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Abstract: This study investigated the causal relationships among financial variables associated with
firm value using a Causal Dynamic Bayesian Network (CDBN), which is an extension of the basic
Bayesian network that captures both temporal and contemporaneous causal relationships. The CDBN
model was constructed using a panel dataset of listed manufacturing companies in Korea over a 14-year
period (2009–2022). By visualizing the interactions between financial factors, the model makes it easy
to understand their dynamic and instantaneous relationships, offering valuable insights into corporate
finance. Key findings in the model include evidence of autocorrelation in all dynamic variables, a
lagged feedback loop between the intangible assets ratio and firm value, the widespread impact of the
COVID-19 pandemic on the financial sector, and important causal relationships involving key financial
metrics such as the fixed assets ratio, firm value, and return on assets ratio.
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1. Introduction

Firm value, also known as corporate valuation or enterprise value, represents the total economic
worth of a business entity, encompassing both equity and debt components. It serves as a critical measure
to assess a company’s financial health, growth potential, and overall performance (Dwicahyani et al.,
2022; Suzan et al., 2023). Firm value also functions as a benchmark to evaluate investment opportunities,
inform strategic decisions, conduct mergers and acquisitions, and appraise overall business outcomes.

The determination of firm value depends on various factors, including a company’s future cash flows,
growth prospects, risk profile, and prevailing market conditions. These factors often interact in complex
ways, making their interplay crucial for understanding and predicting firm value. A comprehensive

https://www.aimspress.com/journal/dsfe
https://dx.doi.org/10.3934/DSFE.2025001


2

analysis that accounts for these interactions empowers investors and management to optimize firm value
and make informed, strategic decisions essential for effective management.

Regression models have been widely employed in studies examining firm value (Cheng et al., 2010;
Sunarsih et al., 2019; Hirdinis, 2019; Ispriyahadi and Abdullah, 2021; Siregar et al., 2023). However,
these models typically rely on predefined functional forms and require the prior specification of both
response and explanatory variables. Additionally, regression models often face challenges in identifying
complex association terms among explanatory variables. Moreover, uncovering causal relationships
using regression models is inherently challenging without relying on strong assumptions, such as the
presence of randomized trials or the use of instrumental variables.

Bayesian Networks (BNs) have recently gained significant attention as a powerful analytical method
for handling highly complex interdependencies across various disciplines, including economics,
medicine, biology, and environmental science. A BN is a directed probabilistic graph that connects
related variables with edges, where these connections represent conditional dependencies between the
variables (Pearl, 1988). By employing graphical structures, BNs provide a visual representation of
dependencies, enabling intuitive interpretation and facilitating a deeper understanding of underlying
dynamics. Foundational work on BNs is attributed to Pearl (1988), and recent works that provide
comprehensive summaries of BNs and their applications include Friedman et al. (1997), Koski and
Noble (2011), and Scutari and Denis (2021).

BNs provide significant advantages over traditional regression methods, particularly in complex
and uncertain contexts such as firm value analysis. First, BNs do not require predefined functional
forms, allowing them to uncover interdependencies and key interactions among variables directly
from the data. Second, BNs can provide a formal framework for causal reasoning, enabling deeper
insights into how changes in one variable can propagate through the network to influence firm value.
This capability is crucial for realistic scenario analyses, allowing analysts to test various potential
conditions and observe their effects on firm value comprehensively. Third, BNs can incorporate expert
knowledge, such as industry-specific risks or forward-looking insights. This is especially valuable
when historical data is limited or when market conditions are expected to deviate from past trends
(Madden, 2009; Liu and Motoda, 2012; Oh et al., 2022; Jo et al., 2023). By integrating data-driven
insights with expert knowledge, BNs provide a flexible and insightful framework for firm value analysis,
supporting more accurate and resilient valuations in complex financial contexts. Finally, BNs handle
missing data naturally through probabilistic reasoning, enabling robust analysis even in incomplete
datasets. In contrast, regression models typically address missing data through imputation techniques
or by excluding incomplete cases, which can introduce bias or reduce the sample size. This inherent
advantage of BNs ensures a more reliable analysis in data-constrained scenarios.

Given these advantages, BNs have gained considerable attention in recent years for their application
in firm value analysis (Ali and Anis, 2012; Sun, 2015; Sun and Park, 2017; Teles et al., 2020; Cao et al.,
2022; Chan et al., 2023). However, despite their growing prominence, most existing research overlooks
the temporal dependencies and causal structures in this domain.

Firm value is influenced by factors that are typically observed over consecutive time periods and often
exhibit temporal dependencies. In other words, the value at a given time point is frequently affected by
values from preceding periods (Campbell et al., 1997; Tsay, 2010; Enders, 2015). Considering these
temporal dependencies is essential for understanding how these factors evolve and interact dynamically
over time.
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Causal discovery offers significant advantages in understanding complex systems by identifying
underlying cause-and-effect relationships rather than relying solely on correlations. This enables better
prediction, explanation, and intervention strategies. By revealing the mechanisms driving observed
data, causal discovery enhances decision-making, supports the development of effective policies, and
enables targeted interventions. Researchers are particularly interested in identifying causal structures
from observational data rather than experimental data, because observational data often comes from
naturally occurring events or retrospective studies, while experimental data is often difficult to obtain in
real-world settings.

This study investigated the causal relationships among factors influencing firm value, while
accounting for temporal dependencies. To achieve this, a Causal Dynamic Bayesian Network (CDBN)
model was developed using panel data from listed manufacturing companies in Korea, spanning the
period from 2009 to 2022.

Dynamic Bayesian Networks (DBNs) build on traditional BNs by incorporating temporal
dependencies, enabling the identification of both contemporaneous and temporal relationships among
variables. This allows DBNs to capture interactions at a single time point as well as the evolution of
these relationships over time (Dagum et al., 1992). CDBNs further extend the DBN framework by
explicitly modeling causal relationships. In CDBNs, edges represent cause-and-effect relationships,
facilitating the identification of both within-time and between-time causal pathways.

The remainder of this paper is organized as follows: Section 2 describes the data used in this
study. Section 3 outlines the theoretical foundation and structure of the CDBN. Section 4 details the
methodology for constructing the CDBN model. Section 5 presents the results, including the final
CDBN model and the identified causal relationships. Section 6 concludes the study, and Section 7
discusses its limitations and suggests directions for future research.

2. Data

The data used in this study is a panel dataset comprising 11 variables from 227 listed manufacturing
companies in Korea, observed over 14 years (2009–2022). Annual financial statement data and market
capitalization were sourced from DeepSearch, a corporate data platform (https://www.deepsearch.com/).
Foreign ownership percentages were extracted from the Korea Exchange (KRX) Information Data
System (http://data.krx.co.kr/contents/MDC/MAIN/main/index.cmd), capturing values from the last day
of trading each year.

Among the various approaches to measuring firm value, Tobin’s Q (Tobin, 1969) is the most widely
used metric. Tobin’s Q is defined as the ratio of a company’s market value to its replacement cost or
book value. A Tobin’s Q greater than 1 indicates that the company is overvalued, while a value less than
1 suggests that it is undervalued. In this study, firm value was measured by considering the market value
of a company as the sum of its market capitalization and total debt. Tobin’s Q was then calculated as the
ratio of this sum to the company’s total assets.

Financial variables related to firm value were selected based on the previous research (Francis and
Schipper, 1999; Pástor and Pietro, 2003; Rountree et al., 2008; Sun and Park, 2017). The selected
variables are Sales growth rate (Growth), Return on assets ratio (ROA), Tangible assets ratio (TA),
Company leverage (LEV), Liquidity (LIQ), Fixed assets to long-term capital ratio (FA), Firm size (Size),
Foreign ownership ratio (FOR), Intangible assets ratio (ITA), and Depreciation charge (DC). These
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variables reflect a company’s sales growth, profitability, stability and liquidity, capital structure, and
other characteristics.

Additionally, numerous studies have highlighted the significant impact of the Coronavirus Disease
2019 (COVID-19) on the financial sector (Afrina et al., 2020; Hertati et al., 2020; Mishra and Mishra,
2020). To incorporate the effects of COVID-19 in the analysis, a dummy variable, COVID-19, was
introduced to differentiate between the pre-COVID period (2009–2019) and the post-COVID period
(2020–2022).

The final dataset comprises observations for 11 variables across 227 companies over 14 years, along
with the COVID-19 dummy variable. Table 1 provides detailed descriptions, means, and standard
deviations of these variables.

Table 1. Descriptions and summary statistics of the variables.

Name Description Formula Mean SD
COVID-19 Before/After COVID-19 0=(Year<=2019), 1= (Year>=2020) - -
Size Logarithm of Total Assets ln(Total Assets) 26.7294 1.4735
TobinsQ Tobin’s Q (Market Capitalization+Total Debt)/Total Assets 1.1002 0.8804
DC Depreciation Charge Depreciation/Total Assets 0.0032 0.0050
LEV Leverage Total Debt/Total Capital 0.9366 1.4763
LIQ Liquidity Cash&Cash Equivalents/Total Assets 0.0535 0.0577
TA Tangible Assets Ratio Total Tangible Assets/Total Assets 0.3226 0.1692
ITA Intangible Assets Ratio Total Intangible Assets/Total Assets 0.015 0.036
Growth Growth Rate of Sales (Current Sales - Previous Sales)/Previous Sales 0.0007 0.0039
ROA Return on Assets Ratio Operating Profit/Total Assets 0.0346 0.0689
FOR Foreign Ownership Number of Foreign Shares/Total Number of Shares 0.0971 0.1282
FA Fixed Assets Ratio Fixed Assets/Long-term Capital 0.8495 0.3396

3. Causal dynamic bayesian network

A BN is a machine learning technique that models relationships between variables as a probabilistic
graph, consisting of nodes and directed acyclic edges. These edges represent dependencies between
variables, based on the concept of conditional independence (Pearl, 1988). In a Directed Acyclic Graph
(DAG), each node corresponds to a variable, while the edges illustrate the dependencies, with their
presence and direction determined by conditional probabilities.

The starting point of a directed edge is referred to as the parent node, and the receiving end is called
the child node. If the i-th node in a BN represents variable Xi for i = 1, ..., n, the parent set Pa(Xi) of Xi is
the set of variables from which edges originate and point towards Xi. Then the joint probability distribution
of X = (X1, ..., Xn) can be represented by Equation (??) according to the product rule of probability.

P(X1, ..., Xn) =
n∏

i=1

P(Xi|Pa(Xi)) (1)

BNs use Equation (??) to visually display the relationships between variables through DAGs, making
it easy to interpret the relationships.

A DBN is an extension of a traditional (static) BN to encounter temporal dependencies in dynamic
variables observed over time. Developed by Dagum et al. (1992), DBNs have been applied to various
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time series data, including those by Çambaşı et al. (2019), Chang et al. (2023), and Lee and Kwon (2023).
To effectively model temporal dependencies, DBNs rely on several key assumptions: 1) Discrete

Time Slices: Data is observed at distinct, discrete time points, enabling the analysis of temporal patterns
and trends; 2) Markov Property: Variables at each time point are conditionally independent of all earlier
time points, given the variables at the immediately preceding time point. This assumption simplifies the
network structure and computational requirements; 3) Stationarity: The relationships among variables
within a time slice and the transition probabilities between consecutive time slices are assumed to remain
constant over time, further streamlining the model’s complexity.

Under the aforementioned assumptions, a DBN comprises two components: a static BN (B0) and

a transition network (
→

B) (Li et al., 2013). The static network B0 represents intra-slice dependencies,
capturing contemporaneous relationships among variables within the same time slice t. The transition

network
→

B models inter-slice dependencies, describing how variables at time t − 1 influence those at
time t and capturing temporal (lagged) effects. Together, these components allow a DBN to effectively
model both contemporaneous and temporal dependencies.

A CDBN builds on the DBN framework by explicitly modeling causal relationships. In a CDBN,
edges represent causal mechanisms rather than mere statistical dependencies, integrating causal
discovery into the DBN structure. This enhancement allows for a deeper understanding of how changes
in one variable causally affect others, offering clear explanations for observed outcomes and improving
the model’s interpretability.

4. Construction of a causal dynamic bayesian network model

This section describes the process of constructing the CDBN model using panel data from listed
manufacturing companies in Korea.

To infer the structure of the CDBN from the data, the study employed the PC algorithm, originally
developed by Spirtes and Glymour (1991) and Spirtes et al. (2000). The PC algorithm is a constraint-
based method widely used to uncover the causal structure of a BN.

The key assumptions of the PC algorithm are as follows: i) All relevant variables are included
in the dataset, ensuring that there are no hidden or unmeasured confounding variables that influence
relationships among the observed variables (causal sufficiency); ii) Given the structure of the causal
graph, each variable is conditionally independent of its non-descendants, given its parents (causal
Markov condition); iii) the observed independencies in the data must align with the independencies
implied by the underlying causal structure (faithfulness).

A brief outline of the PC algorithm is as follows (Spirtes and Glymour, 1991; Spirtes et al., 2000):

• Start with a fully connected graph: Start with an undirected graph where each node represents a
variable, and every pair of nodes is connected.
• Skeleton formation: Iteratively test each pair of nodes for conditional independence, given various

subsets of adjacent nodes (conditioning sets). Remove an edge between two nodes if they are
conditionally independent. After testing all possible pairs, the remaining undirected graph
(skeleton) represents the dependencies between nodes.
• Collider orientation (V-Structure): For any three nodes X, Z, and Y , where X and Yare not directly

connected but share a common neighbor Z (i.e., the structure X−Z−Y), if X and Y are conditionally
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independent given any subset that does not include Z, then Z is a collider. The edges are directed
as X → Z ← Y , forming a V-structure.
• Propagate edge directions: Orient the remaining edges based on constraints to maintain a DAG

structure and prevent the formation of new colliders. Iterate until no further orientations are
possible without creating cycles or violating the conditional independencies inferred from the data.

The data used in this study includes a dummy variable, COVID-19, which indicates the outbreak of
the COVID-19 pandemic along with a panel data consisting of observations for 11 variables from 227
companies in Korea over 14 years (2009–2022). To construct a CDBN for this panel data, the data was
reshaped to ensure that observations for each dynamic variable were available at two consecutive time
points, t0 and t1, for each company (Scutari et al., 2024).

Let Xi j be the jth variable for the ith company, with 14 observations corresponding to the years
2009-2022. For each Xi j, new variables Xi jt0 and Xi jt1 were created: Xi jt0 is a collection of observations
of Xi j from the years 2009-2021 and Xi jt1 from the years 2010–2022. This restructuring aligns each
observation of Xi j at t0 with the corresponding observation at t1, The new data has variables at time t0

and t1, enabling the construction of edges from the previous time point to the current time point. The
PC algorithm can then be applied to both the static (intra-slice) and transition (inter-slice) components
of the DBN, facilitating the identification of causal relationships within and across time slices.

To ensure the validity of the causal structure, the following constraints were applied during the
construction of the causal network: i) Edges from any financial variables to COVID-19 were prohibited,
as financial variables cannot causally influence the occurrence of COVID-19; ii) To maintain temporal
causality, edges from t1 to t0 were disallowed, ensuring that future events do not exert any influence on
past events; iii) Variables at time t0 were not permitted to influence each other, reflecting an assumption
of no contemporaneous causation within this timeframe; iv) Variables at time t1 were allowed to
influence each other, accounting for potential contemporaneous causation in this timeframe.

The PC-Stable algorithm (Colombo and Maathuis, 2014), a robust variation of the original PC
algorithm, was used to improve the consistency and reliability of structure learning (Kalisch et al., 2024).
The algorithm was implemented using the pc.stable function from the R package bnlearn (Scutari, 2023).

A single dataset does not provide sufficient information on the reliability of the relationships between
nodes in the network. To address this limitation, bootstrap aggregation (bagging) was applied. For each
bootstrap sample, 181 companies (approximately 80% of the dataset) were randomly selected, with
replacement, and the variable order was shuffled to increase sample variability (Scutari et al., 2024).
The bootstrap sampling was repeated 1500 times and the CDBN structure was learned from each of
the samples. From the resulting 1,500 CDBN networks, edge strength and direction were computed
for each edge. The edge strength is the relative frequency of the edge’s presence across the networks,
regardless of direction. The edge direction is the relative frequency of the edge’s specific direction
across the networks. Both metrics range from 0 to 1, with values close to 1 indicating strong support for
the presence or direction of the edge (Friedman et al., 1999).

Using model averaging, a consensus network was constructed by including only edges with edge
strengths exceeding a specified threshold to eliminate weak or spurious connections and retain only
robust relationships. Higher thresholds correspond to sparser networks. Following the approach by
Scutari and Nagarajan (2013), the threshold was determined as the edge strength significance level that
minimized the L1-norm between the cumulative density function (CDF) of the observed edge strengths
and its asymptotic counterpart. For this study, a threshold of approximately 0.5 was applied.
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The final consensus network, created using the averaged.network function in the R package
bnlearn, includes robust causal relationships supported by the data. The edge strengths and directions
for the final CDBN are presented in Table 2.

Table 2. Edge strengths and directions in the final CDBN.

inter-year intra-year
From(t − 1) To(t) Strength Direction From To Strength Direction
Size Size 1.000 1.000 COVID-19 TobinsQ 0.925 1.000
TobinsQ TobinsQ 1.000 1.000 COVID-19 DC 0.987 1.000
TobinsQ ITA 0.829 1.000 COVID-19 LEV 0.610 1.000
DC DC 1.000 1.000 COVID-19 LIQ 0.582 1.000
LEV LEV 1.000 1.000 COVID-19 ITA 0.839 1.000
LIQ LIQ 1.000 1.000 COVID-19 Growth 0.962 1.000
TA TA 1.000 1.000 COVID-19 ROA 0.697 1.000
ITA TobinsQ 0.713 1.000 COVID-19 FA 0.535 1.000
ITA ITA 1.000 1.000 TobinsQ LIQ 0.670 0.555
Growth Growth 0.825 1.000 LIQ FA 1.000 0.685
ROA ITA 0.553 1.000 TA FA 0.975 0.884
ROA ROA 1.000 1.000 Growth ROA 0.920 0.731
FOR FOR 1.000 1.000 ROA DC 0.783 0.512
FA FA 1.000 1.000 FOR ROA 0.636 0.847

LEV FA 1.000 0.819

The flow chart of the CDBN model development process is shown in Figure 1.
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Panel Data 

227 Companies
11 dynamic variables
1 static variable    

14 years (2009~2022)

n=227 Companies
p= 11*2+1=23 variables

Bootstrap sample 1 Bootstrap sample N. . . . .

Bootstrapping

Structure Learning

Final CDBN Model

Model Averaging

. . . . .

Reshape the data

CDBN Model 1 CDBN Model N

Figure 1. Flow chart of the CDBN model development process.
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5. Results

The constructed CDBN model, displayed in Figure 2, consists of (a) inter-year (temporal) causal
relationships and (b) intra-year (contemporaneous) causal relationships. In (a), autocorrelation effects
are represented by dashed lines to distinguish lagged effects between different variables. In (b), two
edges, one between LIQ and TobinsQ and another between ROA and DC, have edge directions close
to 0.5. This indicates that, while these pairs of variables are related, the cause-and-effect relationships
between them are ambiguous. To represent this uncertainty in directionality, these edges are depicted as
blue bi-directional lines.

Size

TobinsQ

DC

LEV

LIQ

TA

ITA

Growth

ROA

FOR

FA

Size

TobinsQ

DC

LEV

LIQ

TA

ITA

Growth

ROA

FOR

FA

(a) Inter−year

𝑡 − 1 𝑡

FOR

LIQ

ROA

FA

Growth

DC

TobinsQ

ITA

COVID19

LEV TA

(b) Intra−year

Size

Figure 2. The Causal Dynamic Bayesian Network structure of financial variables relevant to
firm value for listed manufacturing companies in Korea consists of (a) inter-year (temporal)
causal relationships and (b) intra-year (contemporaneous) causal relationships. In (a),
autocorrelation effects are represented by dashed lines, while in (b), edges with directionality
close to 0.5 are displayed as blue bi-directional lines.

Figure 2 highlights that all dynamic variables exhibit autocorrelation effects. It is well known that in
most financial variables, past values tend to influence future values due to market inertia, information
dissemination processes, and investor reactions.

Notably, a lagged feedback loop exists between ITA and TobinsQ: ITA positively influences TobinsQ
in subsequent year, which, in turn, elevates ITA at the following year, thereby creating a virtuous
cycle. ITA is a non-physical asset that provides value to a company, such as research and development
(investments in innovation and new product development), intellectual property (patents, trademarks,
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copyrights), goodwill, brand recognition, and proprietary technologies.
The lagged feedback loop between intangible assets and TobinsQ may arise because of the delayed

impact of intangible investments on both financial statements and market value. When firms invest in
intangible assets, accounting conservatism requires these costs to be expensed immediately rather than
capitalized. This keeps book value low and initially suppresses TobinsQ (Chen and Srinivasan, 2024;
McNichols et al., 2014). Over time, as these intangible investments begin to generate measurable returns
- such as increased revenues, competitive advantage, or market share - the firm’s market value rises,
which eventually lifts TobinsQ. This adjustment occurs gradually, introducing a temporal lag between
the time of investment and the point at which TobinsQ reflects the full value of these intangibles.

An increase in TobinsQ, due to the market recognizing the value of intangible assets, may prompt
companies to focus on intangible growth, leading to further improvements in intangible assets. This
cycle can create a feedback effect where higher TobinsQ stimulates investment in intangibles, which, in
turn, could elevate TobinsQ further.

In“New Economy” firms - companies focused on technology, digital services, biotech, and other
sectors driven by intangible assets - the lagged feedback effect between intangible assets and TobinsQ
can be pronounced. This is because these firms often rely heavily on intangible assets, which are
underreported in financial statements (Core et al., 2003).

The lagged feedback loop between ITA and TobinsQ suggests that the market often takes time
to recognize the value of intangibles, impacting investment strategies for various stakeholders. For
investors, this effect presents an opportunity to identify and invest in undervalued firms with significant
intangible assets, anticipating future gains as market recognition catches up. Corporate managers can
use this insight to justify strategic investments in intangibles such as R&D and brand-building, even
if these do not immediately boost market value, while enhancing transparency around these assets to
reduce the recognition lag. Policymakers, recognizing the limitations of current accounting standards,
may consider reforms to improve intangible asset reporting and introduce incentives that encourage
firms to invest in intangibles, fostering innovation and supporting knowledge-driven sectors. This
understanding promotes a balanced approach, focusing on sustainable long-term growth rather than
short-term gains.

Valuation of the intangible assets has been a widespread topic of interest and many studies revealed
the positive effect of intangible assets to firm value. See Nagaraja and Vinay (2016), Ocak and Findik
(2019), Tsai et al. (2012), Glova and Mrázková (2018), Mohammed and Al-Ani (2020), among others.
The lagged feedback loop between ITA and TobinsQ found in this study goes in line with the results of
previous research.

Additionally, the study reveals a lagged effect of ROA on ITA. A higher ROA in the current year
leads to an increase in ITA in the following year. This indicates that as companies experience better
asset utilization and profitability, they are more likely to reinvest those returns into intangible assets
after a period of financial evaluation and strategic decision-making.

The intra-year structure, depicted in Figure 2(b), underscores the broad impact of COVID-19 on the
financial sector. COVID-19 directly or indirectly influences all variables except Size, FOR, and TA.
Notably, the distributions of Size, FOR, and TA remained nearly identical between the pre-COVID and
post-COVID periods. Furthermore, these variables exhibit high autocorrelation coefficients—0.995
for Size, 0.964 for FOR, and 0.942 for TA—indicating that their values from the previous year almost
entirely determine their current-year values. As a result, given their previous-year values, these variables

Data Science in Finance and Economics Volume 5, Issue 1, 1–18.



11

need no other parent nodes in the model, with their only parent being their respective value from the
previous year.

Size

TobinsQ

DC

LEV

LIQ

TA

ITA

Growth

ROA

FOR

FA
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(a) pre−COVID

𝑡 − 1 𝑡
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TA
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ROA

FOR

FA

(b) post−COVID

𝑡 − 1 𝑡

Figure 3. The inter-year (temporal) structures of the pre-COVID and post-COVID CDBN
models. The autocorrelation effects are represented by dashed lines.

FOR

LIQ

ROA FA

Growth TobinsQITA

LEV TA

(a) pre−COVID

LIQ

ROA FADC

LEV

(b) post−COVID19

Figure 4. The intra-year (contemporaneous) structures of the pre-COVID and post-COVID
CDBN models. Isolated nodes are omitted.
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To examine the impact of COVID-19 in greater detail, particularly its influence on the causal network
structure among financial variables, the dataset was divided into pre-COVID (2009–2019) and post-
COVID (2020–2022) subsets, and separate CDBN models were constructed (Figures 3 and 4). Figure 3
illustrates the inter-year structures of the pre-COVID and post-COVID CDBN models, while Figure 4
depicts their intra-year structures. Figure 3 illustrates that, while autocorrelation effects are maintained,
the lagged feedback loop between ITA and TobinsQ, as well as the lagged impact of ROA on ITA,
are absent in the post-COVID model. Similarly, Figure 4 shows that only the edges from LEV to FA
and LIQ to FA persist in the post-COVID model. These findings suggest that most of the previously
observed relationships have disappeared during the pandemic, highlighting the significant disruption to
existing financial structures caused by COVID-19.

One notable new relationship in Figure 4 is the influence of ROA on DC during the pandemic.
This likely reflects firms’ strategic adjustments to their depreciation practices in response to declining
profitability. For instance, firms experiencing lower profitability may have accelerated depreciation to
reduce taxable income or align asset book values with diminished expectations for their utility in an
uncertain economic environment.

The contemporaneous relationships illustrated in Figure 2(b) identify two distinct groups of
variables—(LIQ, LEV, FA, TA, TobinsQ) and (ROA, Growth, FOR, DC)—that are linked exclusively
through COVID-19. This indicates that the two groups are conditionally independent, given the
influence of COVID-19 in the same year. The first group comprises key financial variables—LEV, LIQ,
TA, FA, and TobinsQ—that provide critical insights into a firm’s financial stability and operational
efficiency. The edge directions in Table 2 offer strong evidence that LEV and TA influence FA, and
moderate evidence that LIQ influences FA. Additionally, while TobinsQ and LIQ are related, the causal
direction between the two remains unclear, as the edge direction is approximately 0.5. In the second
group, Growth and ROA capture performance and profitability, while DC and FOR influence financial
statements and investor perceptions. The edge directions in Table 2 provide moderate evidence that
Growth and FOR influence ROA. However, the causal relationship between ROA and DC remains
ambiguous, as the edge direction is also close to 0.5.

Finally, Size (the logarithm of total assets) is not connected to any other variables. In this study, all
asset-related variables are expressed as ratios relative to total assets, inherently capturing the influence
of total assets in their values. The correlation coefficients between Size and other variables are close
to zero, except for FOR, which has a correlation coefficient of approximately 0.5 with Size. However,
both Size and FOR show strong autocorrelation effects, with autocorrelation coefficients close to 1. The
dominant influence of their previous-year values mitigates the connection between Size and FOR in the
current year.

6. Conclusions

We have developed a CDBN model to uncover and visualize the temporal and contemporaneous
causal relationships among financial variables associated with firm value, using data from listed
manufacturing companies in Korea. The CDBN structure revealed strong evidence of autocorrelation
across all dynamic variables, as well as a lagged feedback loop between intangible assets (ITA) and
TobinsQ (TobinsQ), and a lagged effect of return on assets (ROA) on ITA.

The model also highlighted the extensive impact of the COVID-19 pandemic on the financial sector;
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key factors influencing important financial metrics such as FA, TobinsQ, and ROA; and two distinct
groups of variables—(LIQ, LEV, FA, ITA, TA, TobinsQ) and (ROA, Growth, FOR, DC)—connected only
through COVID-19 and the previous year’s ROA. These findings offer a clear understanding of the dynamic
and instantaneous interactions between financial variables, shedding light on the complex relationships.

The primary focus of this study was to explore the interrelationships between variables associated
with firm value, rather than building a predictive model for firm value. Accordingly, we did not
distinguish between dependent (target) and independent (explanatory) variables. Instead, we examined
the joint causal dynamics among all variables. This approach offers great flexibility, as any variable can
be treated as a target or explanatory variable depending on the context of the analysis. For example, if
TobinsQ is the variable of interest, the effects of its ancestor nodes, which directly or indirectly influence
TobinsQ (such as COVID-19; previous year’s ITA and TobinsQ), can be inferred using the CDBN model.
Likewise, if ROA is the focus, the same CDBN model also allows inference on the effects of its ancestor
nodes (COVID-19; previous year’s ROA; Growth; FOR).

The process of constructing the CDBN model proposed in this study can be tailored for specific
inference tasks by selectively blocking or enforcing certain edges within the network. If the goal is to
assess the influence of all other variables on a specific variable, that variable can be designated as the
target, while the remaining variables serve as explanatory variables. In this setup, the target variable is
treated as an end node with no child nodes, and the explanatory variables are considered as potential
parent nodes. As an illustration, we constructed a CDBN with TobinsQ as the target variable and all
other variables as explanatory variables, while blocking any edges from TobinsQ to other variables in
addition to the edge direction constraints described in Section 4. Using the same dataset, the resulting
CDBN model is identical to the one shown in Figure 2, except that the direction of the edge between
LIQ and TobinsQ is reversed, pointing from TobinsQ to LIQ.

7. Limitations and directions for future research

To the best of our knowledge, the CDBN model is the first to assess both temporal and
contemporaneous causal relationships between financial variables related to firm value. However, it is
essential to acknowledge several limitations and caveats associated with this research. First, we advise
readers against over-generalizing our findings, as the dataset used pertains to the manufacturing sector
in Korea. Although the CDBN model proposed here can be applied to datasets from other countries,
contexts, or sectors, the resulting causal relationships may vary depending on the financial
environments from which these datasets were derived. Second, the inferred causal relationships in this
study are valid only under the assumption that all relevant causes are represented within the graph and
that no unmeasured confounders exist to explain the relationships between any two observed variables.

Future research could focus on expanding the dataset to include multiple countries and sectors,
facilitating a more comprehensive analysis of causal network structures related to firm value and its
determinants. Another promising direction is to incorporate a broader range of firm characteristics,
as suggested by Green et al. (2017), along with key macroeconomic variables such as interest rates,
exchange rates, and unemployment rates.

To assess the predictive performance of the CDBN model relative to a standard regression model for
panel data, we used data from 2015 to 2021 to build both models and predicted TobinsQ for 2022. The
CDBN model achieved a mean squared prediction error of 0.184, which was significantly lower than the
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0.379 of the regression model. Although this is a relatively simple comparison, it highlights the CDBN
model’s superior predictive accuracy, likely due to its ability to capture essential interactions within
the data. A more thorough evaluation of the CDBN model’s performance, particularly in comparison
with Structural Equation Models and other machine learning methods, is recommended as a valuable
direction for future research.
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