the regimes in the complete representation (R). The sufficient and
necessary stability tests provided in [21] can be directly applied. Before we introduce those tests, we
shall introduce the stability criteria for MJS.

The usual stability criteria on MJSs are mean convergence (MC) and mean square convergence
(MSC). We say that a system is uniformly MC if E(z|zy) — 0 as k — oo for any initial condition
zy and any initial regime, where E denotes expectation. The system is said to be uniformly MSC if
E(||z,|*|zo) — 0 as k — oo for any initial condition z, and any initial regime. Let / denote the identity
matrix, and define

diag(H) - (P’ ® 1),

T"
A diagHoH) - (P’ ® 1), 4.3)

where diag denotes the diagonal block matrix, i.e., the H’s corresponding to different regimes are put
in the diagonal entries. The symbol ® denotes the Kronecker product of two matrices, and d is the
dimension of the dynamical system (the size of z;) in each regime. Then F has size Md X Md and A
has size Md* x Md*, where M is the total number of regimes in the complete representation (bounded
by (2.1)). Let p(-) denote the spectral radius of a matrix, then we have the following result.

Theorem 4.1. The MJS (4.1) is uniformly MC if and only if o(F) < 1 and uniformly MSC if and only
ifp(A) <1

Proof. The proof can be found in [22]. Here we just point out that the matrices ¥ and A are
deterministic, but not stochastic. Also, MSC implies MC but not the other way. m]

In the numerical example we shall test both stabilities.

Remark 4.1. We are able to provide this sufficient and necessary condition on stability, and this is
largely due to the fact that the structure of this NCS has been clearly revealed.

5. Transition probabilities

For the complete representation (R), the transition to the next regime depends on the most recent
regime thanks to the Markovian property of this system, i.e.,

k k k k k+1 k+1 k+1 k+1
(€0, 70,16, O, 70) = (€8, 4, i, €10, D), G-

As we mentioned earlier, the regimes do not have full reachability, but the transition (5.1) can be
decomposed into three parts that are treated independently. The first part iy — i, is determined by
P,,. The other two parts, (C;k),r(zk)) - (C;k“) (k“)) and (CY, 7 k)) - (C(lk“) (k”)) are determined
by P,, Py, respectively. In this way the overall transition matrix P can be constructed.
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6. Numerical example

We consider an example where the objective system, which is a MJS, has two modes (m = 2),

[x,iﬂ] B [1.2 0.2} [xi” . {0.05] "
@ | 2) N
Xer1 I 0f]x

0.1
and
[x,iljl} ~ l0.7 0.2} [x,i”] N 0.11 "
@ |~ 2 N
x5 1 0 x; 0.3

respectively. This system is controlled by a controller through a network with random time delays. It
is assumed that 7; € {0, 1} and 7, € {0, 1,2}. We shall see how big the actual size of this system will
be.

The matrix P,, for the two modes is given as follows:

0.8 0.2
P, = .

0.2 0.8
To construct P,, we need to keep in mind that not all the transitions c®, T(zk)) — (Cgk”), T(2k+1)) are
possible. For instance, the transition (0,0) — (0,0) means that at time k, uy is received, and at time
k + 1, ug,; 1s received with no delay. (0,0) — (0, 1) is impossible because this is a contradiction on
u;. (0,0) — (0,2) has zero probability because at time k, u; is received, and at time k + 1, w;_; is
received (delay of 2) but is discarded since its index is older than k. (0,0) — (1,0) means at time k, u;

is received, and at time k + 1 no control signal is received and the last applied control (which is uy) has
0 delay. The matrix P, is given in the following.

0,00 (0,1 (06,2) (1,0) (1,1) (2,0)
(0,0) 0.7 0 O 03 O 0
0,1) 04 04 O 0 02 0
0,2) 05 02 03 0 O 0 (6.1)
(1,00 03 04 O 0 O 0.3
(1,1) 05 02 03 0 O 0
(2,00 04 02 04 0 O 0

Now that Ty = 1, (Cy, 71) has three possibilities, namely, (0, 0), (0, 1), (1,0), and P, is given below.

06 0 0.4
P, =105 05 0].
07 0.3 0
By the derivation in this paper, we need to keep 2 + T} = 3 consecutive triplets (C,, 7,,i) in the

complete representation. Because the mode information i is independent, we consider 3 consecutive
pairs (C,, 1») that are derived from (6.1). Some sample paths are illustrated below:
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(0,0) — (0,0) — (0,0)
(0,0) — (0,0) — (1,0)
(0,0) = (1,0) — (0,0)
(0,0) —» (1,0) = (0, 1)
(0,0) = (1,0) = (2,0)

and the total number of all possible 3-pair paths is 45. The estimate from (2.1) on this part is given by
(1+T»)* (2 +T,)/2 = 54. With the 3 possibilities on (C;, 7;), there are 45 x 3 = 135 cases. Now that
the system itself has m = 2 modes, then the total number of regimes in the complete representation is
23 x 135 = 1080. That is, in the regime switching representation (4.2) there are M = 1080 regimes for
this dynamical system. Formula (2.1) yields an upper bound of 2° x 54 x 3 = 1296 on M.

The vector z; = [x,(cl) xf) x,(<1_)1 xf_)l Up_y Up—o Ug_3]", sod = 7 (see (4.3)), and Md = 7560 Md*> =
52920. That is to say, the size of the matrix ¥ in (4.3) is 7560 x 7560 and that of A is 52920 x 52920.

Without any control we have p(#) = 1.1861 and p(A) = 1.5237. So the system is not stable in
either sense. Figure 1 shows 10 sample paths of system state without control, and the initial states are
x| =Xxp=2.

Figure 1. System state without control, 10 sample paths.

We choose the prediction horizon L = 20 in RHC, and calculate the feedback law F as in (3.10),
then we obtain F as in (3.12) and further obtain H as in (4.2). Then we calculate the spectral radii p(7)
and p(A) as in (4.3). In our example, p(F) = 0.9195,p(A) = 1.0358. Thus the controlled system
is MC, but not MSC. Figure 2 shows the system state and control of one sample path while Figure 3
shows the results of 10 sample paths.
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Figure 2. State and control of one sample path.
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Time
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Figure 3. State and control of 10 sample paths.

The MIJS stability certainly depends on the transition probabilities among the regimes. For instance,

if we use

and

07 0 03
), P, ={06 04 0f,
0.8 0.2 0

m

_(0.85 0.15
1025 0.75
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08 O 002 0O
05 03 0 0 02 0
06 03 01 O 0 0

PZ = »
04 03 0 0 003
05 02 03 0 0 0
07 02 01 O 0 0

then again, without control we have p(¥) = 1.2301 and p(A) = 1.6022. Figure 4 shows the system
output with no control.

700

600 -

500

400

State

300 [

200 [

100 [

0 2 4 6 8 10 12 14 16 18 20
Time

Figure 4. System state of 10 sample paths without control.

Then we apply the proposed predictive control method and have p(7) = 0.8769, p(A) = 0.9466.
Thus the controlled system is MC as well as MSC. Figure 5 shows the system state and control of one
sample path while Figure 6 shows the results of 10 sample paths.

State

I I I I I I I I I
0 10 20 30 40 50 60 70 80 90 100

Time
0 T
-10 [ \/

-20 [

Control

30 . . . . . . . . .
0 10 20 30 40 50 60 70 80 90 100
Time

Figure 5. State and control of one sample path.
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Figure 6. State and control of 10 sample paths.

7. Conclusions

To overcome the constraints of NCS such as random packet delays/disorders, it is a natural idea
to estimate the system states and send out a control signal that compensates the time delay, hence the
expectation of a better control performance. In this paper we modeled the NCS as a regime switching
system and proposed a simplified predictive control method. The regime estimate (2.1), which is
one of the main contributions of this paper, illustrates that this seemingly small system actually has
a very large scale. The structure of this system has been clearly revealed, and a concise sufficient
and necessary condition on stability is obtained. Numerical examples clearly show the features of this
dynamical system.
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