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Abstract: High-frequency tick data have proved helpful for forecasting volatility across asset classes.
In the finite samples typically faced by practitioners, however, noise inherent in tick-level prices creates
inaccuracies in model parameter estimates and resulting forecasts. A remedy proposed to alleviate
these measurement errors is to include higher-order moments, more specifically the realized quarticity,
in volatility prediction models. In this paper, we investigate the relevance of this approach in foreign
exchange markets, as represented by EURUSD and USDJPY data from 2010 to 2022. Using well-
established realized volatility models, we find that including realized quarticity leads to higher precision
in daily, weekly, and monthly out-of-sample forecasts. These results are robust across estimation
windows, evaluation metrics, and model specifications.
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1. Introduction

Estimating foreign exchange rate (FX) volatility is a core risk management activity for financial
institutions, corporates and regulators. The subject has been extensively investigated among both
practitioners and scientific researchers, and several alternative models exist. Among the most prominent
are the models belonging to GARCH and stochastic volatility classes. However, the true value of
volatility cannot be directly observed. Hence, volatility must be estimated, inevitably with error. This
constitutes a fundamental problem in implementing parametric models, especially in the context of
high-frequency data. Andersen and Bollerslev (1998) proposed using realized volatility, as derived
from high-frequency data, to accurately measure the true latent integrated volatility. This approach has
gained attention for volatility modeling in markets where tick-level data is available (Andersen et al.,
2013). Andersen et al. (2003) suggest fractionally integrated ARFIMA models in this context. Still, the
long-memory HAR (heterogeneous autoregressive) model of Corsi (2009) is arguably the most widely
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used to capture the high persistence typically observed in realized volatility of financial prices. The
HAR model is relatively simple and easy to estimate. In empirical applications, the model tends to
perform better than GARCH and stochastic volatility models possibly due to the sensitivity of tightly
parameterized volatility models to minor model misspecifications (Sizova., 2011). Although realized
volatility (RV) is a consistent estimator of the true latent volatility, it is subject to measurement error in
empirical finite samples. Hence, RV will not only reflect the true latent integrated volatility (IV), but also
additional measurement errors. Bollerslev et al. (2016) propose utilizing higher-order realized moments
of the realized distribution to approximate these measurement errors. More specifically, Bollerslev et
al. (2016) propose the HARQ-model, which augments the HAR model with realized quarticity as an
additional covariate.

The empirical performance of the HARQ and related extensions has been extensively studied. The
focus has predominantly been on equity markets. A majority of the studies analyze U.S. data; see
Bollerslev et al. (2016); Clements, A. and Preve, D. (2021); Pascalau and Poirier (2023); Andersen et al.
(2023) and others. Liu et al. (2018) and Wang et al. (2020) investigate Chinese equity markets, whereas
Liang et al. (2022); Ma et al. (2019) analyse international data. Bitcoin and electricity markets have
attracted some attention; see, for instance, Shen et al. (2020); Qieu et al. (2021), and Qu et al. (2018).

Empirical applications of the HARQ model in the context of foreign exchange rate risk are sparse.
Lyócsa et al. (2016) find that the standard HAR model rarely is outperformed by less parsimonious
specifications on CZKEUR, PLZEUR, and HUFEUR data. Plı́hal et al. (2021) and Rokicka and Kudła
(2020) estimate the HARQ model on EURUSD and EURGBP data, respectively. Their focus is different
from ours, as they investigate the incremental predictive power of implied volatility for a broad class of
HAR models. In a similar vein, Götz (2023) and Lyócsa et al. (2024) utilize the HARQ model for the
purpose of estimating foreign exchange rate tail risk.

Using updated tick-level data from two major currency pairs, EURUSD and USDJPY, this paper
documents the relevance of realized quarticity for improving volatility estimates across varying forecasting
horizons. These results are robust across estimation windows, evaluation metrics, and model specifications.

2. Materials and method

2.1. Data

We use high-frequency intraday ticklevel spot data, publicly available at DukasCopy.* The sample
period is 1. January 2010 to 31. December 2022. Liu et al. (2015) investigate the optimal intraday
sampling frequency across a significant number of asset classes and find that 5-min intervals usually
outperform others. Hence, as common in the literature, we estimate the realized volatility from
5-minute returns.

To filter tick-level data, we follow a two-step cleaning procedure based on the recommendations by
Barndorff-Nielsen et al. (2009). Initially, we eliminate data entries that exhibit any of the following
issues: (i) absence of quotes, (ii) a negative bid-ask spread, (iii) a bid-ask spread exceeding 50 times the
median spread of the day, or (iv) a mid-quote deviation beyond ten mean absolute deviations from a
centered mean (computed excluding the current observation from a window of 25 observations before
and after). Following this, we calculate the mid-quotes as the average of the bid and ask quotes and then
resample the data at 5-minute intervals.

*This data source is also used by Plı́hal et al. (2021), Risstad et al. (2023) and Lyócsa et al. (2024), among others.
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We compute the consistent estimator of the true latent time-t variance from

RV2
t ≡

M∑
t=1

r2
t,i, (1)

where M = 1/∆, and the ∆-period intraday return is rt,i ≡ log(S t−1+i×∆) − log(S t−1+(i−1)×∆), where S is
the spot exchange rate. Analogously, the multi(h)-period realized variance estimator is

RV2
t−1,t−h =

1
h

h∑
i=1

RV2
t−h. (2)

Setting h = 5 and h = 22 yields weekly and monthly estimates, respectively.
Table 1 displays descriptive statistics for daily realized variances, as computed from (1).

Table 1. Realized Variance (daily).

Min Mean Median Max ρ1

EURUSD 0.1746 3.0606 2.2832 59.4513 0.5529
USDJPY 0.1018 3.2460 2.0096 168.0264 0.2860

The table contains summary statistics for the daily RV s for EURUSD and USDJPY. ρ1 is the standard first order autocorrelation coefficient. Sample period: 1.
January 2010 to 31. December 2022.

2.2. The HARQ models

To represent the long-memory dynamic dependencies in volatility, Corsi (2009) proposed using daily,
weekly, and monthly lags of realized volatility as covariates. The original HAR model is defined as

RVt = β0 + β1RVt−1 + β2RVt−1|t−5 + β3RVt−1|t−22 + ut, (3)

where RV is computed from (1) and (2). If the variables in (2.2) contain measurement errors, the beta
coefficients will be affected. Bollerslev et al. (2016) suggests two measures to alleviate this. First, they
include a proxy for measurement error as an additional explanatory variable. Furthermore, they directly
adjust the coefficients in proportion to the magnitude of the measurement errors:

RVt =β0 +
(
β1 + β1QRQ1/2

t−1

)︸              ︷︷              ︸
β1,t

RVt−1

+
(
β2 + β2QRQ1/2

t−1|t−5

)︸                  ︷︷                  ︸
β2,t

RVt−1|t−5

+
(
β3 + β3QRQ1/2

t−1|t−22

)︸                   ︷︷                   ︸
β3,t

RVt−1|t−22 + ut,

where realized quarticity RQ is defined as

RQt ≡
M
3

M∑
i=1

r4
t,i (4)
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The full HARQ model in (2.2) adjusts the coefficients on all lags of RV . A reasonable conjecture
is that measurement errors in realized volatilities tend to diminish at longer forecast horizons, as
these errors are diversified over time. This suggests that measurement errors in daily lagged realized
volatilities are likely to be relatively more important. Motivated by this Bollerslev et al. (2016) specify
the HARQ model as

RVt =β0 +
(
β1 + β1QRQ1/2

t−1

)︸              ︷︷              ︸
β1,t

RVt−1 + β2RVt−1|t−5

+ β3RVt−1|t−22 + ut.

(5)

Although there is no reason to expect that autoregressive models of order one will be able to
accurately capture long memory in realized volatility, we estimate AR(1) models as a point of reference.
The AR and ARQ models are defined as

RVt = β0 + β1RVt−1 + ut. (6)

and

RVt = β0 +
(
β1 + β1QRQ1/2

t−1

)︸              ︷︷              ︸
β1,t

RVt−1 + ut. (7)

in equations (6) and (7), respectively.

3. Results and discussion

Due to noisy data and related estimation errors, forecasts from realized volatility models might
occasionally appear as unreasonably high or low. Thus, in line with Swanson et al. (1997) and Bollerslev
et al. (2016), we filter forecasts from all models so that any forecast outside the empirical distribution of
the estimation sample is replaced by the sample mean.

3.1. In-sample estimation results

Table 2 reports in-sample parameter estimates for the ARQ, HARQ, and HARQ-F models, along
with the benchmark AR and ARQ models, for one-day ahead EURUSD (upper panel) and USDJPY
(lower panel) volatility forecasts. Robust standard errors (s.e.) are computed as proposed by White
(1980). R2, MS E, and QLIKE are displayed at the bottom of each panel.
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Table 2. In-sample estimation results, one-day-ahead volatility forecasts.

EURUSD AR HAR ARQ HARQ HARQ-F

β0 1.3663∗ 0.3961∗ 0.7428∗ 0.2785∗ −0.0651
s.e. 0.1843 0.0598 0.0969 0.0586 0.0685
β1 0.5530∗ 0.2364∗ 0.7903∗ 0.4349∗ 0.3740∗

s.e. 0.0653 0.0730 0.0388 0.0754 0.0792
β2 0.3767∗ 0.3072∗ 0.4613∗

s.e. 0.0717 0.0697 0.1031
β3 0.2572∗ 0.1850∗ 0.2398∗

s.e. 0.0532 0.0515 0.0822
β1Q −2.4914∗ −1.3708∗ −0.9710∗

s.e. 0.3377 0.1939 0.2266
β2Q −1.7578∗∗∗

s.e. 0.8706
β3Q −3.9819∗

s.e. 1.1618
R2 0.3058 0.3956 0.3685 0.4101 0.4166
MS E 6.3005 5.4852 5.7315 5.3538 5.2950
QLIKE 0.1647 0.1230 0.1540 0.1217 0.1199

USDJPY AR HAR ARQ HARQ HARQ-F

β0 2.3073∗ 1.0682∗ 1.3537∗ 0.7811∗ 0.5218∗

s.e. 0.2362 0.1381 0.2207 0.1429 0.1328
β1 0.2854∗ 0.1819∗

′

0.6180∗ 0.5177∗∗∗ 0.4416∗

s.e. 0.0804 0.0806 0.0853 0.1106 0.1260
β2 0.1441∗∗ 0.0542 0.2345∗∗∗

s.e. 0.0585 0.0543 0.1072
β3 0.3443∗ 0.2188∗ 0.2228∗

s.e. 0.0499 0.0493 0.0658
β1Q −0.2295∗ −0.1967∗ −0.1526∗

s.e. 0.0318 0.0386 0.0476
β2Q −0.2296∗∗

s.e. 0.0849
β3Q −0.3573∗

s.e. 0.1142
R2 0.0814 0.1154 0.1489 0.1581 0.1642
MS E 33.6096 32.3668 31.1409 30.8063 30.5818
QLIKE 0.3214 0.2561 0.2663 0.2377 0.2242

Note: The table contains in-sample parameter estimates and corresponding standard errors (White, 1980), together with R2. MS E and QLIKE computed from (12)
and (13). Superscripts *, **, and *** represent statistical significance in a two-sided t-test at 1%, 5% and 10% levels, respectively.

The coefficients β1Q are negative and exhibit strong statistical significance, aligning with the
hypothesis that RQ represents time-varying measurement error. When comparing the autoregressive
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(AR) coefficient of the AR model to the autoregressive parameters in the ARQ model, the AR
coefficient is markedly lower, reflecting the difference in in persistence between the models.

In the comparative analysis of the HAR and HARQ models applied to both currency pairs, the HAR
model assigns more emphasis to the weekly and monthly lags, which are generally less sensitive to
measurement errors. In contrast, the HARQ model typically assigns a higher weight to the daily lag.
However, when measurement errors are substantial, the HARQ model reduces the weight on the daily
lag to accommodate the time-varying nature of the measurement errors in the daily realized volatility
(RV). The flexible version of this model, the HARQ-F, allows for variability in the weekly and monthly
lags, resulting in slightly altered parameters compared to the standard HARQ model. Notably, the
coefficients β2Q and β3Q in the HARQ-F model are statistically significant, and this model demonstrates
a modest enhancement in in-sample fit relative to the HARQ model.

3.2. Out-of-sample forecasting results

To further assess the out-of-sample performance of the HARQ model, we consider three alternative
HAR type specifications. More specifically, we include both the HAR-with-Jumps (HAR-J) and the
Continuous-HAR (CHAR) proposed by Andersen et al. (2007), as well as the SHAR model proposed
by Patton and Sheppard (2015), in the forecasting comparisons. Based on the Bi-Power Variation (BPV)
measure of Barndorff-Nielsen and Shephard (2004), HAR-J and CHAR decompose the total variation
into a continuous and a discontinuous (jump) part.

The HAR-J model augments the standard HAR model with a measure of the jump variation;

RVt =β0 + β1RVt−1 + β2RVt−1|t−5 + β3RVt−1|t−22

+ βJ Jt−1 + ut,
(8)

where Jt ≡ max [RVt − BPVt, 0], and the BPV measure is defined as,

BPVt ≡ µ
−2
1

M−1∑
i=1

∣∣∣rt,i

∣∣∣ ∣∣∣rt,i+1

∣∣∣ , (9)

with µ1 =
√

2/π = E(|Z|), and Z is a standard normal random variable.
The CHAR model includes measures of the continuous component of the total variation as covariates;

RVt = β0 + β1BPVt−1 + β2BPVt−1|t−5 + β3BPVt−1|t−22 + ut. (10)

Inspired by the semivariation measures of Barndorff-Nielsen et al. (2008), Patton and Sheppard
(2015) propose the SHAR model, which, in contrast to the HAR model, effectively allows for asymmetric
responses in volatility forecasts from negative and positive intraday returns. More specifically, when
RV−t ≡

∑M
i=1 r2

t,iI{rt,i<0} and RV+t ≡
∑M

i=1 r2
t,iI{rt,i>0}, the SHAR model is defined as:

RVt =β0 + β
+
1 RV+t−1 + β

−
1 RV−t−1 + β2RVt−1|t−5

+ β3RVt−1|t−22 + ut.
(11)

To evaluate model performance, we consider the mean squared error (MSE) and the QLIKE loss,
which, according to Patton (2011), both are robust to noise. MSE is defined as
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MS E(RVt, Ft) ≡ (RVt − Ft)2, (12)

where Ft refers to the one-period direct forecast. QLIKE is defined as

QLIKE(RVt, Ft) ≡
RVt

Ft
− ln

(
RVt

Ft

)
− 1. (13)

3.2.1. Daily forecasting horizon

Table 3. Out-of-sample forecast losses, one-day-ahead volatility forecasts.

EURUSD AR HAR HAR-J CHAR SHAR ARQ HARQ HARQ-F

MSE-RW 1.1483 1.0000 1.0088 0.9945 1.0080 1.0311 0.9759 0.9655∗

MSE-EW 1.1619 1.0000 0.9984 0.9908 1.0050 1.02660 0.9742 0.9720∗

QLIKE-RW 1.3153 1.0000 0.9907 0.9813 1.0078 1.1575 0.9767 0.9582∗

QLIKE-EW 1.3915 1.0000 0.9907 0.9944 1.0052 1.1927 0.9952 0.9721∗∗

USDJPY AR HAR HAR-J CHAR SHAR ARQ HARQ HARQ-F

MSE-RW 1.0502 1.0000 1.0053 0.9979 1.0238 0.8907 0.8885 0.8832∗

MSE-EW 1.0475 1.0000 1.0243 1.0133 1.0515 0.9558 0.9446 0.9376∗

QLIKE-RW 1.2320 1.0000 1.0748 0.9944 0.9811 0.9482 0.8824 0.8667∗

QLIKE-EW 1.3066 1.0000 1.0023 0.9800 0.9941 1.0039 0.8949 0.8519∗

Note: Model performance, expressed as model loss normalized by the loss of the HAR model. Each row reflects a combination of estimation window and loss
function. Ratio for the best performing model on each row in bold.Corresponding asterix * and ** denote 1% and 5% confidence levels from Diebold-Mariano test
for one-sided tests of superior performance of the best performing model compared to the HAR model.

Table 3 contains one-day-ahead forecasts for EURUSD and USDJPY. The table reports model
performance, expressed as model loss normalized by the loss of the HAR model. Each row reflects a
combination of estimation window and loss function. The lowest ratio on each row, highlighting the
best, performing model, is in bold. We evaluate the models using both a rolling window (RW) and an
expanding window (EW). In both cases, forecasts are derived from model parameters re-estimated
each day with a fixed length RW comprised of the previous 1000 days, as well as an EW using all of
the available observations. The sample sizes for EW thus range from 1000 to 3201 days. The results
are consistent in that the HARQ-F model is the best performer for both currency pairs and across loss
functions and estimation windows. The HARQ model is closest to HARQ-F. Neither HAR-J, CHAR,
nor SHAR appear to consistently improve upon the standard HAR model.
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Table 4. Stratified one-day-ahead out-of-sample forecast losses.

(a) Bottom 95% RQ

EURUSD AR HAR HAR-J CHAR SHAR ARQ HARQ HARQ-F

MSE-RW 1.1156 1.0000 0.9937 0.9907 1.0021 1.0636 0.9925 0.9794
MSE-IW 1.1175 1.0000 0.9887 0.9885 1.0020 1.0711 0.9967 0.9866
QLIKE-RW 1.3299 1.0000 0.9975 0.9855 1.0071 1.1598 0.9745 0.9555
QLIKE-IW 1.4108 1.0000 0.9956 0.9980 1.0055 1.1995 0.9944 0.9720

heightUSDJPY AR HAR HAR-J CHAR SHAR ARQ HARQ HARQ-F

MSE-RW 1.0330 1.0000 1.0146 0.9984 0.9940 0.9592 0.9526 0.9495
MSE-IW 1.0590 1.0000 0.9962 0.9925 1.0001 0.9849 0.9681 0.9601
QLIKE-RW 1.2507 1.0000 1.1353 0.9877 0.9829 0.9542 0.8797 0.8450
QLIKE-IW 1.3266 1.0000 0.9883 0.9734 0.9993 1.0100 0.8887 0.8434

(b) Top 5% RQ

EURUSD AR HAR HAR-J CHAR SHAR ARQ HARQ HARQ-F

MSE-RW 1.2276 1.0000 1.0453 1.0036 1.0225 0.9523 0.9355 0.9316
MSE-IW 1.2642 1.0000 1.0206 0.9960 1.0121 0.9218 0.9224 0.9382
QLIKE-RW 1.0876 1.0000 0.8851 0.9152 1.0186 1.1223 1.0116 0.9996
QLIKE-IW 1.0902 1.0000 0.9141 0.9389 1.0006 1.0856 1.0081 0.9745

USDJPY AR HAR HAR-J CHAR SHAR ARQ HARQ HARQ-F

MSE-RW 1.0674 1.0000 1.0025 0.9974 1.0535 0.9425 0.8700 0.8518
MSE-IW 1.0347 1.0000 1.0566 1.0365 1.1090 0.9246 0.9183 0.9126
QLIKE-RW 1.0202 1.0000 1.5755 1.0697 0.9601 0.8803 0.9135 0.9999
QLIKE-IW 1.0544 1.0000 1.1789 1.0628 0.9279 0.9278 0.9730 0.9588

Note: The table segments the results in Table 3 according to RQ. The bottom panel shows the ratios for days following a value of RQ in the top 5%. The top panel
shows the results for the remaining 95% of sample. Ratio for the best performing model on each row in bold.

Judging from Table 3, it is beneficial to include RQ as an explanatory variable when RV is measured
inaccurately. However, precise measurement of RV becomes more difficult when RV is high, inducing
a positive correlation between RV and RQ. At the same time, high RV often coincides with jumps.
To clarify whether the performance of RQ-based models is due to jump dynamics, Table 4 further
segments the results in Table 3 into forecasts for days when the previous day’s RQ was very high (Top
5% RQ, Table 4b ) and the remaining sample (Bottom 95% RQ, Table 4a). As this breakdown shows,
the RQ-based models perform relatively well also during periods of non-extreme heteroscedasticity of RQ.

3.2.2. Longer forecast horizons

In practitioner applications, longer forecasts than one day are often of interest. We now extend
our analysis to weekly and monthly horizons, using direct forecasts. The daily forecast analysis in
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subsubsection 3.2.1 indicates the lag order of RQ plays an important role in forecast accuracy. Hence,
following Bollerslev et al. (2016), we consider the HARQ-h model, and adjust the lag corresponding to
the specific forecast horizon only. Specifically, for the weekly and monthly forecasts analysed here, the
relevant HARQ-h specifications become

RVt+4|t =β0 + β1RVt−1 +
(
β2 + β2QRQ1/2

t−1|t−5

)︸                  ︷︷                  ︸
β2,t

RVt−1|t−5

+ β3RVt−1|t−22 + ut

(14)

and
RVt+21|t =β0 + β1RVt−1 + β2RVt−1|t−5 + ut,

+
(
β3 + β3QRQ1/2

t−1|t−22

)︸                   ︷︷                   ︸
β3,t

RVt−1|t−22 + ut, (15)

respectively.

Table 5. In-sample weekly and monthly model estimates.

(a) EURUSD

Weekly Monthly
AR ARQ HAR HARQ HARQ-F HARQ-h AR ARQ HAR HARQ HARQ-F HARQ-h

β0 0.8646∗ 0.2634∗ 0.5680∗ 0.4758∗ -0.0250 0.2275∗∗ 1.6388∗ 0.9642∗ 0.9269∗ 0.8452∗ 0.2328 0.2153
s.e. 0.1345 0.0927 0.0997 0.0882 0.0895 0.0861 0.1806 0.1840 0.2246 0.2099 0.2080 0.2093
β1 0.7168∗ 0.9620∗ 0.1194∗ 0.2752∗ 0.1836∗ 0.1181∗ 0.4616∗ 0.7373∗ 0.0717∗ 0.2097∗ 0.1131∗ 0.0646∗

s.e. 0.0480 0.0400 0.0264 0.0395 0.0269 0.0214 0.0564 0.0616 0.0205 0.0401 0.0248 0.0185
β2 0.3938∗ 0.3395∗ 0.5777∗ 0.7635∗ 0.2091∗ 0.1606∗ 0.3706∗ 0.2176∗

s.e. 0.0887 0.0881 0.1282 0.1139 0.0587 0.0554 0.0962 0.0563
β3 0.3008∗ 0.2440∗ 0.3131∗∗ 0.0876 0.4163∗ 0.3661∗ 0.5153∗ 0.7179∗

s.e. 0.0880 0.0817 0.1275 0.0940 0.1186 0.1174 0.1498 0.1106
β1Q −5.4876∗ −1.0749∗ −0.4728∗ −6.1534∗ −0.9499∗ −0.3246∗

s.e. 0.4817 0.1377 0.1005 0.9900 0.1815 0.0846
β2Q −2.7357∗ −4.9739∗ −2.3111∗

s.e. 0.9302 0.7181 0.8020
β3Q −5.6441∗ −7.8467∗ −10.9979∗

s.e. 1.4540 2.1071 1.9082
R2 0.5138 0.5642 0.5453 0.5604 0.5843 0.5756 0.4297 0.5191 0.5072 0.5237 0.5678 0.5568
MS E 2.6073 2.3370 2.4385 2.3576 2.2292 2.2759 2.1913 1.8477 1.8932 1.8299 1.6606 1.7027
QLIKE 0.0862 0.0731 0.0752 0.0735 0.0679 0.0704 0.1073 0.0804 0.0839 0.0012 0.0760 0.0788

(b) USDJPY

Weekly Monthly
AR ARQ HAR HARQ HARQ-F HARQ-h AR ARQ HAR HARQ HARQ-F HARQ-h

β0 2.0305∗ 1.1976∗ 1.3310∗ 1.1591∗ 0.8708∗ 0.9646∗ 2.5786∗ 2.2815∗ 1.7358∗ 1.6356∗ 1.3894∗ 1.3900∗

s.e. 0.2484 0.1550 0.1967 0.1646 0.1701 0.1564 0.1928 0.2245 0.2792 0.2678 0.3106 0.3151
β1 0.3709∗ 0.6801∗ 0.0687∗ 0.2722∗ 0.1650∗ 0.0668∗ 0.2011∗ 0.3121∗ 0.0286∗∗ 0.1460∗ 0.0829∗ 0.0283∗

s.e. 0.0717 0.0512 0.0266 0.0500 0.0373 0.0207 0.0363 0.0566 0.0119 0.0258 0.0166 0.0113
β2 0.1294 0.0742 0.3558∗ 0.4971∗ 0.0865∗ 0.0541 0.1886∗ 0.0923∗

s.e. 0.0700 0.0609 0.0787 0.0790 0.0389 0.0333 0.0487 0.0376
β3 0.3910∗ 0.3147∗ 0.2622∗ 0.1829∗ 0.3460∗ 0.3030∗ 0.3340∗ 0.4811∗

s.e. 0.0703 0.0621 0.0959 0.0693 0.0916 0.0883 0.1346 0.1220
β1Q −0.6085∗ −0.1190∗ −0.0571∗ −0.2167∗∗ −0.0678∗ −0.0318∗

s.e. 0.0534 0.0173 0.0141 0.0832 0.0093 0.0068
β2Q −0.3653∗ −0.5357∗ −0.1659∗

s.e. 0.0704 0.0648 0.0465
β3Q -0.2750 -0.3946 −0.7392∗∗

s.e. 0.2010 0.2942 0.2900
R2 0.1367 0.2323 0.1848 0.2270 0.2557 0.2475 0.1414 0.2106 .2205 0.2496 0.2761 0.2542
MS E 11.6923 10.3980 11.0412 10.4701 10.0811 10.1919 5.4365 4.9983 4.9351 4.7513 4.58326 4.7220
QLIKE 0.2361 0.4197 0.2057 0.1937 0.4076 0.1405 0.2143 0.1973 0.1801 0.1734 0.1634 0.1680

Note: In-sample parameter estimates for weekly (h = 5) and monthly (h = 22) forecasting models. EURUSD in upper panel (Table 5a) and USDJPY in lower
panel (Table 5b). Robust standard errors (s.e.) using Newey and West (1987) accommodate autocorrelation up to order 10 (h = 5), and 44 (h = 22), respectively.
Superscripts *, ** and *** represent statistical significance in a two-sided t-test at 1%, 5%, and 10% levels.
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Table 5 presents in-sample parameter estimates across model specifications. The patterns observed
here closely resemble those of the daily estimates detailed in Table 2. All coefficients on RQ
(β1Q, β2Q, β3Q) are negative, except for the (h = 22) lag statistically significant. This indicates that
capturing measurement errors is relevant also for forecast horizons beyond one day. The HARQ model
consistently allocates greater weight to the daily lag compared to the standard HAR model. Similarly,
the HARQ-h model predominantly allocates its weight towards the time-varying lag. The weights of the
HARQ-F model on the different lags are relatively more stable when compared to the HARQ-h model.

Table 6. Weekly out-of-sample forecast losses.

EURUSD AR HAR HAR-J CHAR SHAR ARQ HARQ HARQ-F HARQ-h

MSE-RW 1.3063 1.0000 0.9636 0.9884 1.0017 1.1459 0.9677 0.9024∗ 0.9205
MSE-EW 1.2702 1.0000 0.9433 0.9559 0.9997 1.1288 0.9501 0.8996∗ 0.9117
QLIKE-RW 1.5923 1.0000 0.9819 0.9840 0.9995 1.3558 0.9932 0.8701 0.9283
QLIKE-EW 1.7682 1.0000 0.9874 1.0031 1.0033 1.4134 0.9648 0.8832∗ 0.9297

USDJPY AR HAR HAR-J CHAR SHAR ARQ HARQ HARQ-F HARQ-h

MSE-RW 1.0618 1.0000 0.9464 0.9509 0.9965 0.9064 0.8971 0.8393∗ 0.8443
MSE-EW 1.1707 1.0000 1.0148 1.0021 1.0336 1.0194 0.9388 0.8993 0.8976∗

QLIKE-RW 1.3119 1.0000 1.0057 0.9910 0.9740 1.0493 0.9099 0.8246∗ 0.8359
QLIKE-EW 1.3847 1.0000 0.9918 0.9768 1.0002 1.1391 0.9179 0.8350∗ 0.8463

Note: Model performance, expressed as model loss normalized by the loss of the HAR model. Each row reflects a combination of estimation window and loss
function. Ratio for the best-performing model on each row in bold. Corresponding asterix * and ** denote 1% and 5% confidence levels from Diebold-Mariano test
for one-sided tests of superior performance of the best performing model compared to the HAR model.

Table 7. Monthly out-of-sample forecast losses.

EURUSD AR HAR HAR-J CHAR SHAR ARQ HARQ HARQ-F HARQ-h

MSE-RW 1.3289 1.0000 0.9876 0.9952 1.0003 1.1876 0.9625 0.8803∗ 0.9004
MSE-IW 1.3265 1.0000 0.9759 1.0010 1.0044 1.1707 0.9537 0.8723 0.9070
QLIKE-RW 1.4301 1.0000 0.9945 0.9950 0.9982 1.2380 0.9622 0.9215∗ 0.9279
QLIKE-IW 1.5155 1.0000 0.9951 1.0051 1.0011 1.2596 0.9599 0.9333 0.9784

USDJPY AR HAR HAR-J CHAR SHAR ARQ HARQ HARQ-F HARQ-h

MSE-RW 1.2529 1.0000 1.0215 1.0086 0.9893 1.5820 1.0500 1.0070 0.9621∗

MSE-IW 1.2547 1.0000 1.0073 1.0029 1.0119 1.1181 0.9620 0.9495∗ 0.9780
QLIKE-RW 1.1937 1.0000 1.0023 0.9963 0.9893 1.0313 0.9307 0.9454 1.0318
QLIKE-IW 1.2894 1.0000 0.9959 0.9909 1.0000 1.1453 0.9452 0.8932∗ 1.0143

Note: Model performance, expressed as model loss normalized by the loss of the HAR model. Each row reflects a combination of estimation window and loss
function. Ratio for the best performing model on each row in bold. Corresponding asterix * and ** denote 1% and 5% confidence levels from Diebold-Mariano test
for one-sided tests of superior performance of the best performing model compared to the HAR model.

Table 6 and Table 7 detail the out-of-sample performance for weekly and monthly forecasts,
respectively. Notably, the HAR-J, CHAR, and SHAR models generally fail to demonstrate consistent
improvements over the basic HAR model. This is a sharp contrast to the RQ-augmented models. The
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HARQ-F model outperforms the HAR model both for EURUSD and USDJPY for nearly all instances.
Also, HARQ-h delivers forecasts that are relatively consistent with the HAR model. Judging from both
weekly and monthly results, the inherent flexibility of the HARQ-F is beneficial also for longer-term
forecasts. We note that, at the monthly forecasting horizon for USDJPY, there is some variability as to
preferred Q-specifications. Also, in some monthly instances, the Diebold-Mariano null hypothesis of
equal predictability cannot be rejected. This is not unreasonable, since the number of independent
monthly observations naturally becomes lower than for corresponding shorter forecasting horizons,
leading to higher parameter uncertainty and related noise in volatility estimates.

3.3. Robustness

3.3.1. Alternative HARQ Specifications

The intention of the HARQ model is to capture the heteroskedastic measurement error of realized
variance. The HARQ model in (5) approximates this through the square root of RQ. Bollerslev et al.
(2016) argues that this encounters possible issues with numerical stability. Still, this specification is
somewhat ad-hoc and a number of reasonable alternatives exist. To clarify whether the performance of
the HARQ model is sensitive to the definition of RQ, we follow Bollerslev et al. (2016) and substitute
RQ,RQ−1/2,RQ−1, and log(RQ) in place of RQ1/2. Furthermore, we augment the standard HAR and
HARQ models with RQ1/2 as an additional explanatory variable, which allows the HAR(Q) model
intercept to be time-varying.

Table 8 reports the out-of-sample forecast results from the alternative HARQ specifications. We
normalize all losses by those of the HARQ model based on RQ1/2.

Table 8. Alternative HARQ Specifications

Alternative RQ transformations Adding RQ1/2

EURUSD RQ RQ1/2 RQ−1/2 RQ−1 log(RQ) HAR HARQ

MSE-RW 1.0023 1.0000 1.0263 1.0246 1.0092 1.0309 1.0052
MSE-IW 1.0016 1.0000 1.0274 1.0265 1.0069 1.0292 1.0086
QLIKE-RW 1.0042 1.0000 1.0326 1.0304 1.0007 1.0250 1.0067
QLIKE-IW 1.0014 1.0000 1.0064 1.0254 0.9937 1.0044 1.0164

USDJPY RQ RQ1/2 RQ−1/2 RQ−1 log(RQ) HAR HARQ

MSE-RW 1.0001 1.0000 1.1345 1.1225 1.0516 1.1202 1.0118
MSE-IW 1.0049 1.0000 1.0606 1.0543 0.9931 1.0512 1.0186
QLIKE-RW 1.0097 1.0000 1.1439 1.1067 0.9794 1.0731 1.0455
QLIKE-IW 1.0188 1.0000 1.1105 1.0841 0.9322 1.0358 0.9989

Note: Model performance, expressed as model loss normalized by the loss of the HARQ model, relies on RQ1/2. Each row reflects a combination of estimation
window and loss function. Ratio for the best, performing model on each row in bold. The left panel reports the results based on alternative RQ interaction terms. The
right panel reports the results from including RQ1/2 as an explanatory variable.

The two rightmost columns of Table 8 reveal that including RQ1/2 as an explanatory variable in
the HAR and HARQ models does not lead to improved forecasts. Similarly, applying alternative RQ
transformations does not appear to be helpful. Overall, we conclude that the HARQ model demonstrates
greater stability and is generally favored over the alternative specifications.
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3.3.2. Alternative Q-Models

HARQ is essentially an expansion of the HAR model. In a similar vein, the other benchmark
volatility models can be extended accordingly. Following Bollerslev et al. (2016), from the HAR-J
model defined in (3.2), we construct the HARQ-J model;

RVt =β0 +
(
β1 + β1QRQ1/2

t−1

)
RVt−1 + β2RVt−1|t−5

+ β3RVt−1|t−22 + βJ Jt−1 + ut.
(16)

Furthermore, from the CHAR model defined in (3.2), we construct the CHARQ model;

RVt =β0 +
(
β1 + β1QT PQ1/2

t−1

)
BPVt−1 + β2BPVt−1|t−5

+ β3BPVt−1|t−22 + ut.
(17)

Lastly, from the SHAR model defined in (3.2), we construct the SHARQ model;

RVt =β0 +
(
β+1 + β

+
1QRQ1/2

t−1

)
RV+t−1 +

(
β−1 + β

−
1QRQ1/2

t−1

)
RV−t−1

+ β2RVt−1|t−5 + β3RVt−1|t−22 + ut.
(18)

Table 9 compares out-of-sample forecast results from each of the alternative Q-models (HARQ-J,
CHARQ, and SHARQ), to their non-Q adjusted baseline specification. We also include the HARQ
model. For both currencies, the enhancements seen in the HARQ-J and CHARQ models align with those
observed in the basic HARQ model. This is in contrast to the SHARQ model, which is outperformed by
SHAR. Bollerslev et al. (2016) report similar results.

Table 9. Out-of-sample forecast losses for alternative Q-models.

EURUSD HARQ HARQ-J CHARQ SHARQ

MSE-RW 0.9759 0.9693 0.9749 1.0613
MSE-IW 0.9742 0.9563 0.9567 1.0315
QLIKE-RW 0.9767 0.9845 0.9750 1.1473
QLIKE-IW 0.9952 0.9960 0.9893 0.9987

USDJPY HARQ HARQ-J CHARQ SHARQ

MSE-RW 0.8885 0.8916 0.8914 1.0953
MSE-IW 0.9446 0.9322 0.9389 0.8965
QLIKE-RW 0.8824 0.8471 0.9040 1.3887
QLIKE-IW 0.8949 0.8942 0.9178 0.8974

Note: Model performance, expressed as model loss normalized by the loss of the relevant baseline models without the Q-adjustment terms. Each row reflects a
combination of estimation window and loss function. Ratio for the best performing model on each row in bold.
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3.3.3. Subsample analysis

Recent history contains two independent events that separately have induced turbulence in the global
macroeconomy and financial markets. One is the outbreak of COVID-19 in March 2020; another is the
Russian invasion of Ukraine in the second half of 2022, as illustrated in Figure 1.

Figure 1. EURUSD realized variance

To analyze this period of extreme market conditions in isolation, we perform a sub-sample analysis
covering 2020–2022. Table 10 contains out-of-sample results for day-ahead volatility forecasts.
Reassuringly, the overall results remain intact, in that the HARQ-F model is the best performing model
also when this extreme period is considered in isolation.

Table 10. Day ahead out-of-sample forecast losses, 2020–2022 subsample.

EURUSD AR HAR HAR-J CHAR SHAR ARQ HARQ HARQ-F

MSE-RW 1.2522 1.0000 0.9781 0.9745 1.0041 1.0425 0.9517 0.9304
MSE-IW 1.2068 1.0000 0.9813 0.9764 0.9979 1.0976 0.9806 0.9677
QLIKE-RW 1.3216 1.0000 1.0169 0.9829 1.0093 1.1370 0.9446 0.9065
QLIKE-IW 1.5585 1.0000 1.0085 1.0119 1.0059 1.2338 0.9725 0.9701

USDJPY AR HAR HAR-J CHAR SHAR ARQ HARQ HARQ-F

MSE-RW 1.0930 1.0000 1.0555 0.9909 0.9822 0.9895 0.9564 0.9348
MSE-IW 1.1099 1.0000 0.9958 0.9850 1.0112 1.0523 1.0071 0.9827
QLIKE-RW 1.3404 1.0000 1.2635 1.0136 0.9845 0.9509 0.8611 0.8677
QLIKE-IW 1.4766 1.0000 0.9939 0.9808 1.0108 1.0231 0.8453 0.7868

Note: Model performance, expressed as model loss normalized by the loss of the HAR model. Each row reflects a combination of estimation window and loss
function. Ratio for the best performing model on each row in bold.

4. Conclusions

This study uses updated tick-level data from two major currency pairs, EURUSD and USDJPY,
covering January 2010 to December 2022, to investigate the relevance of realized quarticity for out-
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of-sample volatility forecasts. We find that realized quarticity effectively captures noise caused by
measurement errors, as evidenced by increased precision in daily, weekly, and monthly volatility
estimates from models augmented with realized quarticity as an additionally explanatory variable. These
results are robust across estimation windows, evaluation metrics, and model specifications. As such,
the results conform to comparable studies from other markets, predominantly on equity indices and
single stocks. This paper also complements the relatively scarce body of literature on foreign exchange
markets in this context.

A myriad of volatility models based on the HAR framework have been proposed. Still, simple
linear HAR specifications have proven remarkably difficult to beat, as shown by Audrino et al. (2024)
and Branco et al. (2024). In a recent survey, Gunnarsson et al. (2024) report promising results for
machine learning models and volatility forecasting across asset classes. The FX implied volatility
surface contains a rich set of relevant predictive information across forecasting horizons and quantiles
(de Lange et al., 2022). Thus, combining implied volatilities and high-frequency data using machine
learning models, along the lines of Blom et al. (2023), appears as an interesting avenue for future research.

Rarely, one single model dominates others in terms of statistical and economic criteria. To this end,
investigating ensemble models where high-frequency models are combined with other volatility model
classes, such as time series models and stochastic volatility models-possibly including jump-processes,
should be of interest. The recently developed rough-path volatility models based on fractional Brownian
motion (Salmon and SenGuptz, 2021; Bayer et al., 2023) appear particularly relevant in this context.
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Götz P (2023) Realized quantity extended conditional autoregressive Value-at-Risk models. J Risk 26.

Liang C, Li Y, Ma F, et al. (2022) Forecasting international equity market volatility: A new approach. J
Forecast 41: 1433–1457.

Data Science in Finance and Economics Volume 4, Issue 4, 514–530.



529

Gunnarsson ES, Isern HR, Kaloudis A, et al. (2024) Prediction of realized volatility and implied
volatility indices using AI and machine learning: A review Int Rev Financ Anal 2024: 103221
https://doi.org/10.1016/j.irfa.2024.103221

de Lange PE, Risstad M, Westgaard S (2022) Estimating value-at-risk using quantile regression and
implied volatilities. J Risk Model Validat.

Liu LY, Patton AJ, Sheppard K (2015) Does anything beat 5-minute RV? A comparison
of realized measures across multiple asset classes. J Econom 187: 293–311.
https://doi.org/10.1016/j.jeconom.2015.02.008

Liu G, Wei Y, Chen Y, et al. (2018) Forecasting the value-at-risk of Chinese stock
market using the HARQ model and extreme value theory. Physica A 499: 288–297.
https://doi.org/10.1016/j.physa.2018.02.033
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