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Abstract: The pursuit of higher returns has led to a growing interest in factor timing as a strategy to
enhance portfolio returns. Momentum is a popular factor, which involves buying securities that have
shown consistent price appreciation over the past 3 to 12 months or past few years, with the expectation
that the trend will continue and reducing exposure to those that consistently declined. An important part
of a factor timing strategy is in the portfolio optimization process. This article aimed to first construct a
large capitalization pure momentum portfolio, which included a dynamic stringent portfolio construction
process criteria for selecting stocks estimated from historical data. Second, as a part of the portfolio’s
risk management strategy, the Kalman filter was applied to the historical performance of this portfolio.
Lastly, the ARIMA forecast was used to estimate expected performance and the confidence intervals.
The empirical results showed that this pure equity momentum factor timing framework with the Kalman
filter together with the ARIMA (autoregressive integrated moving average) forecasting methodology was
iterative and incorporated new information as it became available and further enhanced the monitoring
and rebalancing process. This adaptive approach enabled the portfolio to capitalize on time-varying
return anomalies as they occured.
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1. Introduction

Momentum is a popular factor, which involves buying securities that have shown consistent price
appreciation over the past 3 to 12 months or past few years, with the expectation that the trend will
continue and reducing exposure to those that consistently declined. This factor takes into consideration
the historical trends of stocks, as documented by Jegadeesh and Titman (1993), where they examined a
strategy of buying stocks that performed well in the past using a sample that spanned over a period of
24 years (from 1965 to 1989) and found that past winners continued on a winning streak and past losers
continued on a losing streak; buying past winners was rewarded with outperformance which was not
attributable to systematic risk and investors’ reactions to certain stock factors. Their results also imply
that there is a compensation for investors’ slow reaction to factor prices, where short-term underreaction
and long-term overreactions might play a role in the prices of stocks, especially in the short-term (Hong
and Stein, 1999).

Factors have a long history and have evolved since the introduction of the capital asset pricing model
(CAPM) by William Sharpe (1964) and John Lintner (1965), where it was believed that only the market
factor was the driver of investment returns. The CAPM set the groundwork for further developments
of factor models, which later led to the arbitrage pricing theory (APT) by Stephen Ross in 1976. The
APT is an alternative model to the CAPM, and it is one of the foundational models which showed that
investment returns could be modeled by more than one factor, due to the existing linear relationship
between expected investment returns and other response variables (factors) (Huberman and Wang, 2005).
This further led to the Fama and French (1992) three-factor model, an expansion of the earlier CAPM,
which included size, value, and market excess returns. Carhart (1997) further expanded on the Fama
and French three-factor model by adding momentum as a fourth factor.

Timing strategies aim to limit risk, minimize losses and maximize returns by limiting exposures to
certain stocks with the consideration of future market trends. Treynor and Mazuy (1966) conceptualized
the idea of market timing, where they attribute a manager’s skill to be a contributing factor to the success,
or lack thereof, of obtaining favorable returns. The expectations of the market factor increasing or
decreasing would lead to the manager adjusting the portfolio positions by either increasing exposure or
decreasing exposure based on market expectations. They included 57 mutual funds in the study, and
ultimately found that at the time, none of the funds were successful at outperforming the market. The
main difference between market and factor timing is that a market timing strategy includes the overall
market trend analysis, and factor timing is rule based and focuses on a portfolio’s factor exposure.

Equity factor timing aims to potentially increase returns by buying or holding equity factors that are
expected to outperform and selling those that are expected to underperform, essentially taking advantage
of market anomalies and inefficiencies. This is an important part of factor investing, presenting unique
opportunities to generate alpha. Though timing can be a challenging endeavor, in this article the Kalman
filter is applied as an iterative aspect of the process.

This article starts with the introduction of momentum and factor timing, followed by factor timing
overview in Section 2. Methodology is in Section 3, the framework is in Section 4, the empirical results
are in Section 5, the transaction cost is in Section 6, and finally, the conclusion is in Section 7.
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2. Factor timing overview

There is a growing interest in factor timing as a strategy to enhance portfolio returns. This is
supported by a growing level of research consisting of varying opinions and findings, where some find
factor timing to be an effective strategy and others find it does not produce abnormal returns, especially
when faced with high transaction costs and market movements amongst other factors that impact returns.
Traditional momentum strategies may not yield the desired returns, and after Gupta and Kelly (2019)
studied momentum extensively to prove that factors can be timed based on recent historical performance,
they found that adding factor timing as a strategy was beneficial with positive returns. Further comparing
the returns from a traditional momentum strategy showed that adding time series momentum factor
timing into a portfolio as a strategy also yielded better results. Momentum equity factor timing is based
on the assumption that during market upswings this strategy will outperform, enhance portfolio returns,
and reduce risk.

A portfolio manager’s skill can be attributed to returns, leading to the assumption that skill is also an
important aspect of a successful factor timing strategy. For example, Osinga et al. (2020), found that
hedge fund managers are better suited for incorporating factor timing as a strategy, which is the main
contributor to positive factor timing returns. Daniel et al. (1997) analyzed returns from 125 passive
portfolios in comparison to their respective benchmarks and found that factor timing was unsuccessful
and it might not be a strategy that could be applied successfully to reach optimal results for passive
funds, noting that the manager skill would be the main contributing factor if funds produce desired
results. Aiken and Kang (2023) used a holdings-based approach to assess the impact a manager’s
skill might have on the performance of a fund. This was used for portfolio selection and factor timing
skills, and found that the manager’s skill plays an important role in the generation of alpha. Clare et al.
(2022) found that experience may be a contributing factor to timing returns, as managers that combine
experience with skill are better equipped to bring positive portfolio returns than managers who rely
solely on skill. Another contributing factor is that a manager with a stake in the fund tends to be more
careful when managing the fund, as this will directly affect their income. Hence, skill with experience is
much better than skill without much experience.

However, an overreliance on a manager’s skill might be detrimental and will have the opposite
results, as shown by Drew et al. (2005), where the portfolio selection process, accuracy of forecasting
future returns and their factor timing abilities were assessed. The reliance on managers’ skills produced
disappointing results, and might not be beneficial to the general investor. Forecasting based on past
performance is not the best way to estimate future returns, especially if the time period is short. The
relationship between portfolio construction and stock selection process does not result in a successful
factor timing strategy, implying that the manager’s stock selection ability is not directly linked to a
successful factor timing strategy. Hedge funds are different from passive investments because they
are actively managed, whereas, passive investment strategies have restrictive rules compared to active
management, especially how frequently trading can occur within a portfolio. Davies et al. (2019) took a
passive investment equity momentum and value factor strategies approach, which are widely popular
especially for the ease of accessibility and affordability, and found that the Sharpe ratio decreased
significantly for both momentum and value strategies within the passive investment space. Due to the
rules in place, a passive factor investing strategy may perform differently and may even underperform
as opposed to an active factor investing strategy for value and momentum, which may outperform
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and provide a higher Sharpe ratio. Fergis et al. (2019) suggested a framework which might be more
beneficial for passive funds which intends to maintain and reserve capital in periods such as recessions
and market downturns and use methods of factor diversification to minimize the risk of being exposed
to certain factors. In a multifactor portfolio market, signals can be used for a successful defensive factor
timing strategy, which is more passive as opposed to most proposed factor timing strategies. In order
to successfully apply a defensive factor timing strategy, there has to be a number of measurements
such as the level of risk that can be tolerated and a factor diversification strategy. Zheng et al. (2024)
showed another approach to factor timing, which relies on sentiment, however, executing a momentum
sentiment timing is challenging as momentum is rule based and requires more than sentiment for it to
work as a strategy. A timing strategy works because of the predictability of factors, implying that factor
timing can be added to factor exposed funds as a strategy, adding that expected factor premiums may be
due to the reward of systematic risk (Souza, 2020).

Momentum outperformance can, for example, be attributed to the industry of stocks. Moskowitz and
Grinblatt (1999) found that industry-specific momentum showed significant differences in returns and
improved profitability, and this might be used to explain persistence in momentum strategies returns
anomalies. George and Hwang (2004), on the other hand, found that momentum investing strategies’
outperformance can be attributed to the 52-week high price that takes into account the performance
of underlying stocks, which also plays a large role in the forecasting results of momentum returns. A
momentum strategy can be impacted by behavioral biases and market sentiment, which persists during
market downturns (Karki and Khadka, 2024). Short-term momentum can be subject to reversals and
affect the short-term performance of a momentum investment strategy, overall, this strategy tends to
persist (Huang et al., 2023).

There are many factor timing strategies and frameworks that can be used, such as a factor rotation
strategy, which aims to maximize the benefits of factor exposure. Kwon (2022) found that there were
exploitable return differences in equity factors when combined with economic factor analysis, which
may be used as a factor timing strategy by rotating the factors in accordance with economic outlooks.
Aked (2021) used three methods, namely, historical returns, economic cycle, and factor discount with
momentum, and found that information within the economic cycle was already reflected in the factor
discount and momentum. Factor’s discount and momentum strategies should provide better limited
returns, and there is a greater need for continuous improvement of forecasting methodologies of future
returns which remains a great challenge in investment management. Chin and Gupta (2020) set out a
framework that seeks to assess a factor timing strategy that can attribute and contribute to returns by
taking the difference between long- and short-term factor investing strategies, where the significant
contributor to returns was the stock selection process. However, ultimately a factor timing strategy
failed to outperform.

The main question might be this: can factor timing be used in practice? Asness et al. (2018)
attempted to answer this question using momentum, value, and style premia, which showed that though
factors are expensive, they are not as expensive as they used to be, and that factor timing cannot not be
justified as a strategy as there is still lack of substantial evidence to prove that it can outperform. Value
showed some promise if it is within a single factor portfolio as opposed to a multifactor portfolio.

Time series predictors and cross-sectional tilting presents some benefits, however, the benefits of
fundamental and technical time series predictability are not enough to offset the transaction costs
required for a factor timing strategy, which makes cost effectiveness difficult (Dichtl et al., 2019).
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Asness et al. (2017) examined a value factor timing strategy, noted that a basic performance forecasting
method might be enough to predict future returns and an attempt to outperform a traditional passive
buy and hold strategy is not easy and furthermore attempted to answer the question of whether a factor
timing strategy will be beneficial or detrimental to returns. There are challenges to value investing as it
is not enough for forecasting and timing of the market. Further cautions against the simplicity of ex-post
contrarian which might be applied in a factor timing strategy, and concludes that a value timing strategy
will be improved by adding a momentum component into it, which produces minimal performance levels.

3. Methodology

3.1. Portfolio construction, diversification and monitoring

One of the most commonly used portfolio construction methods is the Markowitz (1952) mean-
variance optimization model, in which a risk averse investor is inclined to expect compensation for
the risk taken. Expected returns can be optimized by diversification, in a momentum equity portfolio
construction process of selecting stocks and allocating a percentage to achieve the stipulated investment
objectives with a specified risk tolerance. Diversification of a momentum equity portfolio involves
spreading exposure across different industries for risk reduction.

Suppose a momentum portfolio only has two stocks with weights w1 and w2. The portfolio will have
a variance as,

σ2
p = w2

1σ
2
1 + w2

2σ
2
2 + 2 · w1w2σ12, (1)

where σ2
p is the variance of the portfolio and σ12 is the covariance between the returns of assets 1 and 2.

This portfolio will be considered well-diversified if the two stocks have a low correlation coefficient
estimated by

ρ12 =
σ12

σ1 · σ2
, (2)

where ρ12 is the correlation coefficient between the returns of assets 1 and 2, −1 < ρ12 < 1.
This two stock portfolio will have a diversification benefit (DB), where there is a reduction in

portfolio risk, given by

DB = σ1 + σ2 − σp. (3)

To monitor a momentum equity only portfolio, returns will have to be estimated on a regular basis,
together with the standard deviation and Sharpe ratio (i.e., a measure for the risk-adjusted performance),
as well as the tracking error which is the difference between the portfolio return and the benchmark
return. Included as well is the information ratio to estimate the active return of the portfolio compared
to the benchmark.

The portfolio return is given by

Rp =

n∑
i=1

wiRi, (4)

where Rp is the portfolio return, wi is the weight of the i-th asset in the portfolio, and Ri is the return of
the i-th asset.
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The Sharpe ratio is defined as,

S R =
Rp − R f

σp
, (5)

where Rp is the portfolio return, R f is the risk-free rate, and σp is the standard deviation of the portfolio
return.

The tracking error is defined by
T E =

√
Var(Rp − Rb), (6)

where Rb is the benchmark return.

The information ratio is defined by

IR =
Rp − Rb

T E
. (7)

The portfolio variance on its own is limited and there are a number of different ways in which risk
can be estimated. Some of the ways to estimate risk includes the downside risk, shortfall probabilities,
value at risk (VaR), conditional value at risk (CVaR), and the maximum drawdown.

Although investors are interested in the balance between risk and return in most cases, they are more
interested in the maximum value they could lose, which is the downside risk. The downside risk is also
known as the semi-variance defined by

S V =
∫ µ

−∞

(r − µ)2 f (r)dr, (8)

where S V is the semi-variance of return, µ is the expected return, r is the return on the investment, and
f (r) is the probability density function of the return.

In some cases, the level of tolerable losses is specified to estimate the shortfall risk, which is the
probability that the loss will fall below the specified benchmark level (L). In this case an investor will
not accept a risk that the loss will fall below what has been specified. The shortfall probability is given by

S P = P(r < L) =
∫ L

−∞

f (r)dr, (9)

where f (r) is the probability density function of portfolio returns and r is the return on the investment.
The VaR is the maximum loss of a portfolio at a particular confidence level and it is defined by

VaRα = inf{r ∈ R : F(r) ≥ α}, (10)

where α is the significance level.
The CVaR is the expected value of losses exceeding the VaR defined by

CVaRα =
1

1 − α

∫ −VaRα

−∞

f (r) dr, (11)

The maximum drawdown (MD) is the difference between the peak and trough before the next peak
occurs defined by

MD =
Peak − Trough

Peak
× 100, (12)

where the peak is the highest point and trough is the lowest point.
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3.2. Kalman filter and ARIMA forecasting

The Kalman filter was developed by Rudolf E. Kalman in 1960, where the Wiener problem was
formulated and solved to obtain the attributes of a linear state of a system where vector spaces were
taken into consideration. The results were a set of equations that are stochastic optimal estimators,
iterative and recursive in nature, which are used to estimate the state of a system.

New information can be incorporated into the model as it becomes available, making it better suited
for a factor timing strategy. An investment in a state space dynamic may be affected by new information
which affects returns causing them to significantly vary with time, where the state space evolves in line
with the discrete time stochastic model.

The ARIMA (autoregressive integrated moving average model) is a time series model, which uses
historical data to forecast future values. The Kalman filter and ARIMA model are both used for
prediction, and combining them improves prediction accuracy.

Using the mean square error estimation method found in Shumway and Stoffer (2017), the state
transition from time t to t + 1 is given by

At+1 = φAt + θt, (13)

where At is the state vector A at time t i.e., the state vector At represents the current state of the
momentum factor and can also be considered to be a simple autoregressive time series model (AR(1)).
φ is the state transition matrix from time t to t + 1. θt is the Gaussian white noise process with a known
covariance matrix. The observation equation is given by

Bt = HAt + δt, (14)

where Bt is the actual measurement of A at time t. H is stationary and does not contain noise, as well
as shows the relationship between the state vector and the measurement vector. δt is the Gaussian
white noise process with a known covariance matrix. θt and δt are independent of each other. Bt is the
observed momentum factor values or returns, and H represents the relationship between the observed
momentum factor and the underlying momentum state.

ζ = E[θθT ]t. (15)

ξ = E[δδT ]t, (16)

where ζ and ξ are the uncertainty, i.e., volatility in the state transition, which captures the uncertainty in
how momentum evolves over a period of time.

Pt = E[ηtη
T
t ] = E[(At − Ât)(At − Ât)T ], (17)

where the covariance matrix of the estimation error quantifies the uncertainty in the estimated state.
This is related to the mean squared error, the expected value of the squared estimation error is equal to
the error covariance matrix. The covariance matrix quantifies the uncertainty in the state estimates. The
mean square error is essential in quantifying the uncertainty in the estimated state and is crucial in the
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update and prediction steps of the filter.

Let Equation (18) represent the update step of the Kalman filter, where the prior estimate is combined
with the measurement data.

Ât = Â
′

t + Kt(HAt + δt − HÂ
′

t), (18)

where Â
′

t is the prior estimate of Ât gained by knowledge of the system and Kt is the Kalman gain.
Hence,

Pt = E
[(

(I − KtH)(At − Â
′

t) − Ktδt

) (
(I − KtH)(At − Â

′

t) − Ktδt

)T ]
. (19)

Pt = (I − KtH)P
′

t(I − KtH)T + Ktξ(Kt)T , (20)

where P
′

t is the prior estimate of Pt and At − Â
′

t is the prior error estimate at time t.

Pt = P
′

t − KtHP
′

t − P
′

tH
T KT

t + Kt(HP
′

tH
T + ξ)KT

t . (21)

The derivative of the trace matrix is

dTr(Pt)
dKt

= −2(HP
′

t)
T + 2Kt(HT P

′

tH + ξ) = 0. (22)

The Kalman gain is, therefore,

Kt = P
′

tH
T (HP

′

tH
T + ξ)−1. (23)

The update equation is, therefore,

Pt = P
′

t − P
′

tH
T (HP

′

tH
T + ξ)−1HP

′

t. (24)

Pt = (I − KtH)P
′

t. (25)

Let η
′

t+1 be the prior error at time t + 1 and defined by

η
′

t+1 = φ(At − Â
′

t) + θt. (26)

η
′

t+1 = φη
′

t + θt. (27)

Prior error at the next time step (t + 1) is related to the prior error at the current time step (t) and the
process noise θt. Let P

′

t+1 be the error covariance matrix at time t + 1:

P
′

t+1 = E[(φη
′

t + θt)(φη
′

t + θt)
T ]. (28)

P
′

t+1 = φ
2E[η

′

tη
′T
t ] + φE[η′tθTt ] + φE[θtη

′T
t ] + E[θtθTt ], (29)

where η
′

t and θt have no cross-correlation, E[η
′

tθ
T
t ] = E[θte

′T
t ] = 0. Therefore,

P
′

t+1 = φPtφ
T + ζ. (30)

The error covariance matrix at the next time step (t + 1) is related to the error covariance matrix at
the current time step (t), the state transition matrix φ, and the process noise covariance matrix ζ.

Data Science in Finance and Economics Volume 4, Issue 4, 548–569



556

The final Kalman filter equations are illustrated by the following five steps,

1. State Prediction:
Ât+1|t = φÂt|t, (31)

Predicts the state at time t+ 1 (Ât+1|t) based on the state estimate at time t (Ât|t) and the state transition
matrix (φ).

2. State covariance prediction:
Pt+1|t = φPt|tφ

T + ζ, (32)

Predicts the error covariance matrix at time t + 1 (Pt+1|t) based on the error covariance matrix at time
t (Pt|t), the state transition matrix (φ), and the process noise covariance matrix (ζ).

3. Kalman gain:
Kt+1 = Pt+1|tHT (HPt+1|tHT + ξ)−1, (33)

Estimates the Kalman gain (Kt+1) based on the predicted error covariance matrix (Pt+1|t), the
measurement matrix (H), and the measurement noise covariance matrix (ξ).

4. State update:
Ât+1|t+1 = Ât+1|t + Kt+1(Bt+1 − HÂt+1|t), (34)

Updates the state estimate at time t + 1 (Ât+1|t+1) based on the predicted state at time t + 1 (Ât+1|t),
the Kalman gain (Kt+1), and the difference between the actual measurement (Bt+1) and the predicted
measurement (HÂt+1|t).

5. Error covariance update:
Pt+1|t+1 = (I − Kt+1H)Pt+1|t, (35)

Updates the error covariance matrix at time t + 1 (Pt+1|t+1) based on the predicted error covariance at
time t + 1 (Pt+1|t) and the Kalman gain (Kt+1).

The Kalman filter steps here do not include a multistep ahead predictor, thus, as a part of the
continuous risk monitoring process, the following addition to the Kalman filter is added for forecasting
and signal purposes. The state transition and observation equations are in a simple autoregressive model
form (i.e., AR(1)), therefore, the proposal here is to add an ARIMA(p, d, q) (where p - autoregressive
term, d - integrated order required for stationarity, q - lagged forecast errors moving average term)
process for a multistep prediction (forecast) after the Kalman filter has been applied, as well as estimate
the confidence intervals.

The general form of an ARIMA(p,d,q) process is

φ(E)(1 − E)dAt = θ(E)dWt, (36)

where E is the back shift operator in the form EAt = At−1 and Wt white noise process with a known
covariance matrix, (1 − E)d is integrated of order d.

Data Science in Finance and Economics Volume 4, Issue 4, 548–569



557

AR(p)

φ(E) = 1 − φ1E − φ2E2 − . . . − φpEp. (37)

and MA(q):

θ(E) = 1 + θ1E + θ2E2 + . . . + θqEq. (38)

The Kalman filter starts off with the state transition and the observation equation as AR(1) processes.
Thus, the MA part of the model is set to be of order q = 0, and integrated of order d = 1 for stationarity
of the returns. The historical prices only need to be differenced once to achieve stationarity, resulting in
an ARIMA(1, 1, 0). The ARIMA model will be applied to the Kalman filtered data.

Estimating the multistep prediction interval is preceded by determining the forecast error and the
prediction error.

The multistep forecast error is defined by

ηn
n+m = An+m − An

n+m. (39)

An
n+m = φ

mAn. (40)

The multistep prediction error is defined by

Pn
n+m = Var(An+m − An

n+m) = Var(ηn
n+m). (41)

The multistep prediction interval is, therefore,

An
n+m ± z α

2

√
Pn

n+m, (42)

where n is the number of observations and m is the number of prediction steps.

4. Framework

The proposed high pure momentum equity timing framework is illustrated by the flow chart in
Figure 1. The process starts with the overall stock data, from which the population of large capitalization
stocks will be selected. This process ends with the portfolio rebalancing, followed by the portfolio
performance evaluation.
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• Stock: large-cap?
•Market-cap > $20 B?
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Include in population

Estimate:

• 3, 6, 9 and 12 months
momentum scores
• Sharpe ratios
• Standard deviations

Portfolio construction
criteria satisfied?

Exclude stock from portfolio

Include in portfolio

Portfolio monitoring

Apply Kalman filter

ARIMA forecasting
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generated over the rebalancing period? Hold

Portfolio metrics

Portfolio construction
criteria monitoring

Portfolio construction
criteria satisfied?

Portfolio rebalancing

Portfolio performance evaluation

Yes

No

No

Yes

No
Yes

No

Yes

Figure 1. Momentum equity timing framework.

4.1. Data

The population consists of 540 large capitalization US listed stocks, with more than $20 billion
dollars in market capitalization. The historical data period was set to be from 01 January 2013 to
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31 December 2023, taken from the Yahoo finance database. The portfolio criteria was used to select
momentum stocks. This resulted in an initial portfolio of 54 stocks.

4.2. Portfolio construction criteria

The portfolio construction process is an important part of a factor timing framework, and starts off
with defining the investable universe population of stocks, followed by estimating the momentum scores,
Sharpe ratio and standard deviation.

The momentum score is estimated by:

MS =
Pt − Pt−s

Pt−s
× 100, (43)

where Pt is the current price and Pt−s is the price at the beginning of the period.
The market capitalization is estimated by

MC = PS × OS , (44)

where PS is the current market price per share and OS is the total number of outstanding shares.
After all the metrics above have been estimated, the next part is defining the portfolio selection

criteria. The stocks that fit the below criteria are included in the portfolio.

1. 3-months momentum score > 10%
2. 6-months momentum score > 15%
3. 9-months momentum score > 20%
4. 12-months momentum score > 30%
5. Sharpe ratio > 0.7
6. Standard deviations < 0.25

Momentum gains are subject to short-term reversals, therefore the thresholds are conservative. A Sharpe
ratio above 0.7 is considered good. The standard deviation of below 0.25 is low risk and low volatility.
The above criteria is set to limit the risk of investing in momentum stocks.

4.3. Portfolio rebalancing and performance evaluation

Portfolio rebalancing is a process where some stocks will be bought (added into the portfolio) and
sold, to ensure that the stocks are still within the initial criteria. The market upturns and downturns may
change the metrics used in the construction process to change significantly; rebalancing maintains the
asset allocation criteria (Kimball et al, 2020; Fischer et al., 2021). The rebalancing period is followed
by the portfolio performance evaluation, which involves assessing returns earned within the rebalance
period (Plastira, 2014).

5. Empirical results

Table 1 presents the initial portfolio constructed using the selection criteria.
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Table 1. Initial portfolio constructed using the selection criteria.
Symbol Description 3-Months 6-Months 9-Months 12-Months Sharpe Ratio Standard Deviation
NVDA NVIDIA Corporation 10.59433136 16.78126421 80.43768882 246.0983373 1.26710737 0.028147058
AMZN Amazon.com, Inc. 17.36443269 16.6794663 46.16643281 77.04498134 0.851726283 0.020567677
META Meta Platforms, Inc. 15.36404764 23.75359013 64.84724951 183.758223 0.795465724 0.02412872
AVGO Broadcom Inc. 34.30537794 28.64431864 78.66948701 106.2686067 1.187161527 0.021668064
NVO Novo Nordisk A/S 12.69062621 30.39886221 31.09779796 53.00867092 0.839034754 0.016593725
COST Costco Wholesale Corporation 18.38221012 25.24164456 36.42349095 50.06235101 1.028850178 0.013021139
AMD Advanced Micro Devices, Inc. 42.74233413 27.27508552 53.76029982 130.2561877 0.926067692 0.036203874
ADBE Adobe Inc. 14.4819853 22.95706727 54.90068416 77.07466218 0.950663157 0.019874772
INTU Intuit Inc. 20.91908102 38.89376618 42.8613522 60.94612887 0.886367935 0.018753059
PDD PDD Holdings Inc. 46.79442184 105.2321443 99.87705418 73.08647778 0.77998403 0.048813747
NOW ServiceNow, Inc. 27.24276698 25.51566016 48.40668172 83.26588592 0.911687887 0.025500119
BX Blackstone Inc. 23.24061869 40.44177126 65.45178543 78.09046953 0.887277843 0.0214946
MU Micron Technology, Inc. 25.95177023 34.20639753 50.04574591 70.59995941 0.748027812 0.028166555
ETN Eaton Corporation plc 15.00282665 20.99063704 50.37858267 55.43148966 0.718579387 0.017132361
LRCX Lam Research Corporation 24.49205203 21.01097475 56.64416157 91.36082903 0.931538062 0.024530173
KLAC KLA Corporation 26.54408107 20.55738631 49.28312541 56.24836143 0.920050579 0.022711055
SHOP Shopify Inc. 44.25926208 20.12336678 63.68985349 118.3295988 1.018964952 0.039144939
PANW Palo Alto Networks, Inc. 24.54280507 15.80270405 50.02035437 112.986646 0.867442583 0.024271038
KKR KKR & Co. Inc. 36.18028349 47.40475551 63.81022106 79.47745348 0.730641813 0.021258249
DELL Dell Technologies Inc. 13.63644415 41.85501394 91.18587756 92.59426258 0.901406608 0.022556047
SNPS Synopsys, Inc. 11.0150414 18.64011464 33.76717402 61.07044074 1.065284995 0.017099892
ANET Arista Networks, Inc. 25.39800733 47.28580581 41.24384476 94.7812318 0.897128435 0.027619942
CDNS Cadence Design Systems, Inc. 15.17188413 15.70518359 28.77405427 70.61513165 1.05750787 0.01873592
SHW The Sherwin-Williams Company 23.73412144 18.61901006 40.72000842 31.59449596 0.803611683 0.016106649
STLA Stellantis N.V. 23.32099507 30.9376759 41.48762857 74.36241033 0.753285988 0.025164742
RELX RELX PLC 18.84926884 20.73084076 24.18272439 45.77388631 0.809707056 0.012892264
CRWD CrowdStrike Holdings, Inc. 50.59573991 74.92463386 86.55560879 147.211474 0.842925719 0.037694839
MAR Marriott International, Inc. 16.68543983 23.02565505 38.30927896 54.23834213 0.701551537 0.019730663
MELI MercadoLibre, Inc. 24.78382706 31.64733312 20.71126888 90.23375421 0.804798822 0.02995831
PH Parker-Hannifin Corporation 20.01806558 18.68797821 45.39440952 60.39240001 0.71811907 0.018713831
APH Amphenol Corporation 20.20587212 18.45162967 25.3927607 31.05243903 0.85351241 0.014524717
CTAS Cintas Corporation 24.60678347 24.29478328 33.50394459 35.61233196 1.141890667 0.015809445
TDG TransDigm Group Incorporated 27.2220435 16.99404634 42.56879154 67.60040166 0.902680183 0.020196651
TT Trane Technologies plc 23.53579994 28.46180007 41.9914447 44.43744943 0.927943241 0.016294082
CEG Constellation Energy Corporation 11.86941724 28.24692605 55.0810585 44.44362031 1.589334207 0.024262035
TEAM Atlassian Corporation 20.45983618 41.92971288 42.86743514 88.03162104 0.840574422 0.032610153
DHI D.R. Horton, Inc. 43.47039855 27.02567595 57.06760037 69.14983165 0.723872265 0.022227888
URI United Rentals, Inc. 31.55034448 28.63989792 61.39941906 63.02588499 0.753044739 0.026398223
DDOG Datadog, Inc. 32.16463643 23.49170427 75.10097777 68.37287199 0.744583765 0.040413051
IR Ingersoll Rand Inc. 21.63842538 18.61625561 40.08534617 46.10885678 0.732573065 0.022311443
IT Gartner, Inc. 30.37860848 29.97291771 43.62901319 33.66618223 0.86736747 0.017808524
MPWR Monolithic Power Systems, Inc. 37.53918296 16.70525232 31.34530319 85.36402381 0.977600083 0.02517973
VRT Vertiv Holdings Co 25.11485268 93.23124282 266.8443661 261.3279128 0.838094781 0.031530406
NET Cloudflare, Inc. 33.19469584 26.49650945 35.97909972 93.53789226 0.850583626 0.046429274
FICO Fair Isaac Corporation 34.78733815 46.41635343 68.87087392 96.89270877 1.06509056 0.020985282
ZS Zscaler, Inc. 37.70899273 51.14264486 100.4886375 101.0708709 0.840145677 0.038594287
ICLR ICON Public Limited Company 16.42264047 16.47533586 34.25821108 46.22140228 0.835171098 0.019419194
ARES Ares Management Corporation 16.8772408 24.97193959 50.37064775 79.7513977 0.863940276 0.021670163
BR Broadridge Financial Solutions, Inc. 16.73261031 26.60157385 45.2276038 55.73197355 1.071776412 0.014227325
BLDR Builders FirstSource, Inc. 35.72357922 22.45287185 91.0943238 155.4552507 0.835582112 0.03276591
PTC PTC Inc. 24.22608014 24.66866986 37.11599436 46.22649769 0.74578355 0.019649932
DECK Deckers Outdoor Corporation 29.1527405 25.77239398 46.82378824 71.73136033 0.850109584 0.0252146
DKNG DraftKings Inc. 21.38429369 34.28571429 84.74842841 219.0045194 0.765326057 0.043951352
CBOE Cboe Global Markets, Inc. 14.22484439 30.83153957 33.41978594 43.38262867 0.889541723 0.015152917
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The initial portfolio in Table 1 contains 54 stocks. The selection criteria determines the portfolio
size. Hence, the maximum number of stocks that should be included in the portfolio will vary, after
each rebalancing period.

• 3 months momentum scores are mostly the lowest scores compared to other periods, and this might
be subject to reversals.
• 6 months momentum scores will either be greater than the 3 months momentum scores or they

will be on a reversal trajectory (i.e., decrease).
• 9 months momentum scores are higher compared to the 6 months time period.
• 12 months momentum scores indicate the persistence of the price momentum with high scores.
• Sharpe ratios are obtained by subtracting the risk-free-rate of 0.05, indicating that each stock had

significant excess returns.
• Standard deviation is lower than the threshold of 0.25, indicating that the stocks within the portfolio

have low volatility.

5.1. Population and portfolio comparison

Table 2 compares the metrics of both the population of stocks and the back tested portfolio.

Table 2. Population of Stocks and Portfolio Metrics Comparison.

Metric Population Portfolio
Total Return 4.5377 14.6402
Annualized Return 0.1686 0.2845
Volatility 0.0111 0.0146
Sharpe Ratio 10.6844 16.0229
Max Drawdown −0.3608 -0.3699
Downside Risk 0.0092 0.0117
Shortfall Probability 0.4434 0.4257
VaR (95%) −0.0176 −0.0230
CVaR (95%) −0.0280 −0.0343

• Total and annualized returns: indicate that even though the population contained more stocks, this
did not automatically result in higher returns over a period of 10 years (2013–2023).
• Volatility: was relatively stable when spread out through the 10 year period for both the constructed

portfolio and the population of stocks.
• Sharpe ratio is relatively high, indicating better risk adjusted performance.
• Max drawdown: the largest peak-to-trough decline was negative indicating that the population

could lose −36.08% and portfolio −36.99% in value.
• Downside risk: the volatility of returns below zero was also relatively low.
• Shortfall probability: the likelihood of not achieving projected positive returns was 0.4424

and 0.4311.
• VaR (95%): the value at risk, which is the maximum value that could be lost for the population, is
−0.0176 and for the portfolio it is −0.0230.
• CVaR (95%): the conditional value at risk is −0.0280 and −0.0343 for the population and

portfolio, respectively.
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5.2. Portfolio sector exposure

Sector exposure is a crucial aspect of portfolio risk management (Keisler and Linkov, 2011). A
portfolio will have a wide range of sector exposures. Market sentiment is another driving force within
the stock market and herd mentality can be an influential factor in the liquidity of stocks; these are the
overall expectations from investors (Aggarwal, 2022).

Figure 2. Portfolio industry exposure.

Figure 2 shows that the initial portfolio constructed by the selection criteria has high exposure
of information technology stocks that tend to have high momentum due to their market sentiment,
perceived future potential growth, and their liquidity. This is reflected by the overall portfolio exposure
of 46.1%. This indicates that information technology stocks have been high performers and are one of
the most popular stocks in the market. This drives up their value, further increasing their momentum
scores at a higher rate as compared to other sectors.

The next largest exposure is industrial which includes manufacturing, construction and others.
Financials and retail are tied with an exposure of 7.4% each, and finance stocks are popular due to their
stability in the overall market. The rest of the sectors make up the remaining exposure.

5.3. Kalman filter, ARIMA forecasting and trading signal

The portfolio construction is followed by the risk management process. The Kalman filter is applied
to the portfolio as a part of the risk management process. The Kalman filter incorporates information as
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it becomes available and is better equipped to handle missing data. This is then followed by the ARIMA
forecasting and the confidence interval for each underlying stock.

Figure 3 illustrates the trading signals over a period of 6 months for the first four stocks within the
initial portfolio. The trading signals are generated for each underlying stock. The Kalman filter, and
ARIMA forecast with the confidence intervals of the forecast are also depicted in Figure 3.

Figure 3. Trading signals for the first four stocks within the portfolio.

• The blue line shows the historical daily prices over the period of 6 months starting from 01 June
2023 to 31 December 2023 for the first four stocks within the portfolio on Table 1.
• The Kalman filter reduces the short-term fluctuations of the historical daily data, minimizes noise,

and provides a better view of the historical trends. The trend generated by the Kalman filter is used
as an indicator for the buy and sell signal.
• The Kalman filtered historical daily data is used for the ARIMA forecast (forecast period: 20 days).
• The 95% confidence interval is estimated for the forecast, and this increases as the forecast

period increases.
• The four stocks are currently showing an increasing upward trend, signaling an increase in the

momentum score.
• The buy signal is generated when the Kalman filter trend line is below the historical prices and forecast.
• The sell signal is generated when the Kalman filter trend line is above the historical prices and forecast.
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6. Transaction costs

There are a number of transaction costs that can be detrimental to portfolio returns and could be
the main difference between the outperformance and underperformance of a factor timing strategy
(Wang and Siu, 2024). An active factor timing strategy depends heavily on the costs involved during the
implementation process. An equilibrium of transaction costs is essential, especially when trading occurs
frequently and liquidity premium becomes an added cost (Isaenko, 2023). Figure 4 shows a breakdown
of transaction costs.

Transaction costs

Brokerage fees

Clearing and settlement fees

Bid/ask spreads

Other fees

Tax

Opportunity cost

Timing risk

Figure 4. Transaction costs breakdown.

A brokerage fee is a commissions that a broker will charge on a trade; clearing and settlement fees
are charged by the exchange for the execution of a trade; and bid/ask spreads are the price difference of
the stock that is being traded (Galati, 2024). The breakdown of transaction costs can be broader and
might include other costs depending on the market and country.
Figure 5 shows a comparison between the buy-and-hold strategy with the monthly, quarterly and annual
rotations, illustrating the impact of transaction costs on each strategy. The transaction costs here are
considered on a total basis.

The transaction costs make short-term timing rotation strategy more expensive and diminishes
cumulative returns. A momentum portfolio is vulnerable to market downturns, which can negatively
affect the portfolio’s performance. The portfolio has large concentration of technology stocks, which
could contribute to low returns when that industry is underperforming.

• A 0% transaction cost in reality is not possible, as there are unavoidable costs when trading on
the market. However, from the simulated results, the monthly rotation has the highest cumulative
returns, and significantly outperforms other strategies.
• A total transaction costs of 0.1% is low. The monthly rotation closely matches that of the buy-and-

hold strategy.
• At 0.5% total transaction cost adjustment, the buy-and-hold strategy has higher cumulative returns,

followed by the monthly rotation.
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• The 1% total transaction costs affects the returns significantly, and the rotation strategies have
diminished cumulative returns compared to the lower 0.1% and 0.5% transaction costs.
• At 2% total transaction costs, the cumulative returns are still increasing, however, at a much lower

rate. The buy-and-hold strategy is not affected as there are no significant trades occurring.
• The transaction costs can in some cases, be as high as 4% and the strategy with the least amount

of trades, will have the highest cumulative returns. The buy-and-hold strategy significantly
outperforms other rotation strategies, which have decreasing cumulative returns, closer to 0.

Figure 5. Buy-and-hold strategy, monthly, quarterly, and annual rotations’ cumulative returns
comparison with transaction costs [0%, 0.1%, 0.5%, 1%, 2% and 4%] adjustments.
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Relatively, low transaction costs should have a limited effect on the rotation strategy. The monthly
rotation process will have the best results, followed by the annual and lastly quarterly rotation, when the
costs are at 0% and 0.1%. Surprisingly, the rotation that is below the buy-and-hold strategy at 0% costs
is the quarterly rotation. 3 months momentum is subject to reversals and, as such, at the 3 month point
this reversal might affect the bid/ask spread, and make the stocks more costly. 12 months momentum
in some cases will be higher than 3 months momentum and, as a result, the annual rotation performed
better than the quarterly rotation. The monthly rotation takes advantage of the short-term increases, and
this has resulted in the highest cumulative returns when transaction costs are 0%.

7. Conclusions

This article presents a practical pure momentum factor timing strategy. summarized below:

• Investment objectives and portfolio strategy defined.
• Portfolio construction process using momentum scores, Sharpe ratio, and standard deviation.
• Implementation of the Kalman filter for signal processing.
• Implementation of the ARIMA and confidence intervals.
• Signal assessments of both historical trends and the forecasts trend.
• Rebalancing (adjusting portfolio exposure) procedure based on the results of the Kalman filter,

ARIMA and confidence intervals.

A dynamic portfolio construction process, together with the Kalman filter, was implemented for the
state dynamic system estimation using daily historical data. Additionally, the ARIMA forecasting and
confidence interval enhanced the forecast accuracy. Momentum strategies can be susceptible to sharp
downturns, reversals, market volatility, and sentiment arising from unforeseen events. However, returns
are somewhat predictable, and this predictability plays a pivotal role in the way a pure momentum
strategy is implemented.

A factor timing strategy does rely on this predictability and the forecasts of future returns, even
though past returns do not guarantee future returns. A Kalman filter approach addresses this past
returns limitation by iteratively incorporating new information as it becomes available. The momentum
definition does assert that if a fund or stock has been on a recent increasing trajectory, it tends to continue
unless a significant event disrupts the trend.

A high pure momentum only equity factor timing framework presented in this article, offers a com-
prehensive approach starting with the selection of stocks, dynamic monitoring, and rebalancing, together
with the forecasting procedure to achieve superior returns. The costs involved with implementing this
strategy can be minimized by choosing a rebalancing period that limits the trading frequency.

Disclaimer

The information provided in this article does not constitute financial, investment, or other professional
advice. The author and publisher are not responsible for any losses or damages related to your reliance
on this information.
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